1
|
Schouls LM, Veldman K, Brouwer MSM, Dierikx C, Witteveen S, van Santen-Verheuvel M, Hendrickx APA, Landman F, Hengeveld P, Wullings B, Rapallini M, Wit B, van Duijkeren E. cfr and fexA genes in methicillin-resistant Staphylococcus aureus from humans and livestock in the Netherlands. COMMUNICATIONS MEDICINE 2022; 2:135. [PMID: 36317053 PMCID: PMC9616846 DOI: 10.1038/s43856-022-00200-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background Although the Netherlands is a country with a low endemic level of methicillin-resistant Staphylococcus aureus (MRSA), a national MRSA surveillance has been in place since 1989. In 2003 livestock emerged as a major reservoir of MRSA and currently livestock-associated MRSA (clonal complex CC398) make up 25% of all surveillance isolates. To assess possible transfer of resistant strains or resistance genes, MRSA obtained from humans and animals were characterized in detail. Methods The sequenced genomes of 6327 MRSA surveillance isolates from humans and from 332 CC398 isolates from livestock-related samples were analyzed and resistance genes were identified. Several isolates were subjected to long-read sequencing to reconstruct chromosomes and plasmids. Results Here we show the presence of the multi-resistance gene cfr in seven CC398 isolates obtained from humans and in one CC398 isolate from a pig-farm dust sample. Cfr induces resistance against five antibiotic classes, which is true for all but two isolates. The isolates are genetically unrelated, and in seven of the isolates cfr are located on distinct plasmids. The fexA gene is found in 3.9% surveillance isolates and in 7.5% of the samples from livestock. There is considerable sequence variation of fexA and geographic origin of the fexA alleles. Conclusions The rare cfr and fexA resistance genes are found in MRSA from humans and animals in the Netherlands, but there is no evidence for spread of resistant strains or resistance plasmids. The proportion of cfr-positive MRSA is low, but its presence is worrying and should be closely monitored.
Collapse
Affiliation(s)
- Leo M. Schouls
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Infectious Diseases Research, Diagnostics and laboratory Surveillance (IDS), Bilthoven, The Netherlands
| | - Kees Veldman
- grid.4818.50000 0001 0791 5666Wageningen Bioveterinary Research (WBVR), Bacteriology, Host Pathogen Interaction & Diagnostics, Lelystad, The Netherlands
| | - Michael S. M. Brouwer
- grid.4818.50000 0001 0791 5666Wageningen Bioveterinary Research (WBVR), Bacteriology, Host Pathogen Interaction & Diagnostics, Lelystad, The Netherlands
| | - Cindy Dierikx
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Zoonoses and Environmental Microbiology (Z&O), Bilthoven, The Netherlands
| | - Sandra Witteveen
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Infectious Diseases Research, Diagnostics and laboratory Surveillance (IDS), Bilthoven, The Netherlands
| | - Marga van Santen-Verheuvel
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Infectious Diseases Research, Diagnostics and laboratory Surveillance (IDS), Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Infectious Diseases Research, Diagnostics and laboratory Surveillance (IDS), Bilthoven, The Netherlands
| | - Fabian Landman
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Infectious Diseases Research, Diagnostics and laboratory Surveillance (IDS), Bilthoven, The Netherlands
| | - Paul Hengeveld
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Zoonoses and Environmental Microbiology (Z&O), Bilthoven, The Netherlands
| | - Bart Wullings
- grid.4818.50000 0001 0791 5666Wageningen Food Safety Research, Team Bacteriology, Molecular Biology & AMR, Wageningen, The Netherlands
| | - Michel Rapallini
- grid.4818.50000 0001 0791 5666Wageningen Food Safety Research, Team Bacteriology, Molecular Biology & AMR, Wageningen, The Netherlands
| | - Ben Wit
- grid.435742.30000 0001 0726 7822Netherlands Food and Consumer Product Safety Authority (NVWA), Food safety, Apeldoorn, The Netherlands
| | - Engeline van Duijkeren
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Zoonoses and Environmental Microbiology (Z&O), Bilthoven, The Netherlands
| | | |
Collapse
|
2
|
Rafique H, Hussain N, Saeed MU, Iqbal HM, Azim G, Bilal M. Linezolid-resistance Staphylococcus aureus – Prevalence, Emerging Resistance Mechanisms, Challenges and Perspectives. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:1492-1505. [DOI: 10.22207/jpam.16.3.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus, an opportunistic pathogen, can root several infections viz skin and tissue infections, bacteraemia, food poisoning, pneumonia, and many other clinical conditions with some variations of virulence factors. In treatment of infections, caused by this Gram-positive pathogen, several antibiotics are being used importantly Methicillin and Vancomycin. This pathogen has high capability of antibiotic resistance development and had evolved new strains such as Methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant Staphylococcus aureus (VRSA). Meta-analysis in Ethiopia showed that pooled prevalence of MRSA in environment, food, animal, and human was 54%, 77%, 15%, and 38% respectively (2022). Risk of MRSA isolates from burn ICU was 55 % higher (2018). In Bangladesh, 37.1% isolates from frozen meat chicken (2021) were identified as MRSA. This problem is being dealt with a novel drug called Linezolid which has been proved effective against both MRSA and VRSA. Exacerbating the situation, this pathogen has shown resistance against this unprecedented drug by means of a number of drug resistance mechanisms. Its prevalence has been reporting since the adoption of the drug, but with a minute ratio at one time/place to the very high percentage at another time/place. This inconsistent prevalence must not be ignored, and its surveillance should be augmented as antibiotic treatment is critical for fighting against microbial infections. This review highlights the worldwide reports in which Staphylococcus aureus of either wildtype or Methicillin or Vancomycin resistance that have shown resistance to Linezolid drug for the past 2 decades. At the same time where incidences of Linezolid Resistant Staphylococcus aureus (LRSA) indications are reporting, there is a call for comprehensive strategies to overcome this challenge of antibiotic resistance.
Collapse
|
3
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
4
|
Tsai K, Stojković V, Lee DJ, Young ID, Szal T, Klepacki D, Vázquez-Laslop N, Mankin AS, Fraser JS, Fujimori DG. Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics. Nat Struct Mol Biol 2022; 29:162-171. [DOI: 10.1038/s41594-022-00723-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/05/2022] [Indexed: 01/02/2023]
|
5
|
Jiang F, Kong Z, Liu K, Cheng C, Jiang T, Ma P, Li R. Phenotypic and Genotypic Characterization of Linezolid Resistance Coagulase-negative Staphylococci Possessing cfr-Carrying Plasmid. J Glob Antimicrob Resist 2022; 28:226-232. [PMID: 35041999 DOI: 10.1016/j.jgar.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Linezolidine-dependent growth contributed to wide dissemination of Staphylococcus epidermidis throuthout hospitals. This study aimed to characterize 13 linezolid resistant coagulase-negative Staphylococci (CoNS) isolates and possibility of dependence on linezolid in China. METHODS Resistance phenotypic and genotypic of thirteen CoNS isolates were investigated by antimicrobial susceptibility testing and polymerase chain reaction (PCR). Similarity of isolates was estimated by pulsed field gel electrophoresis (PFGE). Characterization of cfr plasmid was carried out by S1 nuclease-PFGE, southern blotting and whole-genome sequencing (WGS). Phylogenetic analysis was conducted by constructing a maximum-likelihood phylogenetic tree. Growth curve analysis was conducted with and without linezolid to determinate possibility contribution of linezolid dependence to linezolid resistance CoNS isolates dissemination. RESULTS Thirteen CoNS isolates showed linezolid MICs of 8mg/L to >256mg/L and were typed into three PFGE profiles. Southern blotting and WGS indicated that cfr gene was located on a plasmid of 39.5 kb, revealing 99% identity to the sequence of the cfr-harbouring plasmid pSR01, pLRSA417 and pH46-29. The cfr gene was flanked by two copies of an IS256-like element ISEnfa4 family transposase, indicating the transferability of linezolid resistance conferred by the cfr gene. Comparative phylogenetic analysis revealed that S. capitis XZ03 share high similarity with linezolid-resistant S.capitis isolates (17-758, 17-396, 18-857, 15-72 and 15-101) in Huashan Hospital, Shanghai. Thirteen CoNS isolates did not exhibit linezolid-dependent upon exposure from 8mg/L to 32mg/L. CONCLUSIONS The endemic CoNS clone carrying cfr gene in our hospital showed high level of linezolid resistance, which threatened the utilization of linezolid. Linezolidine-dependent growth under linezolid selective pressure was not observed in our study, indicating that it may be not a common phenotype in Staphylococcus spp. at present.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ziyan Kong
- Department of Laboratory Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Ke Liu
- Xuzhou Administration for Market Regulation, Xuzhou, China
| | - Chen Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Ping Ma
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rongpeng Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
6
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
In-Host Emergence of Linezolid Resistance in a Complex Pattern of Toxic Shock Syndrome Toxin-1-Positive Methicillin-Resistant Staphylococcus aureus Colonization in Siblings with Cystic Fibrosis. Toxins (Basel) 2021; 13:toxins13050317. [PMID: 33925199 PMCID: PMC8146457 DOI: 10.3390/toxins13050317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can cause chronic lung infections in patients with Cystic Fibrosis (CF). One option for managing them is the use of linezolid. We hereby report the in-host emergence of linezolid resistance (LR) in MRSA in CF siblings via a population analysis. A collection of 171 MRSA strains from 68 samples were characterized by determining their linezolid Minimal Inhibitory Concentrations (MICs), analyzing the locus of staphylococcal protein A (spa) and whole genome sequencing. Courses of linezolid were retraced. Strains belonged to three spa types (t002, t045, t127) and two sequence types (ST1, ST5). Emergence of LR occurred under treatment, one year apart in both siblings, in the CC5-MRSA-I Geraldine clone harboring the toxic shock syndrome toxin-1-encoding gene. Resistance was related to a G2576T substitution present in a variable number of 23S rRNA gene copies. Susceptible and resistant strains were co-isolated within samples. Single Nucleotide Polymorphism-based analysis revealed complex colonizations by highly diversified, clonally related populations. LR remains rare in MRSA and there are very few longitudinal analyses documenting its emergence. Analyzing a large MRSA collection revealed new aspects of LR emergence: it emerges in specific subclonal lineages resulting from adaptive diversification of MRSA in the CF lung and this heterogeneity of intra-sample resistance may contribute to compromising antibiotic management.
Collapse
|
8
|
Almeida LM, Gaca A, Bispo PM, Lebreton F, Saavedra JT, Silva RA, Basílio-Júnior ID, Zorzi FM, Filsner PH, Moreno AM, Gilmore MS. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front Public Health 2020; 8:518. [PMID: 33102417 PMCID: PMC7546817 DOI: 10.3389/fpubh.2020.00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid—the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration—and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance.
Collapse
Affiliation(s)
- Lara M Almeida
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil.,Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anthony Gaca
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Paulo M Bispo
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Jose T Saavedra
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Rafael A Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | | | - Felipe M Zorzi
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro H Filsner
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andrea M Moreno
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Michael S Gilmore
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
10
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 984] [Impact Index Per Article: 196.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
11
|
Kresken M, Grabein B, Becker K, Straube E, Wichelhaus TA, Willinger B. Calculated parenteral initial treatment of bacterial infections: Microbiology. GMS INFECTIOUS DISEASES 2020; 8:Doc18. [PMID: 32373443 PMCID: PMC7186810 DOI: 10.3205/id000062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the second chapter of the guideline "Calculated initial parenteral treatment of bacterial infections in adults - update 2018" in the 2nd updated version. The German guideline by the Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. (PEG) has been translated to address an international audience. Preliminary microbiological findings regarding the patient and their immediate environment are crucial for the calculation of treatment with antibiotics in each case, as well as the resistance situation of the ward on which the patient is being cared for. If such data is not available, regional or supra-regional data can be used as a fallback. This chapter describes the methods of susceptibility testing, informs about the resistance situation in Germany and describes the main resistance mechanisms of bacterial pathogens against antibiotics. Further, the chapter informs about collateral damage of antibiotics as well as medical measures against increasing resistance.
Collapse
Affiliation(s)
- Michael Kresken
- Antiinfectives Intelligence GmbH, Campus Hochschule Bonn-Rhein-Sieg, Rheinbach, Germany
- Rheinische Fachhochschule Köln gGmbH, Cologne, Germany
| | - Béatrice Grabein
- Stabsstelle Klinische Mikrobiologie und Krankenhaushygiene, Klinikum der Universität München, Munich, Germany
| | - Karsten Becker
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, Germany
| | - Eberhard Straube
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Jena, Germany
| | - Thomas A. Wichelhaus
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Frankfurt, Germany
| | - Birgit Willinger
- Klinisches Institut für Labormedizin, Medizinische Universität Wien, Vienna, Austria
| |
Collapse
|
12
|
Yoo IY, Kang OK, Shim HJ, Huh HJ, Lee NY. Linezolid Resistance in Methicillin-Resistant Staphylococcus aureus in Korea: High Rate of False Resistance to Linezolid by the VITEK 2 System. Ann Lab Med 2020; 40:57-62. [PMID: 31432640 PMCID: PMC6713661 DOI: 10.3343/alm.2020.40.1.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/17/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
As various linezolid resistance mechanisms have been identified in methicillin-resistant Staphylococcus aureus (MRSA), we investigated the molecular characteristics of MRSA with elevated linezolid minimum inhibitory concentrations (MICs), using the VITEK 2 system (bioMérieux, Marcy-l'Étoile, France). Twenty-seven MRSA isolates from 14 patients exhibiting linezolid MICs ≥8 µg/mL were examined by broth microdilution (BMD) test as well as by sequencing for mutations in the 23S rRNA gene or ribosomal proteins (L3, L4, and L22) and the presence of the optrA, cfr, and cfr(B) genes. Of the 27 isolates, four (14.8%) from one patient were confirmed as linezolid resistant by BMD and harbored a 23S rRNA T2500A mutation. The remaining 23 were confirmed as linezolid susceptible, indicating that the linezolid-resistant results were major errors generated by VITEK 2. The most commonly detected mutation (19/27, 70.4%), L3 Gly152Asp, was detected in only linezolid-susceptible isolates. No isolates contained optrA, cfr, or cfr(B) or any L4 or L22 protein alterations. Our results show that the 23S rRNA T2500A mutation was mainly associated with linezolid resistance, while the L3 Gly152Asp mutation was not related to linezolid resistance. A confirmatory test is recommended for VITEK 2 linezolid-resistant results owing to the high probability of false resistant results.
Collapse
Affiliation(s)
- In Young Yoo
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - On Kyun Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyang Jin Shim
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Zhou YF, Li L, Tao MT, Sun J, Liao XP, Liu YH, Xiong YQ. Linezolid and Rifampicin Combination to Combat cfr-Positive Multidrug-Resistant MRSA in Murine Models of Bacteremia and Skin and Skin Structure Infection. Front Microbiol 2020; 10:3080. [PMID: 31993042 PMCID: PMC6971047 DOI: 10.3389/fmicb.2019.03080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023] Open
Abstract
Linezolid resistance mediated by the cfr gene in MRSA represents a global concern. We investigated relevant phenotype differences between cfr-positive and -negative MRSA that contribute to pathogenesis, and the efficacy of linezolid-based combination therapies in murine models of bacteremia and skin and skin structure infection (SSSI). As a group, cfr-positive MRSA exhibited significantly reduced susceptibilities to the host defense peptides tPMPs, human neutrophil peptide-1 (hNP-1), and cathelicidin LL-37 (P < 0.01). In addition, increased binding to fibronectin (FN) and endothelial cells paralleled robust biofilm formation in cfr-positive vs. -negative MRSA. In vitro phenotypes of cfr-positive MRSA translated into poor outcomes of linezolid monotherapy in vivo in murine bacteremia and SSSI models. Importantly, rifampicin showed synergistic activity as a combinatorial partner with linezolid, and the EC50 of linezolid decreased 6-fold in the presence of rifampicin. Furthermore, this combination therapy displayed efficacy against cfr-positive MRSA at clinically relevant doses. Altogether, these data suggest that the use of linezolid in combination with rifampicin poses a viable therapeutic alternative for bacteremia and SSSI caused by cfr-positive multidrug resistant MRSA.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang Li
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Meng-Ting Tao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yan Q Xiong
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
14
|
Emergence and Within-Host Genetic Evolution of Methicillin-Resistant Staphylococcus aureus Resistant to Linezolid in a Cystic Fibrosis Patient. Antimicrob Agents Chemother 2018; 62:AAC.00720-18. [PMID: 30275089 DOI: 10.1128/aac.00720-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/22/2018] [Indexed: 12/26/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection has increased in recent years among cystic fibrosis (CF) patients. Linezolid (LZD) is one of the antistaphylococcal antibiotics widely used in this context. Although LZD resistance is rare, it has been described as often associated with long-term treatments. Thirteen MRSA strains isolated over 5 years from one CF patient were studied for LZD resistance emergence and subjected to whole-genome sequencing (WGS). Resistance emerged after three 15-day LZD therapeutic regimens over 4 months. It was associated with the mutation of G to T at position 2576 (G2576T) in all 5 rrl copies, along with a very high MIC (>256 mg/liter) and a strong increase in the generation time. Resistant strains isolated during the ensuing LZD therapeutic regimens and until 13 months after LZD stopped harbored only 3 or 4 mutated rrl copies, associated with lower MICs (8 to 32 mg/liter) and low to moderate generation time increases. Despite these differences, whole-genome sequencing allowed us to determine that all isolates, including the susceptible one isolated before LZD treatment, belonged to the same lineage. In conclusion, LZD resistance can emerge rapidly in CF patients and persist without linezolid selective pressure in colonizing MRSA strains belonging to the same lineage.
Collapse
|
15
|
Morris DO, Loeffler A, Davis MF, Guardabassi L, Weese JS. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: diagnosis, therapeutic considerations and preventative measures.: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2017; 28:304-e69. [PMID: 28516494 DOI: 10.1111/vde.12444] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Multiple drug resistance (MDR) in staphylococci, including resistance to the semi-synthetic penicillinase-resistant penicillins such as meticillin, is a problem of global proportions that presents serious challenges to the successful treatment of staphylococcal infections of companion animals. OBJECTIVES The objective of this document is to provide harmonized recommendations for the diagnosis, prevention and treatment of meticillin-resistant staphylococcal infections in dogs and cats. METHODS The authors served as a Guideline Panel (GP) and reviewed the literature available prior to September 2016. The GP prepared a detailed literature review and made recommendations on selected topics. The World Association of Veterinary Dermatology (WAVD) provided guidance and oversight for this process. A draft of the document was presented at the 8th World Congress of Veterinary Dermatology (May 2016) and was then made available via the World Wide Web to the member organizations of the WAVD for a period of three months. Comments were solicited and posted to the GP electronically. Responses were incorporated by the GP into the final document. CONCLUSIONS Adherence to guidelines for the diagnosis, laboratory reporting, judicious therapy (including restriction of use policies for certain antimicrobial drugs), personal hygiene, and environmental cleaning and disinfection may help to mitigate the progressive development and dissemination of MDR staphylococci.
Collapse
Affiliation(s)
- Daniel O Morris
- Department of Clinical Studies - Philadelphia, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Meghan F Davis
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Luca Guardabassi
- Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre, St Kitts and Nevis, West Indies
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
16
|
Paridaens H, Coussement J, Argudín MA, Delaere B, Huang TD, Glupczynski Y, Denis O. Clinical case of cfr-positive MRSA CC398 in Belgium. Eur J Clin Microbiol Infect Dis 2017; 36:1527-1529. [DOI: 10.1007/s10096-017-2953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
|
17
|
Jones JA, Virga KG, Gumina G, Hevener KE. Recent Advances in the Rational Design and Optimization of Antibacterial Agents. MEDCHEMCOMM 2016; 7:1694-1715. [PMID: 27642504 DOI: 10.1039/c6md00232c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review discusses next-generation antibacterial agents developed using rational, or targeted, drug design strategies. The focus of this review is on small-molecule compounds that have been designed to bypass developing bacterial resistance, improve the antibacterial spectrum of activity, and/or to optimize other properties, including physicochemical and pharmacokinetic properties. Agents are discussed that affect known antibacterial targets, such as the bacterial ribosome, nucleic acid binding proteins, and proteins involved in cell-wall biosynthesis; as well as some affecting novel bacterial targets which do not have currently marketed agents. The discussion of the agents focuses on the rational design strategies employed and the synthetic medicinal chemistry and structure-based design techniques utilized by the scientists involved in the discoveries, including such methods as ligand- and structure-based strategies, structure-activity relationship (SAR) expansion strategies, and novel synthetic organic chemistry methods. As such, the discussion is limited to small-molecule therapeutics that have confirmed macromolecular targets and encompasses only a fraction of all antibacterial agents recently approved or in late-stage clinical trials. The antibacterial agents selected have been recently approved for use on the U.S. or European markets or have shown promising results in phase 2 or phase 3 U.S. CLINICAL TRIALS
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991 (USA)
| | - Kristopher G Virga
- Department of Pharmaceutical Sciences, Presbyterian College School of Pharmacy, 307 North Broad Street, Clinton, SC 29325 (USA)
| | - Giuseppe Gumina
- Department of Pharmaceutical Sciences, Presbyterian College School of Pharmacy, 307 North Broad Street, Clinton, SC 29325 (USA)
| | - Kirk E Hevener
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991 (USA)
| |
Collapse
|
18
|
First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone. Antimicrob Agents Chemother 2016; 60:3007-15. [PMID: 26953212 PMCID: PMC4862533 DOI: 10.1128/aac.02949-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential.
Collapse
|
19
|
Antonelli A, D'Andrea MM, Galano A, Borchi B, Brenciani A, Vaggelli G, Cavallo A, Bartoloni A, Giovanetti E, Rossolini GM. Linezolid-resistant cfr-positive MRSA, Italy. J Antimicrob Chemother 2016; 71:2349-51. [PMID: 27073268 DOI: 10.1093/jac/dkw108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Angelo Galano
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Beatrice Borchi
- Infectious and Tropical Diseases Unit, Florence Careggi University Hospital, Florence, Italy
| | - Andrea Brenciani
- Department of Public Health and Biomedical Sciences, Microbiology Unit, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Guendalina Vaggelli
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Annalisa Cavallo
- Infectious and Tropical Diseases Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy Infectious and Tropical Diseases Unit, Florence Careggi University Hospital, Florence, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Microbiology Unit, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy Department of Medical Biotechnologies, University of Siena, Siena, Italy Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy Don Carlo Gnocchi Foundation, Florence, Italy
| |
Collapse
|
20
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
21
|
Emergence of cfr-Mediated Linezolid Resistance in a Methicillin-Resistant Staphylococcus aureus Epidemic Clone Isolated from Patients with Cystic Fibrosis. Antimicrob Agents Chemother 2015; 60:1878-82. [PMID: 26666940 DOI: 10.1128/aac.02067-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/05/2015] [Indexed: 11/20/2022] Open
Abstract
Resistance to linezolid (LZD) in methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients with cystic fibrosis (CF) is due mainly to ribosomal mutations. We report on four CF patients with LZD-resistant MRSA bronchopulmonary infections by strains carrying the cfr gene. Strains from one patient also harbored the G2576U mutation (23S rRNA) and the G139R substitution (L3 protein). All strains belonged to the epidemic clone ST125 MRSA IVc. Our results support the monitoring of LZD resistance emergence in CF and non-CF MRSA isolates.
Collapse
|
22
|
New antibiotics against gram-positives: present and future indications. Curr Opin Pharmacol 2015; 24:45-51. [PMID: 26232669 DOI: 10.1016/j.coph.2015.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 11/23/2022]
Abstract
Gram-positive cocci are the most frequent aetiology of community and nosocomially bacterial acquired infections. The prevalence of multidrug-resistant gram-positive bacteria is increasing and is associated with high morbidity and mortality. New antibiotics will be available in the European market during the next months. This revision is focused on lipoglycopeptides, new cephalosporins active against methicillin-resistant Staphylococcus aureus (MRSA) and the new oxazolidinone, tedizolid. The purpose of this review is to describe their in vitro activity, pharmacokinetic and pharmacodynamic characteristics, and experience from clinical trials.
Collapse
|