1
|
To EE. Cell and Tissue Specific Metabolism of Nucleoside and Nucleotide Drugs: Case Studies and Implications for Precision Medicine. Drug Metab Dispos 2023; 51:360-368. [PMID: 36446610 DOI: 10.1124/dmd.122.000856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Many clinically used antiviral drugs are nucleoside or nucleotide analog drugs, which have a unique mechanism of action that requires intracellular phosphorylation. This dependence on intracellular activation presents novel challenges for the discovery and development of nucleoside/nucleotide analog drugs. Contrary to many small molecule drug development programs that rely on plasma pharmacokinetics and systemic exposures, the precise mechanisms that result in efficacious intracellular nucleoside triphosphate concentrations must be understood in the process of nucleoside/nucleotide drug development. The importance is highlighted here, using the following as case studies: the herpes treatment acyclovir, the cytomegalovirus therapy ganciclovir, and human immunodeficiency virus (HIV) treatments based on tenofovir, which are also in use for HIV prophylaxis. For each drug, the specificity of metabolism that results in its activation in different cells or tissues is discussed, and the implications explored. Acyclovir's dependence on a viral enzyme for activation provides selective pressure for resistance mutations. Ganciclovir is also dependent on a viral enzyme for activation, and suicide gene therapy capitalizes on that for a novel oncology treatment. The tissue of most relevance for tenofovir activation depends on its use as treatment or as prophylaxis, and the pharmacogenomics and drug-drug interactions in those tissues must be considered. Finally, differential metabolism of different tenofovir prodrugs and its effects on toxicity risk are explored. Taken together, these examples highlight the importance of understanding tissue specific metabolism for optimal use of nucleoside/nucleotide drugs in the clinic. SIGNIFICANCE STATEMENT: Nucleoside and nucleotide analogue drugs are cornerstones in current antiviral therapy and prevention efforts that require intracellular phosphorylation for activity. Understanding their cell and tissue specific metabolism enables their rational, precision use for maximum efficacy.
Collapse
Affiliation(s)
- Elaine E To
- Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
2
|
Early Colorectal Responses to HIV-1 and Modulation by Antiretroviral Drugs. Vaccines (Basel) 2021; 9:vaccines9030231. [PMID: 33800213 PMCID: PMC8000905 DOI: 10.3390/vaccines9030231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Innate responses during acute HIV infection correlate with disease progression and pathogenesis. However, limited information is available about the events occurring during the first hours of infection in the mucosal sites of transmission. With an ex vivo HIV-1 challenge model of human colorectal tissue we assessed the mucosal responses induced by R5- and X4-tropic HIV-1 isolates in the first 24 h of exposure. Microscopy studies demonstrated virus penetration of up to 39 μm into the lamina propia within 6 h of inoculation. A rapid, 6 h post-challenge, increase in the level of secretion of inflammatory cytokines, chemokines, interferon- γ (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed following exposure to R5- or X4-tropic isolates. This profile persisted at the later time point measured of 24 h. However, exposure to the X4-tropic isolate tested induced greater changes at the proteomic and transcriptomic levels than the R5-tropic. The X4-isolate induced greater levels of CCR5 ligands (RANTES, MIP-1α and MIP-1β) secretion than R5-HIV-1. Potential drugs candidates for colorectal microbicides, including entry, fusion or reverse transcriptase inhibitors demonstrated differential capacity to modulate these responses. Our findings indicate that in colorectal tissue, inflammatory responses and a Th1 cytokine profile are induced in the first 24 h following viral exposure.
Collapse
|
3
|
Baggio GL, Macedo NF, Merlin JC, Anghebem MI, Santos JCV, Ignácio SA, Rubira-Bullen IRF, Azevedo Alanis LR, Couto Souza PH. Inflammatory cytologic alterations in the oral epithelium associated with HIV pre-exposure prophylaxis: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 131:534-539. [PMID: 33558169 DOI: 10.1016/j.oooo.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The objective of this study was to assess inflammatory cytologic alterations in the oral epithelium of patients on human immunodeficiency virus pre-exposure prophylaxis (PrEP). MATERIAL AND METHODS Epithelial cells from the buccal mucosa of 30 patients were collected by exfoliative cytology and were evaluated according to inflammatory cellular alterations: karyomegaly, bi- or multinucleation, karyopyknosis, karyorrhexis, perinuclear halo formation, metachromasia, cytoplasmic vacuolization, indistinct cytoplasmic border, keratinization, and atrophy. Epithelial cells were collected initially before PrEP onset (T1) and then after 30 days of PrEP use (T2). Two experienced cytopathologists independently analyzed the slides. RESULTS The nonparametric Wilcoxon test showed that there was a statistically significant increase in the number of cells with karyomegaly at T2 compared to T1 (P = .033). The other cellular alterations did not present with statistically significant differences between the 2 moments of evaluation (P > .05). CONCLUSION The increased number of oral epithelial cells with karyomegaly after 30 days of using PrEP suggests the presence of inflammatory alterations at this site.
Collapse
Affiliation(s)
- Gabriela Leite Baggio
- Graduate Program in Dentistry, Stomatology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Nayara Flores Macedo
- Graduate Program in Dentistry, Stomatology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Julio Cezar Merlin
- Assistant Professor, Department of Pharmacy, School of Life Sciences and School of Medicine, Pontifícia Universidade Católica do Paraná
| | - Mauren Isfer Anghebem
- Assistant Professor, Department of Pharmacy, School of Life Sciences and School of Medicine, Pontifícia Universidade Católica do Paraná; Assistant Professor, Department of Clinical Analysis, Universidade Federal do Paraná, Curitiba, Brazil
| | - Juliane Cardoso Villela Santos
- Public Health Nurse, Coordinator of the Centro de Orientação e Aconselhamento, Secretaria Municipal de Saúde de Curitiba, Brazil, Graduate Program in Dentistry (Public Health Area), School of Life Sciences, Potifícia Universidade Católica do Paran´
| | - Sérgio Aparecido Ignácio
- Full Professor, Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná
| | - Izabel Regina Fischer Rubira-Bullen
- Full Professor, Department of Surgery, Stomatology, Pathology and Radiology, School of Dentistry Bauru, University of São Paulo, São Paulo, Brazil
| | - Luciana Reis Azevedo Alanis
- Full Professor, Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná
| | - Paulo Henrique Couto Souza
- Full Professor, Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná.
| |
Collapse
|
4
|
Delgado-Diaz DJ, Tyssen D, Hayward JA, Gugasyan R, Hearps AC, Tachedjian G. Distinct Immune Responses Elicited From Cervicovaginal Epithelial Cells by Lactic Acid and Short Chain Fatty Acids Associated With Optimal and Non-optimal Vaginal Microbiota. Front Cell Infect Microbiol 2020; 9:446. [PMID: 31998660 PMCID: PMC6965070 DOI: 10.3389/fcimb.2019.00446] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Non-optimal vaginal microbiota, as observed in bacterial vaginosis (BV), is typically characterized by a depletion of beneficial lactobacilli and an abundance of numerous anaerobes. These non-optimal conditions are associated with subclinical cervicovaginal inflammation and an increased risk of HIV infection compared to women colonized with optimal vaginal microbiota dominated by lactobacilli. Lactic acid (LA) is a major organic acid metabolite produced by vaginal lactobacilli that elicits anti-inflammatory effects from cervicovaginal epithelial cells and is dramatically depleted during BV. However, it is unclear if LA retains its anti-inflammatory activity in the presence of vaginal microbiota metabolites comprising short chain fatty acids (SCFAs) and succinic acid, which are also produced by an optimal vaginal microbiota. Furthermore, the immunomodulatory effect of SCFAs and succinic acid on cervicovaginal epithelial cells at higher concentrations present during BV is unknown. Here we report that in the presence of physiologically relevant concentrations of SCFAs and succinic acid at pH 3.9 (as found in women with lactobacillus-dominated microbiota) LA induced an anti-inflammatory state in cervicovaginal epithelial cells and inhibited inflammation elicited by the toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid and Pam3CSK4. When cervicovaginal epithelial cells were treated with a vaginal microbiota metabolite mixture representative of BV, containing a lower concentration of LA but higher concentrations of SCFA/succinic acid at pH 7, no anti-inflammatory was observed. Rather, the vaginal microbiota metabolite mixture representative of BV dysregulated the immune response of cervicovaginal epithelial cells during prolonged and sustained treatments. This was evidenced by increased basal and TLR-induced production of pro-inflammatory cytokines including tumor necrosis factor-α, but decreased basal production of chemokines including RANTES and IP-10. Further characterization of individual components of the BV vaginal microbiota mixture suggested that acetic acid is an important vaginal microbiota metabolite capable of eliciting diverse immunomodulatory effects on a range of cervicovaginal epithelial cell targets. These findings indicate that elevated levels of SCFAs are a potential source of cervicovaginal inflammation in women experiencing BV, and support the unique anti-inflammatory properties of LA on cervicovaginal epithelial cells as well as a role for LA or LA-producing lactobacilli to reverse genital inflammation associated with increased HIV risk.
Collapse
Affiliation(s)
- David J Delgado-Diaz
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David Tyssen
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Joshua A Hayward
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Raffi Gugasyan
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Gilda Tachedjian
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Dlamini S, Kuipa M, Enfield K, Skosana S, Woodland JG, Moliki JM, Bick AJ, van der Spuy Z, Maritz MF, Avenant C, Hapgood JP. Reciprocal Modulation of Antiretroviral Drug and Steroid Receptor Function In Vitro. Antimicrob Agents Chemother 2019; 64:e01890-19. [PMID: 31658973 PMCID: PMC7187592 DOI: 10.1128/aac.01890-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Millions of women are exposed simultaneously to antiretroviral drugs (ARVs) and progestin-based hormonal contraceptives. Yet the reciprocal modulation by ARVs and progestins of their intracellular functions is relatively unexplored. We investigated the effects of tenofovir disoproxil fumarate (TDF) and dapivirine (DPV), alone and in the presence of select steroids and progestins, on cell viability, steroid-regulated immunomodulatory gene expression, activation of steroid receptors, and anti-HIV-1 activity in vitro Both TDF and DPV modulated the transcriptional efficacy of a glucocorticoid agonist via the glucocorticoid receptor (GR) in the U2OS cell line. In TZM-bl cells, DPV induced the expression of the proinflammatory interleukin 8 (IL-8) gene while TDF significantly increased medroxyprogesterone acetate (MPA)-induced expression of the anti-inflammatory glucocorticoid-induced leucine zipper (GILZ) gene. However, peripheral blood mononuclear cell (PBMC) and ectocervical explant tissue viability and gene expression results, along with TZM-bl HIV-1 infection data, are reassuring and suggest that TDF and DPV, in combination with dexamethasone (DEX) or MPA, do not reciprocally modulate key biological effects in primary cells and tissue. We show for the first time that TDF induces progestogen-independent activation of the progesterone receptor (PR) in a cell line. The ability of TDF and DPV to influence GR and PR activity suggests that their use may be associated with steroid receptor-mediated off-target effects. This, together with cell line and individual donor gene expression responses in the primary models, raises concerns that reciprocal modulation may cause side effects in a cell- and donor-specific manner in vivo.
Collapse
Affiliation(s)
- Sigcinile Dlamini
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michael Kuipa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Kim Enfield
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Salndave Skosana
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - John G Woodland
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Johnson Mosoko Moliki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Alexis J Bick
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Zephne van der Spuy
- Department of Obstetrics and Gynaecology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Michelle F Maritz
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
MacBrayne CE, Marks KM, Fierer DS, Naggie S, Chung RT, Hughes MD, Kim AY, Peters MG, Brainard DM, Seifert SM, Castillo-Mancilla JR, Bushman LR, Anderson PL, Kiser JJ. Effects of sofosbuvir-based hepatitis C treatment on the pharmacokinetics of tenofovir in HIV/HCV-coinfected individuals receiving tenofovir disoproxil fumarate. J Antimicrob Chemother 2019; 73:2112-2119. [PMID: 29746648 DOI: 10.1093/jac/dky146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background The nucleotide analogues tenofovir and sofosbuvir are considered to have low potential for drug interactions. Objectives To determine the effect of sofosbuvir-based HCV treatment on plasma concentrations of tenofovir and cellular concentrations of tenofovir diphosphate. Methods HIV-infected participants with acute HCV were treated for 12 weeks with sofosbuvir + ribavirin in Cohort 1 or 8 weeks with ledipasvir/sofosbuvir in Cohort 2 of AIDS Clinical Trials Group study 5327. Only participants taking tenofovir disoproxil fumarate were included in this analysis. Tenofovir in plasma, tenofovir diphosphate in dried blood spots and tenofovir diphosphate in PBMCs were measured pre-HCV therapy and longitudinally during the study using validated LC/MS-MS. Results Fifteen and 22 men completed Cohorts 1 and 2, respectively. In Cohort 1, tenofovir diphosphate was 4.3-fold higher (95% CI geometric mean ratio 2.46-7.67; P = 0.0001) in dried blood spots and 2.3-fold higher (95% CI 1.09-4.92; P = 0.03) in PBMCs following 12 weeks of sofosbuvir + ribavirin versus study entry. Tenofovir in the plasma was unchanged. In Cohort 2, tenofovir diphosphate was 17.8-fold higher (95% CI 12.77-24.86; P < 0.0001) in dried blood spots after 8 weeks of ledipasvir/sofosbuvir versus study entry. Tenofovir plasma concentrations were 2.1-fold higher (95% CI 1.44-2.91; P = 0.0005). Despite the increase in cellular tenofovir diphosphate concentrations, only a small decline in CLCR (6%-7%) was observed in both cohorts between study entry and end of treatment. Conclusions These data indicate an unexpected drug interaction with tenofovir disoproxil fumarate and sofosbuvir at the cellular level. Additional studies are needed to determine the mechanism and clinical significance.
Collapse
Affiliation(s)
- Christine E MacBrayne
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | - Sharon M Seifert
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | | | - Lane R Bushman
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Peter L Anderson
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Jennifer J Kiser
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| |
Collapse
|
7
|
Epithelial Cells and Fibroblasts from the Human Female Reproductive Tract Accumulate and Release TFV and TAF to Sustain Inhibition of HIV Infection of CD4+ T cells. Sci Rep 2019; 9:1864. [PMID: 30755713 PMCID: PMC6372694 DOI: 10.1038/s41598-018-38205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Tenofovir (TFV) treatment of female reproductive tract (FRT) cells results in differential accumulation of intracellular Tenofovir diphosphate (TFV-DP) in different cell types, with greater concentrations in epithelial cells (100-fold) and fibroblasts (10-fold) than in CD4+ T cells. The possibility that TFV-DP accumulation and retention in epithelial cells and fibroblasts may alter TFV availability and protection of CD4+ T cells against HIV infection, prompted us to evaluate TFV and/or Tenofovir alafenamide (TAF) release from FRT cells. Endometrial, endocervical and ectocervical polarized epithelial cells and fibroblasts were pre-loaded with TFV or TAF, and secretions tested for their ability to inhibit HIV infection of activated blood CD4+ T cells. Epithelial cell basolateral secretions (1, 2 and 3 days post-loading), but not apical secretions, suppressed HIV infection of CD4+ T cells, as did secretions from pre-loaded fibroblasts from each site. Intracellular TFV-DP levels in epithelial cells following preloading with TFV or TAF correlated directly with ARV protection of CD4+ T cells from HIV infection. When added apically to epithelial cells, TFV/TAF was released basolaterally, in part through Multidrug Resistant Protein transporters, taken up by fibroblasts and released into secretions to partially protect CD4+ T cells. These findings demonstrate that epithelial cells and fibroblasts release TFV/TAF for use by CD4+ T cells and suggest that the tissue environment plays a major role in the sustained protection against HIV infection.
Collapse
|
8
|
Hsieh YH, Huang HC, Chang CC, Chuang CL, Lee FY, Hsu SJ, Huang YH, Hou MC, Lee SD. Nucleos(t)ide Analogs Do Not Independently Influence Hepatic Fibrosis and Portal Hypertension beyond Viral Suppression in CBDL-Induced Cirrhotic Rat. J Pharmacol Exp Ther 2018; 367:260-266. [PMID: 30194095 DOI: 10.1124/jpet.118.250431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Chronic hepatitis is the major cause of liver cirrhosis and portal hypertension. Several factors affect portal pressure, including liver fibrosis, splanchnic vasodilatation, and pathologic angiogenesis. Nucleos(t)ide analogs (NUCs), the oral antiviral agents, effectively attenuate chronic hepatitis B-related liver cirrhosis and portal hypertension via viral suppression and alleviation of hepatitis. On the other hand, NUCs affect tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and nitric oxide, which participate in fibrogenesis, vasodilatation, and angiogenesis. However, whether NUCs independently influence liver fibrosis and portal hypertension beyond viral suppression is unknown. This study thus aimed to evaluate the influences of three frequently used NUCs in rats with nonviral cirrhosis. Male Sprague-Dawley rats received common bile duct ligation (CBDL) to induce cholestatic cirrhosis and portal hypertension. The rats were randomly allocated into four groups, treated by mouth with lamivudine (30 mg/kg per day), entecavir (0.09 mg/kg per day), tenofovir (50 mg/kg per day), or distilled water (vehicle control) from the 15th day after CBDL. On the 29th day, liver cirrhosis- and portal hypertension-related parameters were evaluated. The results showed that chronic NUCs treatment did not affect hemodynamic parameters, plasma TNF-α concentration, and hepatic fibrogenesis protein expressions in rats with nonviral cirrhosis. Though the mesenteric VEGF receptor 2 phosphorylation was downregulated in NUCs-treated groups, the splanchnic angiogenesis was not influenced. In conclusion, lamivudine, entecavir, and tenofovir had no additional effects on liver cirrhosis and portal hypertension in rats with nonviral cirrhosis.
Collapse
Affiliation(s)
- Yu-Hsin Hsieh
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Hui-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Ching-Chih Chang
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Chiao-Lin Chuang
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Shao-Jung Hsu
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| | - Shou-Dong Lee
- Division of Gastroenterology and Hepatology, Department of Medicine (Y.-H.Hs, H.-C.H., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H.) and Division of General Medicine, Department of Medicine, (Y.-H.Hs, H.-C.H., C.-C.C., C.-L.C.), Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (H.-C.H., C.-C.C., C.-L.C., F.-Y.L., S.-J.H., Y.-H.Hu, M.-C.H., S.-D.L.); and Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan (S.-D.L.)
| |
Collapse
|
9
|
Shen Z, Rodriguez-Garcia M, Patel MV, Bodwell J, Kashuba ADM, Wira CR. Hormonal Contraceptives Differentially Suppress TFV and TAF Inhibition of HIV Infection and TFV-DP in Blood and Genital Tract CD4+ T cells. Sci Rep 2017; 7:17697. [PMID: 29255206 PMCID: PMC5735186 DOI: 10.1038/s41598-017-18078-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023] Open
Abstract
HIV prevention research is focused on combining antiretrovirals (ARV) and progestin contraceptives to prevent HIV infection and pregnancy. The possibility that progestins compromise ARV anti-HIV activity prompted us to evaluate the effects of progestins on tenofovir (TFV) and TFV-alafenamide (TAF) on HIV infection and intracellular TFV-diphosphate (TFV-DP) concentrations in blood and genital CD4+ T cells. Following incubation of blood CD4+ T cells with TFV or TAF, Medroxyprogesterone acetate (MPA), but not Levonorgestrel, Norethisterone or progesterone, suppressed the anti-HIV effect of TFV by reducing intracellular TFV-DP, but had no effect on TAF inhibition of infection or TFV-DP. In contrast, with genital CD4+ T cells, MPA suppressed TAF inhibition of HIV infection and lowered of TFV-DP concentrations without affecting TFV protection. These findings demonstrate that MPA selectively compromises TFV and TAF protection in blood and genital CD4+ T cells and suggests that MPA may decrease ARV protection in individuals who use ARV intermittently for prevention.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jack Bodwell
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
10
|
Hearps AC, Tyssen D, Srbinovski D, Bayigga L, Diaz DJD, Aldunate M, Cone RA, Gugasyan R, Anderson DJ, Tachedjian G. Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol 2017; 10:1480-1490. [PMID: 28401934 DOI: 10.1038/mi.2017.27] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/24/2017] [Indexed: 02/04/2023]
Abstract
Inflammation in the female reproductive tract (FRT) is associated with increased HIV transmission. Lactobacillus spp. dominate the vaginal microbiota of many women and their presence is associated with reduced HIV acquisition. Here we demonstrate that lactic acid (LA), a major organic acid metabolite produced by lactobacilli, mediates anti-inflammatory effects on human cervicovaginal epithelial cells. Treatment of human vaginal and cervical epithelial cell lines with LA (pH 3.9) elicited significant increases in the production of the anti-inflammatory cytokine IL-1RA. When added simultaneously or prior to stimulation, LA inhibited the Toll-like receptor agonist-elicited production of inflammatory mediators IL-6, IL-8, TNFα, RANTES, and MIP3α from epithelial cell lines and prevented IL-6 and IL-8 production by seminal plasma. The anti-inflammatory effect of LA was mediated by the protonated form present at pH≤3.86 and was observed with both L- and D-isomers. A similar anti-inflammatory effect of LA was observed in primary cervicovaginal cells and in an organotypic epithelial tissue model. These findings identify a novel property of LA that acts directly on epithelial cells to inhibit FRT inflammation and highlights the potential use of LA-containing agents in the lower FRT as adjuncts to female-initiated strategies to reduce HIV acquisition.
Collapse
Affiliation(s)
- A C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - D Tyssen
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - D Srbinovski
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - L Bayigga
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - D J D Diaz
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - M Aldunate
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - R A Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - R Gugasyan
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - D J Anderson
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - G Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Tenofovir Inhibits Wound Healing of Epithelial Cells and Fibroblasts from the Upper and Lower Human Female Reproductive Tract. Sci Rep 2017; 8:45725. [PMID: 28368028 PMCID: PMC5377941 DOI: 10.1038/srep45725] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/06/2017] [Indexed: 12/27/2022] Open
Abstract
Disruption of the epithelium in the female reproductive tract (FRT) is hypothesized to increase HIV infection risk by interfering with barrier protection and facilitating HIV-target cell recruitment. Here we determined whether Tenofovir (TFV), used vaginally in HIV prevention trials, and Tenofovir alafenamide (TAF), an improved prodrug of TFV, interfere with wound healing in the human FRT. TFV treatment of primary epithelial cells and fibroblasts from the endometrium (EM), endocervix (CX) and ectocervix (ECX) significantly delayed wound closure. Reestablishment of tight junctions was compromised in EM and CX epithelial cells even after wound closure occurred. In contrast, TAF had no inhibitory effect on wound closure or tight junction formation following injury. TAF accumulated inside genital epithelial cells as TFV-DP, the active drug form. At elevated levels of TAF treatment to match TFV intracellular TFV-DP concentrations, both equally impaired barrier function, while wound closure was more sensitive to TFV. Furthermore, TFV but not TAF increased elafin and MIP3a secretion following injury, molecules known to be chemotactic for HIV-target cells. Our results highlight the need of evaluating antiretroviral effects on genital wound healing in future clinical trials. A possible link between delayed wound healing and increased risk of HIV acquisition deserves further investigation.
Collapse
|
12
|
Moncla BJ, Chappell CA, Debo BM, Meyn LA. The Effects of Hormones and Vaginal Microflora on the Glycome of the Female Genital Tract: Cervical-Vaginal Fluid. PLoS One 2016; 11:e0158687. [PMID: 27437931 PMCID: PMC4954690 DOI: 10.1371/journal.pone.0158687] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022] Open
Abstract
In this study, we characterized the glycome of cervical-vaginal fluid, collected with a Catamenial cup. We quantified: glycosidase levels; sialic acid and high mannose specific lectin binding; mucins, MUC1, MUC4, MUC5AC, MUC7; and albumin in the samples collected. These data were analyzed in the context of hormonal status (day of menstrual cycle, hormonal contraception use) and role, if any, of the type of the vaginal microflora present. When the Nugent score was used to stratify the subjects by microflora as normal, intermediate, or bacterial vaginosis, several important differences were observed. The activities of four of six glycosidases in the samples from women with bacterial vaginosis were significantly increased when compared to normal or intermediate women: sialidase, P = <0.001; α-galactosidase, P = 0.006; β-galactosidase, P = 0.005; α-glucosidase, P = 0.056. Sialic acid binding sites as measured by two lectins, Maackia amurensis and Sambucus nigra binding, were significantly lower in women with BV compared to women with normal and intermediate scores (P = <0.0001 and 0.008 respectively). High mannose binding sites, a measure of innate immunity were also significantly lower in women with BV (P = <0.001). Additionally, we observed significant increases in MUC1, MUC4, MUC5AC, and MUC7 concentrations in women with BV (P = <0.001, 0.001, <0.001, 0.02 respectively). Among normal women we found that the membrane bound mucin MUC4 and the secreted MUC5AC were decreased in postmenopausal women (P = 0.02 and 0.07 respectively), while MUC7 (secreted) was decreased in women using levonorgestrel-containing IUDs (P = 0.02). The number of sialic acid binding sites was lower in the postmenopausal group (P = 0.04), but the number of high mannose binding sites, measured with Griffithsin, was not significantly different among the 6 hormonal groups. The glycosidase levels in the cervical-vaginal mucus were rather low in the groups, with exception of α-glucosidase activity that was much lower in the postmenopausal group (P<0.001). These studies present compelling evidence that the vaginal ecosystem responds to the presence of different vaginal microorganisms. These effects were so influential that it required us to remove subjects with BV for data interpretation of the impact of hormones. We also suggest that certain changes occurring in vaginal/cervical proteins are due to bacteria or their products. Therefore, the quantitation of vaginal mucins and lectin binding offers a new method to monitor bacteria-host interactions in the female reproductive tract. The data suggest that some of the changes in these components are the result of host processing, such as the increases in mucin content, while the microflora is responsible for the increases in glycosidases and the decreases in lectin binding. The methods should be considered a valid marker for insult to the female genital tract.
Collapse
Affiliation(s)
- Bernard J. Moncla
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Catherine A. Chappell
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Brian M. Debo
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leslie A. Meyn
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Blocking HIV-1 transmission in the female reproductive tract: from microbicide development to exploring local antiviral responses. Clin Transl Immunology 2015; 4:e43. [PMID: 26682051 PMCID: PMC4673443 DOI: 10.1038/cti.2015.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022] Open
Abstract
The majority of new HIV-1 infections are transmitted sexually by penetrating the mucosal barrier to infect target cells. The development of microbicides to restrain heterosexual HIV-1 transmission in the past two decades has proven to be a challenging endeavor. Therefore, better understanding of the tissue environment in the female reproductive tract may assist in the development of the next generation of microbicides to prevent HIV-1 transmission. In this review, we highlight the important factors involved in the heterosexual transmission of HIV-1, provide an update on microbicides' clinical trials, and discuss how different delivery platforms and local immunity may empower the development of next generation of microbicide to block HIV-1 transmission in the female reproductive tract.
Collapse
|