1
|
Ahmad Khosravi N, Sirous M, Khosravi A, Saki M. A Narrative Review of Bedaquiline and Delamanid: New Arsenals Against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis. J Clin Lab Anal 2024; 38:e25091. [PMID: 39431709 PMCID: PMC11492330 DOI: 10.1002/jcla.25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The treatment of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) is a formidable challenge. Treatment of MDR- and XDR-TB using bedaquiline (BDQ) and delamanid (DLM), two newly introduced medications, is steadily increasing. This narrative review aimed to present a concise overview of the existing information regarding BDQ and DLM, and elucidate their antimicrobial characteristics, resistance mechanisms, synergism with other drugs, and side effects. METHODS To collect the required information about the antimicrobial properties, a search for scientific evidence from the Scopus, PubMed, and Embase databases was performed, and all recently published articles up to May 2024 were considered. RESULTS BDQ had potent antimicrobial effects on various types of nontuberculous mycobacteria (NTM), including rapid-growing and slow-growing species, and MDR/XDR Mycobacterium tuberculosis. The mechanisms of BDQ resistance in M. tuberculosis primarily involve mutations in three genes: atpE, mmpR (Rv0678) and pepQ. BDQ may have synergistic effects when combined with DLM, pyrazinamide, and pretomanid/linezolid. BDQ has a low incidence of side effects. The use of BDQ may prolong the QTc interval. Similarly, DLM showed potent antimicrobial effects on NTM and MDR/XDR M. tuberculosis. The main resistance mechanisms to DLM are induced by mutations in fbiA, fbiB, fbiC, fgd1, and ddn genes. The DLM had synergistic effects with BDQ and moxifloxacin. The DLM also has few side effects in some patients including QTc prolongation. CONCLUSION BDQ and DLM are suitable antibiotics with few side effects for the treatment of MDR/XDR-TB. These antibiotics have synergistic effects when combined with other antituberculosis drugs.
Collapse
Affiliation(s)
- Nazanin Ahmad Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mehrandokht Sirous
- Department of Microbiology and Parasitology, Faculty of MedicineBushehr University of Medical SciencesBushehrIran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
2
|
Shen H, Huo R, Zhang Y, Wang L, Tong N, Chen W, Paris AJ, Mensah K, Chen M, Xue Y, Li W, Sinz M. A Pilot Study To Assess the Suitability of Riboflavin As a Surrogate Marker of Breast Cancer Resistance Protein in Healthy Participants. J Pharmacol Exp Ther 2024; 390:162-173. [PMID: 38296646 DOI: 10.1124/jpet.123.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (IC 50 0.40 μM), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (N = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (AUCs) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased AUC(0-4h), AUC(0-24h), and C max of riboflavin by 1.25-, 1.14-, and 1.11-fold (P-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the AUC(0-24h) and C max values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; P > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Runlan Huo
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yueping Zhang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Linna Wang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Nian Tong
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Weiqi Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Andrew J Paris
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Kofi Mensah
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Min Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yongjun Xue
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Wenying Li
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| |
Collapse
|
3
|
Wen Y, Lun S, Jiao Y, Zhang W, Liu T, Yang F, Tang J, Bishai WR, Yu LF. Structure-directed identification of pyridine-2-methylamine derivatives as MmpL3 inhibitors for use as antitubercular agents. Eur J Med Chem 2023; 255:115351. [PMID: 37116266 PMCID: PMC10239758 DOI: 10.1016/j.ejmech.2023.115351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Mycobacterial membrane protein Large 3 (MmpL3), an inner membrane protein, plays a crucial role in the transport of mycolic acids that are essential for the viability of M. tuberculosis and has been a promising therapeutic target for new anti-TB agents. Herein, we report the discovery of pyridine-2-methylamine antitubercular compounds using a structure-based drug design strategy. Compound 62 stands out as the most potent compound with high activity against M. tb strain H37Rv (MIC = 0.016 μg/mL) as well as the clinically isolated strains of MDR/XDR-TB (MIC = 0.0039-0.0625 μg/mL), low Vero cell toxicity (IC50 ≥ 16 μg/mL), and moderate liver microsomal stability (CLint = 28 μL/min/mg). Furthermore, the resistant mutant of S288T due to single nucleotide polymorphism in mmpL3 was resistant to pyridine-2-methylamine 62, demonstrating compound 62 is likely target to MmpL3.
Collapse
Affiliation(s)
- Yu Wen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States
| | - Yuxue Jiao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Wei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Ting Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States.
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
4
|
Mazanhanga MT, Joubert A, Castel SA, van der Merwe M, Maartens G, Dooley KE, Upton CM, Wiesner L. Liquid chromatography-tandem mass spectrometry analysis of delamanid and its metabolite in human cerebrospinal fluid using protein precipitation and on-line solid-phase extraction. J Pharm Biomed Anal 2023; 227:115281. [PMID: 36739721 PMCID: PMC10023415 DOI: 10.1016/j.jpba.2023.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The penetration of the antituberculosis drug delamanid into the central nervous system is not established. The distribution of delamanid and its major metabolite, DM-6705, into the cerebrospinal fluid requires investigation. A liquid chromatography-tandem mass spectrometry method for the quantification of delamanid and DM-6705 in human cerebrospinal fluid was developed and validated. The calibration range for both analytes was 0.300 - 30.0 ng/mL. The deuterium-labelled analogue of delamanid (delamanid-d4) and OPC-14714 were used as internal standards for delamanid and DM-6705, respectively. Samples were processed by protein precipitation followed by on-line solid-phase extraction and high-performance liquid chromatography on an Agilent 1260 HPLC system. A Phenomenex Gemini-NX C18 (5.0 µm, 50 mm × 2.0 mm) analytical column was used for on-line solid-phase extraction, and a Waters Xterra MS C18 (5.0 µm, 100 mm × 2.1 mm) analytical column for chromatographic separation using gradient elution, at a flow rate of 300 µL/min. The total run time was 7.5 min. Analytes were detected by multiple reaction monitoring on an AB Sciex 5500 triple quadrupole mass spectrometer at unit mass resolution, with electrospray ionization in the positive mode. Accuracy and precision were assessed over three independent validation batches. Extraction recoveries were more than 98% and were consistent across the analytical range. Both analytes in CSF exhibited non-specific adsorption to polypropylene tubes. The method was used to analyse cerebrospinal fluid samples from patients with pulmonary tuberculosis in an exploratory pharmacokinetic study.
Collapse
Affiliation(s)
- Marian T Mazanhanga
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anton Joubert
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sandra A Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Marthinus van der Merwe
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
Duong TV, Nguyen HT, Taylor LS. Combining enabling formulation strategies to generate supersaturated solutions of delamanid: in situ salt formation during amorphous solid dispersion fabrication for more robust release profiles. Eur J Pharm Biopharm 2022; 174:131-143. [PMID: 35413402 PMCID: PMC9084191 DOI: 10.1016/j.ejpb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
6
|
Prediction of Human Pharmacokinetic Profiles of the Antituberculosis Drug Delamanid from Nonclinical Data: Potential Therapeutic Value against Extrapulmonary Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0257120. [PMID: 34097484 DOI: 10.1128/aac.02571-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delamanid has been studied extensively and approved for the treatment of pulmonary multidrug-resistant tuberculosis; however, its potential in the treatment of extrapulmonary tuberculosis remains unknown. We previously reported that, in rats, delamanid was broadly distributed to various tissues in addition to the lungs. In this study, we simulated human plasma concentration-time courses (pharmacokinetic profile) of delamanid, which has a unique property of metabolism by albumin, using two different approaches (steady-state concentration of plasma-mean residence time [Css-MRT] and physiologically based pharmacokinetic [PBPK] modeling). In Css-MRT, allometric scaling predicted the distribution volume at steady state based on data from mice, rats, and dogs. Total clearance was predicted by in vitro-in vivo extrapolation using a scaled albumin amount. A simulated human pharmacokinetic profile using a combination of human-predicted Css and MRT was almost identical to the observed profile after single oral administration, which suggests that the pharmacokinetic profile of delamanid could be predicted by allometric scaling from these animals and metabolic capacity in vitro. The PBPK model was constructed on the assumption that delamanid was metabolized by albumin in circulating plasma and tissues, to which the simulated pharmacokinetic profile was consistent. Moreover, the PBPK modeling approach demonstrated that the simulated concentrations of delamanid at steady state in the lung, brain, liver, and heart were higher than the in vivo effective concentration for Mycobacterium tuberculosis. These results indicate that delamanid may achieve similar concentrations in various organs to that of the lung and may have the potential to treat extrapulmonary tuberculosis.
Collapse
|
7
|
Guglielmetti L, Chiesi S, Eimer J, Dominguez J, Masini T, Varaine F, Veziris N, Ader F, Robert J. Bedaquiline and delamanid for drug-resistant tuberculosis: a clinician's perspective. Future Microbiol 2020; 15:779-799. [PMID: 32700565 DOI: 10.2217/fmb-2019-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-resistant tuberculosis (TB) represents a substantial threat to the global efforts to control this disease. After decades of stagnation, the treatment of drug-resistant TB is undergoing major changes: two drugs with a new mechanism of action, bedaquiline and delamanid, have been approved by stringent regulatory authorities and are recommended by the WHO. This narrative review summarizes the evidence, originating from both observational studies and clinical trials, which is available to support the use of these drugs, with a focus on special populations. Areas of uncertainty, including the use of the two drugs together or for prolonged duration, are discussed. Ongoing clinical trials are aiming to optimize the use of bedaquiline and delamanid to shorten the treatment of drug-resistant TB.
Collapse
Affiliation(s)
- Lorenzo Guglielmetti
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,Médecins Sans Frontières, France
| | - Sheila Chiesi
- Department of Infectious Diseases, 'GB Rossi' Hospital, Verona, Italy.,University of Verona, Verona, Italy
| | - Johannes Eimer
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jose Dominguez
- Research Institute Germans Trias i Pujol, CIBER Respiratory Diseases, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | | | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,APHP, Département de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Hôpitaux Universitaires de l'Est Parisien, F-75012, Paris, France
| | - Florence Ader
- Département des Maladies infectieuses et tropicales, Hospices Civils de Lyon, F-69004, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Jérôme Robert
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France
| |
Collapse
|
8
|
Esmail A, Sabur NF, Okpechi I, Dheda K. Management of drug-resistant tuberculosis in special sub-populations including those with HIV co-infection, pregnancy, diabetes, organ-specific dysfunction, and in the critically ill. J Thorac Dis 2018; 10:3102-3118. [PMID: 29997980 DOI: 10.21037/jtd.2018.05.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis remains a major problem globally, and is the leading cause of death from an infectious agent. Drug-resistant tuberculosis threatens to marginalise the substantial gains that have recently been made in the fight against tuberculosis. Drug-resistant TB has significant associated morbidity and a high mortality, with only half of all multidrug-resistant TB patients achieving a successful treatment outcome. Patients with drug-resistant TB in resource-poor settings are now gaining access to newer and repurposed anti-tuberculosis drugs such as bedaquiline, delamanid and linezolid. However, with ever increasing rates of co-morbidity, there is little guidance on how to manage complex patients with drug-resistant TB. We address that knowledge gap, and outline principles underpinning the management of drug-resistant TB in special situations including HIV co-infection, pregnancy, renal disease, liver disease, diabetes, and in the critically ill.
Collapse
Affiliation(s)
- Aliasgar Esmail
- Lung Infection and Immunity Unit, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Natasha F Sabur
- Lung Infection and Immunity Unit, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa.,Division of Respirology, Department of Medicine, St. Michael's Hospital and West Park Healthcare Centre, Toronto, Canada
| | - Ikechi Okpechi
- Division of Nephrology, Department of Medicine University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Yu A, Lv J, Yuan F, Xia Z, Fan K, Chen G, Ren J, Lin C, Wei S, Yang F. mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus. Int J Nanomedicine 2017; 12:8353-8362. [PMID: 29200847 PMCID: PMC5701607 DOI: 10.2147/ijn.s145488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purpose This study aimed to develop a novel methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA)/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) mixed micelle drug delivery system to improve lamotrigine (LTG) distribution in the hippocampus. Methods LTG-loaded mPEG-PLA/TPGS mixed micelles and LTG-loaded mPEG-PLA micelles were formulated, and their characteristics, particle size, surface morphology, and release behavior in vitro were researched. Then, a microdialysis sampling technique coupled with two validated chromatographic systems was developed for the continuous measurement of the protein-unbound form of LTG in the rat plasma and hippocampus after administering two kinds of micelles and LTG solution intranasally. Results The drug loading and mean size of LTG-loaded micelles and LTG-loaded mixed micelles prepared with optimal formulation were 36.44%±0.14%, 39.28%±0.26%, 122.9, and 183.5 nm, respectively, with a core–shell structure. The cumulative release rate in vivo of LTG-loaded mixed micelles was 84.21% at 24 hours and showed more sustained release while that of LTG-loaded micelles was 80.61% at 6 hours. The Tmax and area under concentration-time curve from zero to time of last quantifiable concentration of LTG solution, LTG-loaded micelles, and LTG-loaded mixed micelles were 55, 35, and 15 minutes and about 5,384, 16,500, and 25,245 (min⋅μg)/L in the hippocampus, respectively. Conclusion The results revealed that LTG-loaded mPEG-PLA/TPGS mixed micelles enhanced the absorption of LTG at the nasal cavity and reduced the efflux of LTG in the brain, suggesting that the function of TPGS inhibited P-glycoprotein and LTG-loaded mPEG-PLA/TPGS mixed micelles had the potential to overcome refractory epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Chen
- Department of Pharmaceutics.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | | | | | - Shijie Wei
- Department of Pharmaceutics.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Pharmaceutics.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Morse BL, MacGuire JG, Marino AM, Zhao Y, Fox M, Zhang Y, Shen H, Griffith Humphreys W, Marathe P, Lai Y. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Clearance and Liver Partitioning of OATP and OCT Substrates in Cynomolgus Monkeys. AAPS JOURNAL 2017; 19:1878-1889. [PMID: 29019117 DOI: 10.1208/s12248-017-0151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
In the present investigations, we evaluate in vitro hepatocyte uptake and partitioning for the prediction of in vivo clearance and liver partitioning. Monkeys were intravenously co-dosed with rosuvastatin and bosentan, substrates of the organic anion transporting polypeptides (OATPs), and metformin, a substrate of organic cation transporter 1 (OCT1). Serial plasma and liver samples were collected over time. Liver and plasma unbound fraction was determined using equilibrium dialysis. In vivo unbound partitioning (Kpu,u) for rosuvastatin, bosentan, and metformin, calculated from total concentrations in the liver and plasma, were 243, 553, and 15, respectively. A physiologically based pharmacokinetic monkey model that incorporates active and passive hepatic uptake was developed to fit plasma and liver concentrations. In addition, a two-compartment model was used to fit in vitro hepatic uptake curves in suspended monkey hepatocyte to determine active uptake, passive diffusion, and intracellular unbound fraction parameters. At steady-state in the model, in vitro Kpu,u was determined. The results demonstrated that in vitro values under-predicted in vivo active uptake for rosuvastatin, bosentan, and metformin by 6.7-, 28-, and 1.5-fold, respectively, while passive diffusion was over-predicted. In vivo Kpu,u values were under-predicted from in vitro data by 30-, 79-, and 3-fold. In conclusion, active uptake and liver partitioning in monkeys for OATP substrates were greatly under-predicted from in vitro hepatocyte uptake, while OCT-mediated uptake and partitioning scaled reasonably well from in vitro, demonstrating substrate- and transporter-dependent scaling factors. The combination of in vitro experimental and modeling approaches proved useful for assessing prediction of in vivo intracellular partitioning.
Collapse
Affiliation(s)
- Bridget L Morse
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA.,Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jamus G MacGuire
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Anthony M Marino
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yue Zhao
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Maxine Fox
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA. .,Drug Metabolism, Gilead Sciences Inc., Foster City, California, 94404, USA.
| |
Collapse
|
11
|
Hu M, Zheng C, Gao F. Use of bedaquiline and delamanid in diabetes patients: clinical and pharmacological considerations. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3983-3994. [PMID: 27994440 PMCID: PMC5153280 DOI: 10.2147/dddt.s121630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antituberculosis (anti-TB) treatment may be affected by both diabetes and hypoglycemic agents in patients with these 2 comorbidities. However, data supporting this conclusion relate only to standard anti-TB therapies. Sirturo® (bedaquiline) and Deltyba® (delamanid), novel drugs for multidrug-resistant tuberculosis (MDR-TB), are recommended for diabetes patients when another effective treatment regimen cannot be provided. Currently, there are no clinical data related to the use of these agents in diabetes patients. Possible alterations in the pharmacokinetics of these novel drugs induced by changes in subcutaneous adipose blood flow, gastric emptying, or nephropathy in diabetes patients, and possible drug–drug interactions with hypoglycemic agents, are of special interest, since the efficacy of bedaquiline and delamanid is concentration dependent. Moreover, it is of fundamental importance to avoid possible additive or synergistic effects of adverse drug reactions in this already vulnerable patient group. We reviewed clinical particularities related to the use of bedaquiline and delamanid in patients with type 1 and 2 diabetes mellitus (DM), as well as pharmacological aspects of the concurrent use of these agents with oral and injectable hypoglycemic agents. Bedaquiline shares liver metabolic pathways with several oral hypoglycemic agents, whereas delamanid may compete with several oral hypoglycemic agents and insulin analogs at protein-binding sites. Special concern exists regarding the use of bedaquiline and delamanid in diabetes patients aged >65 years and patients with severe renal or hepatic impairment or electrolyte disturbances. Concurrent use of bedaquiline and delamanid with insulin analogs, and other hypoglycemic agents that prolong the heart rate-corrected QT interval, such as sulfonylureas and glinides, may enhance this adverse reaction. Hepatic-related adverse reactions may develop more frequently when these drugs are combined with thiazolidinediones and acarbose. Data from Phase III and postmarketing studies are needed to elucidate the effect of DM and hypoglycemic agents on bedaquiline and delamanid effects in MDR-TB patients.
Collapse
Affiliation(s)
- Minhui Hu
- Department of Internal Medicine - Section 5, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Control Institute)
| | - Chunlan Zheng
- Department of Internal Medicine - Section 5, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Control Institute)
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|