1
|
Li L, Xie Z, Xu L. Current antiviral agents against human adenoviruses associated with respiratory infections. Front Pediatr 2024; 12:1456250. [PMID: 39268358 PMCID: PMC11390452 DOI: 10.3389/fped.2024.1456250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Human adenoviruses (HAdVs) are important pathogens responsible for respiratory infections. In children and immunocompromised patients, respiratory infections can cause considerable morbidity and mortality. Currently, there are no approved effective and safe antiviral therapeutics for the clinical treatment of HAdV infections, even those that have undergone preclinical/clinical trials. However, many compounds and molecules with anti-HAdV activity have been explored, and some candidates are undergoing clinical development. Here, we reviewed the reported in vitro and in vivo efficacies, as well as the therapeutic potential of these antiviral compounds, providing an overview and a summary of the current status of anti-HAdV drug development.
Collapse
Affiliation(s)
- Lexi Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Tollefson AE, Cline-Smith A, Spencer JF, Ying B, Reyna DM, Lipka E, James SH, Toth K. Longitudinal Monitoring of the Effects of Anti-Adenoviral Treatment Regimens in a Permissive In Vivo Model. Viruses 2024; 16:1200. [PMID: 39205174 PMCID: PMC11359180 DOI: 10.3390/v16081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Adenovirus infections of immunocompromised patients can cause life-threatening disseminated disease. While there are presently no drugs specifically approved to treat these infections, there are several compounds that showed efficacy against adenovirus in preclinical studies. For any such compound, low toxicity is an essential requirement. As cumulative drug effects can accentuate pathology, especially in patients with other morbidities, it is important to limit antiviral exposure to what is absolutely necessary. This is achievable by monitoring the virus burden of the patients and administering antivirals to suppress virus replication to a non-pathogenic level. We modeled such a system using Syrian hamsters infected with a replication-competent adenovirus vector, in which luciferase expression is coupled to virus replication. We found that virus replication could be followed in vivo in the same animal by repeated measurement of luciferase expression. To test the utility of an interrupted treatment regimen, we used NPP-669 and valganciclovir, two antiviral compounds with high and moderate anti-adenoviral efficacy, respectively. We found that short-term treatment of adenovirus-infected hamsters at times of peak virus replication can prevent virus-associated pathology. Thus, we believe that this animal model can be used to model different treatment regimens for anti-adenoviral compounds.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Anna Cline-Smith
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | - Scott H James
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
3
|
Wang Y, Zhang X, Xu L, Wang Y, Yan C, Chen H, Chen Y, Wei F, Han W, Wang F, Wang J, Huang X, Mo X. Clinical manifestations, prognostic factors, and outcomes of adenovirus pneumonia after allogeneic hematopoietic stem cell transplantation. Virol J 2024; 21:110. [PMID: 38745209 PMCID: PMC11094961 DOI: 10.1186/s12985-024-02383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Severe pneumonia is one of the most important causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Adenovirus (ADV) is a significant cause of severe viral pneumonia after allo-HSCT, and we aimed to identify the clinical manifestations, prognostic factors, and outcomes of ADV pneumonia after allo-HSCT. METHODS Twenty-nine patients who underwent allo-HSCT at the Peking University Institute of Hematology and who experienced ADV pneumonia after allo-HSCT were enrolled in this study. The Kaplan-Meier method was used to estimate the probability of overall survival (OS). Potential prognostic factors for 100-day OS after ADV pneumonia were evaluated through univariate and multivariate Cox regression analyses. RESULTS The incidence rate of ADV pneumonia after allo-HSCT was approximately 0.71%. The median time from allo-HSCT to the occurrence of ADV pneumonia was 99 days (range 17-609 days). The most common clinical manifestations were fever (86.2%), cough (34.5%) and dyspnea (31.0%). The 100-day probabilities of ADV-related mortality and OS were 40.4% (95% CI 21.1%-59.7%) and 40.5% (95% CI 25.2%-64.9%), respectively. Patients with low-level ADV DNAemia had lower ADV-related mortality and better OS than did those with high-level (≥ 106 copies/ml in plasma) ADV DNAemia. According to the multivariate analysis, high-level ADV DNAemia was the only risk factor for intensive care unit admission, invasive mechanical ventilation, ADV-related mortality, and OS after ADV pneumonia. CONCLUSIONS We first reported the prognostic factors and confirmed the poor outcomes of patients with ADV pneumonia after allo-HSCT. Patients with high-level ADV DNAemia should receive immediate and intensive therapy.
Collapse
Affiliation(s)
- Yuewen Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chenhua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
| | - Huan Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yuhong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fangfang Wei
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fengrong Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jingzhi Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Xiaodong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China.
| |
Collapse
|
4
|
Romanowski EG, Yates KA, Gordon YJ. Cyclopentenylcytosine (CPE-C): In Vitro and In Vivo Evaluation as an Antiviral against Adenoviral Ocular Infections. Molecules 2023; 28:5078. [PMID: 37446740 DOI: 10.3390/molecules28135078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Adenoviruses are the major cause of ocular viral infections worldwide. Currently, there is no approved antiviral treatment for these eye infections. Cyclopentenylcytosine (CPE-C) is an antiviral that has demonstrated activity against more than 20 viruses. The goals of the current study were to determine the in vitro and in vivo antiviral activity of CPE-C as well as its ocular toxicity. Antiviral activity was evaluated in vitro using standard plaque reduction assays to determine the 50% effective concentrations (EC50s) and in vivo in the Ad5/NZW rabbit ocular replication model. Ocular toxicity was determined in uninfected rabbit eyes following topical ocular application. The in vitro EC50s for CPE-C ranged from 0.03 to 0.059 μg/mL for nine adenovirus types that commonly infect the eye. Ocular toxicity testing determined CPE-C to be non-irritating or practically non-irritating by Draize scoring. In vivo, 3% CPE-C topically administered 4X or 2X daily for 7 days to adenovirus-infected eyes demonstrated effective antiviral activity compared with the negative control and comparable antiviral activity to the positive control, 0.5% cidofovir, topically administered twice daily for 7 days. We conclude CPE-C was relatively non-toxic to rabbit eyes and demonstrated potent anti-adenoviral activity in vitro and in vivo.
Collapse
Affiliation(s)
- Eric G Romanowski
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Vision Institute, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kathleen A Yates
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Vision Institute, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Y Jerold Gordon
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Vision Institute, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Radke JR, Cook JL. Human adenovirus lung disease: outbreaks, models of immune-response-driven acute lung injury and pandemic potential. Curr Opin Infect Dis 2023; 36:164-170. [PMID: 37093048 PMCID: PMC10133205 DOI: 10.1097/qco.0000000000000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
PURPOSE OF REVIEW An overview of epidemic, human adenovirus (HAdV) lung infections with proposed studies of the viral/host immune response interface to better understand mechanisms of immunopathogenesis, for development of improved responses to a potential HAdV pandemic. RECENT FINDINGS Emergent HAdV strains 7, 3, 4, 14 are the most common types associated with infection outbreaks. Recent outbreaks have revealed increased community spread, beyond epidemic group settings. The ongoing circulation of these virulent HAdV strains might allow for further HAdV adaptation, with increased HAdV spread and disease severity in the population that could theoretically result in expansion to a pandemic level. SUMMARY Public health screening has revealed spread of HAdV outbreak strains to the general community. Despite expanded awareness of viral respiratory diseases during the SARS-CoV-2 pandemic, there has been limited, systematic monitoring of HAdV infection in the population. The shift in clinical laboratories to a focus on molecular diagnostics and away from classical methods of viral characterization has reduced the distribution of outbreak HAdV strains to the research community to study mechanisms of pathogenesis. This change risks reduced development of new preventive and therapeutic strategies that could be needed in the event of more widespread HAdV epidemics.
Collapse
Affiliation(s)
- Jay R. Radke
- Boise VA Medical Center and Biomolecular Sciences Graduate Program at Boise State University
| | - James L. Cook
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center; Staff Physician and Research Scientist, Infectious Diseases Section, Edward Hines, Jr. VA Hospital
| |
Collapse
|
6
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
7
|
Antiviral Drugs in Adenovirus-Induced Keratoconjunctivitis. Microorganisms 2022; 10:microorganisms10102014. [PMID: 36296290 PMCID: PMC9609312 DOI: 10.3390/microorganisms10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Human adenovirus (HAdV) is one of the most common causes of conjunctivitis worldwide. Depending on specific serotypes and other factors, it can lead to several ocular manifestations, ranging from isolated, self-limited disease to epidemic and potentially sight-threatening keratoconjunctivitis. To date, no antiviral agent against ocular adenovirus has been licensed, and its management is still based on hygienic and supportive measures alone. In this review, a literature search up to August 2021 was performed to find peer-reviewed articles, with the primary aim to investigate drugs or other compounds with any antiviral activity against adenovirus. Finally, we included 70 articles, consisting of both in vitro, and in vivo studies on animal models and clinical trials of any phase, as well as a case-report, and analyzed each compound separately. Many antiviral agents proved to be effective on in vivo and in vitro studies on animal models, and in pre-clinical trials, but lacked reliability in large, controlled clinical investigations. The design of such studies, though, presented several hurdles, due to the nature and the specific characteristics of adenovirus-induced ocular diseases. Nevertheless, some promising compounds are currently under study, and further investigations are needed to prove their efficacy in the management of adenovirus conjunctivitis.
Collapse
|
8
|
Liu SH, Hawkins BS, Ren M, Ng SM, Leslie L, Han G, Kuo IC. Topical Pharmacologic Interventions Versus Active Control, Placebo, or No Treatment for Epidemic Keratoconjunctivitis: Findings From a Cochrane Systematic Review. Am J Ophthalmol 2022; 240:265-275. [PMID: 35331686 PMCID: PMC9808666 DOI: 10.1016/j.ajo.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To summarize key findings from a Cochrane systematic review of the effectiveness and safety of topical pharmacologic interventions compared with active control or placebo for epidemic keratoconjunctivitis (EKC). DESIGN Systematic review. METHODS We included randomized controlled trials that compared antiseptic agents, virustatic agents, or immune-modulating topical therapies with placebo or an active control. We adhered to Cochrane methods for trial selection, data extraction, risk of bias evaluation, and data synthesis. RESULTS Ten randomized controlled trials with 892 participants with acute or chronic EKC were included. Eight trials compared interventions with artificial tears or saline (n = 4) or with steroids (n = 4); two 3-arm trials contributed data to both comparisons. Estimates suggested that compared with tears, after povidone-iodine (PVP-I) alone (2 studies, 409 participants) more participants with acute EKC had resolution of symptoms (risk ratio [RR] 1.15 [95% confidence interval {CI} 1.07-1.24]) and signs (RR 3.19 [95% CI 2.29-4.45]) within 10 days. In 2 trials comparing treatments with steroid alone or steroid with levofloxacin, fewer eyes treated with PVP-I or polyvinyl alcohol iodine (PVA-I) plus steroid developed subepithelial infiltrates within 21 days (RR 0.08 [95% CI 0.01-0.55]; 69 eyes). No treatment was shown to improve resolution of infiltrates. CONCLUSIONS Low- to very low-level certainty of evidence suggested that PVP-I or PVA-I with steroid may confer some benefit in acute EKC, but imprecision from small sample sizes, the potential risk of bias from inadequate reporting or trial design, and variability in participant selection, outcome measurement, and reporting limit the amount and quality of evidence.
Collapse
Affiliation(s)
- Su-Hsun Liu
- From the Department of Ophthalmology (S-H.L., S.M.N., L.L.), School of Medicine, University of Colorado, Aurora, Colorado
| | - Barbara S Hawkins
- Wilmer Eye Institute (B.S.H., M.R., I.C.K.), Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Mark Ren
- Wilmer Eye Institute (B.S.H., M.R., I.C.K.), Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Sueko M Ng
- From the Department of Ophthalmology (S-H.L., S.M.N., L.L.), School of Medicine, University of Colorado, Aurora, Colorado
| | - Louis Leslie
- From the Department of Ophthalmology (S-H.L., S.M.N., L.L.), School of Medicine, University of Colorado, Aurora, Colorado
| | - Genie Han
- Department of Epidemiology (G.H.), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irene C Kuo
- Wilmer Eye Institute (B.S.H., M.R., I.C.K.), Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore.
| |
Collapse
|
9
|
Isik P, Harbiyeli II, Ozturk G, Erdem E, Yagmur M, Yarkin F. The relationship between clinical findings and viral load in Adenoviral Keratoconjunctivitis. Jpn J Infect Dis 2022; 75:592-596. [PMID: 35908877 DOI: 10.7883/yoken.jjid.2022.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study aimed to evaluate the relationship between clinical findings and viral load in adenoviral keratoconjunctivitis (Ad-Kc). In this cross-sectional study, 30 eyes of 30 patients with Ad-Kc were enrolled. The real-time polymerase chain reaction was performed to detect and quantify adenovirus in all samples. The patient groups were divided into three subgroups according to baseline viral loads (<107, 107-108, >108 HAdV copies/ml). The follow-up duration, HAdV DNA copy number, treatment regimen, and detailed clinical findings including uncorrected visual acuity, eyelid edema, conjunctival hyperemia, chemosis, follicular reaction, corneal involvement, conjunctival pseudomembrane, and subepithelial infiltrates (SEIs) were recorded. The study showed that a high initial viral load was associated with the development of SEIs and pseudomembrane formation (p<0.05). Clinical findings and ocular complications of Ad-Kc were found similar in treatment groups at the final visit (p>0.05). Our results showed that a high initial viral load in Ad-Kc may be predictive of inflammatory sequelae. Determination of the initial viral load in Ad-Kc may be helpful to better understand the clinical course of the disease and prevent complications.
Collapse
Affiliation(s)
- Puren Isik
- Ophthalmology Department, Faculty of Medicine, Balcali Hospital, Cukurova University, Turkey
| | - Ibrahim Inan Harbiyeli
- Ophthalmology Department, Faculty of Medicine, Balcali Hospital, Cukurova University, Turkey
| | - Gokhan Ozturk
- Virology Department, Faculty of Medicine, Cukurova University, Turkey
| | - Elif Erdem
- Ophthalmology Department, Faculty of Medicine, Balcali Hospital, Cukurova University, Turkey
| | - Meltem Yagmur
- Ophthalmology Department, Faculty of Medicine, Balcali Hospital, Cukurova University, Turkey
| | - Fugen Yarkin
- Virology Department, Faculty of Medicine, Cukurova University, Turkey
| |
Collapse
|
10
|
Wu Z, Zhang R, Liu D, Liu X, Zhang J, Zhang Z, Chen S, He W, Li Y, Xu Y, Liu X. Acute Respiratory Distress Syndrome Caused by Human Adenovirus in Adults: A Prospective Observational Study in Guangdong, China. Front Med (Lausanne) 2022; 8:791163. [PMID: 35155471 PMCID: PMC8829445 DOI: 10.3389/fmed.2021.791163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
BackgroundViral causes of acute respiratory distress syndrome (ARDS) are mostly limited to influenza. However, adenovirus has been emerging as a cause of ARDS with a high mortality rate and described in adults are rare.MethodsWe conducted a prospective, single-center observational study of viral pneumonia with ARDS and confirmed adenovirus-associated ARDS in adults at our quaternary referral institution between March 2019 and June 2020. We prospectively analyzed clinical characteristics, laboratory test results, radiological characteristics, viral load from nasopharyngeal swabs and endotracheal aspirates, treatments, and outcomes for the study participants.ResultsThe study enrolled 143 ARDS patients, including 47 patients with viral pneumonia-related ARDS, among which there were 14 adenovirus-associated ARDS patients, which accounted for 29.79% of the viral pneumonia-related ARDS cases. Among the adenovirus-associated ARDS patients, 78.57% were men with a mean age of 54.93 ± 19.04 years, younger than that of the non-adenovirus associated ARDS patients. Adenovirus-associated ARDS patients had no specific clinical characteristics, but they presented with decrease in the number of CD3+CD4+ T cells and higher serum creatinine during the early stage. The viral load and the positivity rate in the lower respiratory tract were higher than that of the upper respiratory tract in the patients with adenovirus-associated ARDS. All patients required invasive mechanical ventilation treatment. The average time from shortness of breath to the application of invasive ventilation was 24 h. Ten patients (71.43%) complicated by acute kidney injury, while 13 patients (71.43%) in the non-adenovirus associated ARDS group (P = 0.045). Additionally, 85.71% of the 14 adenovirus-associated ARDS patients survived. No significant differences were detected between the two groups regarding duration of ventilation, length of ICU stay and mortality.ConclusionAdenovirus infection is an important cause of virus-related ARDS. The positivity rate of adenovirus infection in lower respiratory tract secretions was higher than that in upper respiratory tract secretions in these patients. Age, lower CD3+CD4+ T cells, and high serum creatinine may be were associated with adenovirus induce ARDS in adults required mechanical ventilation. Early identification and intervention to prevent disease progression are essential for reducing the mortality rate in these patients.
Collapse
|
11
|
Bertzbach LD, Ip WH, Dobner T. Animal Models in Human Adenovirus Research. BIOLOGY 2021; 10:biology10121253. [PMID: 34943168 PMCID: PMC8698265 DOI: 10.3390/biology10121253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Animal models are widely used to study various aspects of human diseases and disorders. Likewise, they are indispensable for preclinical testing of medicals and vaccines. Human adenovirus infections are usually self-limiting, and can cause mild respiratory symptoms with fever, eye infection or gastrointestinal symptoms, but occasional local outbreaks with severe disease courses have been reported. In addition, adenovirus infections pose a serious risk for children and patients with a weakened immune system. Human adenovirus research in animal models to study adenovirus-induced disease and tumor development started in the 1950s. Various animal species have been tested for their susceptibility to human adenovirus infection since then, and some have been shown to mimic key characteristics of the infection in humans, including persistent infection. Furthermore, some rodent species have been found to develop tumors upon human adenovirus infection. Our review summarizes the current knowledge on animal models in human adenovirus research, describing the pros and cons along with important findings and future perspectives. Abstract Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models. Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV animal model has yet to be developed. This review summarizes the available animal models of HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal species. We also elaborate on rodent HAdV animal models and how they contributed to insights into adenovirus-induced cell transformation and cancer.
Collapse
|
12
|
Biographical Feature: William S. M. Wold, Ph.D., 1944-2021. J Virol 2021; 95:e0118421. [PMID: 34549981 DOI: 10.1128/jvi.01184-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Yu Z, Zhu J, Jin J, Yu L, Han G. Trends in Outpatient Prescribing Patterns for Ocular Topical Anti-Infectives in Six Major Areas of China, 2013-2019. Antibiotics (Basel) 2021; 10:916. [PMID: 34438966 PMCID: PMC8388675 DOI: 10.3390/antibiotics10080916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Topical anti-infectives are important in the management of ocular infections, but little is known about their current status and trends in their use in China. Thus, we carried out a prescription-based, cross-sectional study using the database of Hospital Prescription Analysis Projection of China, and aimed to analyze the trend in the use of ocular topical anti-infectives for outpatients of the ophthalmology department from 2013 to 2019. A total of 2,341,719 prescriptions from 61 hospitals located in six major areas written by ophthalmologists for outpatients were identified, and 1,002,254 of the prescriptions contained at least one anti-infective. The yearly anti-infective prescriptions increased continuously from 126,828 prescriptions in 2013 to 163,434 prescriptions in 2019. The cost also increased from 4,503,711 Chinese Yuan (CNY) in 2013 to CNY 5,860,945 in 2019. However, the use rate of anti-infectives decreased slightly from 46.5% in 2013 to 41.1% in 2019. Patients aged between 19 and 45 years old had the highest anti-infective use rate. Levofloxacin was the most frequently used anti-infective and kept on increasing among all age groups, occupying 67.1% of the total cost at the end of the study. Tobramycin was more frequently used in pediatric patients than in adults, but the use still decreased. Ganciclovir was the preferred anti-viral drug over acyclovir. In conclusion, the prescriptions and cost of ocular topical anti-infectives for outpatients both increased progressively. The increasingly widespread use of levofloxacin raised concerns regarding safety in pediatrics and resistance development. The observed trends can lead to the more efficient management of ocular anti-topical anti-infectives in China.
Collapse
Affiliation(s)
- Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (Z.Y.); (J.Z.)
| | - Jianping Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (Z.Y.); (J.Z.)
| | - Jiayi Jin
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Lingyan Yu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gang Han
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (Z.Y.); (J.Z.)
| |
Collapse
|
14
|
Dodge MJ, MacNeil KM, Tessier TM, Weinberg JB, Mymryk JS. Emerging antiviral therapeutics for human adenovirus infection: Recent developments and novel strategies. Antiviral Res 2021; 188:105034. [PMID: 33577808 DOI: 10.1016/j.antiviral.2021.105034] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Human adenoviruses (HAdV) are ubiquitous human pathogens that cause a significant burden of respiratory, ocular, and gastrointestinal illnesses. Although HAdV infections are generally self-limiting, pediatric and immunocompromised individuals are at particular risk for developing severe disease. Currently, no approved antiviral therapies specific to HAdV exist. Recent outbreaks underscore the need for effective antiviral agents to treat life-threatening infections. In this review we will focus on recent developments in search of potential therapeutic agents for controlling HAdV infections, with a focus on those targeting post-entry stages of the virus replicative cycle.
Collapse
Affiliation(s)
- Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
15
|
Toth K, Hussein ITM, Tollefson AE, Ying B, Spencer JF, Eagar J, James SH, Prichard MN, Wold WSM, Bowlin TL. Filociclovir Is a Potent In Vitro and In Vivo Inhibitor of Human Adenoviruses. Antimicrob Agents Chemother 2020; 64:e01299-20. [PMID: 32816736 PMCID: PMC7577159 DOI: 10.1128/aac.01299-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Human adenovirus (HAdV) infection is common in the general population and can cause a range of clinical manifestations, among which pneumonia and keratoconjunctivitis are the most common. Although HAdV infections are mostly self-limiting, infections in immunocompromised individuals can be severe. No antiviral drug has been approved for treating adenoviruses. Filociclovir (FCV) is a nucleoside analogue which has successfully completed phase I human clinical safety studies and is now being developed for treatment of human cytomegalovirus (HCMV)-related disease in immunocompromised patients. In this report, we show that FCV is a potent broad-spectrum inhibitor of HAdV types 4 to 8, with 50% effective concentrations (EC50s) ranging between 1.24 and 3.6 μM and a 50% cytotoxic concentration (CC50) of 100 to 150 μM in human foreskin fibroblasts (HFFs). We also show that the prophylactic oral administration of FCV (10 mg/kg of body weight) 1 day prior to virus challenge and then daily for 14 days to immunosuppressed Syrian hamsters infected intravenously with HAdV6 was sufficient to prevent morbidity and mortality. FCV also mitigated tissue damage and inhibited virus replication in the liver. The 10-mg/kg dose had similar effects even when the treatment was started on day 4 after virus challenge. Furthermore, FCV administered at the same dose after intranasal challenge with HAdV6 partially mitigated body weight loss but significantly reduced pathology and virus replication in the lung. These findings suggest that FCV could potentially be developed as a pan-adenoviral inhibitor.
Collapse
Affiliation(s)
- Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jessica Eagar
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Scott H James
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
16
|
Saha B, Parks RJ. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020; 8:E1284. [PMID: 32842697 PMCID: PMC7563841 DOI: 10.3390/microorganisms8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Human adenovirus (HAdV) is a very common pathogen that typically causes minor disease in most patients. However, the virus can cause significant morbidity and mortality in certain populations, including young children, the elderly, and those with compromised immune systems. Currently, there are no approved therapeutics to treat HAdV infections, and the standard treatment relies on drugs approved to combat other viral infections. Such treatments often show inconsistent efficacy, and therefore, more effective antiviral therapies are necessary. In this review, we discuss recent developments in the search for new chemical and biological anti-HAdV therapeutics, including drugs that are currently undergoing preclinical/clinical testing, and small molecule screens for the identification of novel compounds that abrogate HAdV replication and disease.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
17
|
Saha B, Parks RJ. Identification of human adenovirus replication inhibitors from a library of small molecules targeting cellular epigenetic regulators. Virology 2020; 555:102-110. [PMID: 33032802 PMCID: PMC7382930 DOI: 10.1016/j.virol.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Human adenovirus (HAdV) can cause severe disease in certain at-risk populations such as newborns, young children, the elderly and individuals with a compromised immune system. Unfortunately, no FDA-approved antiviraldrug is currently available for the treatment of HAdV infections. Within the nucleus of infected cells, the HAdV genome associates with histones and forms a chromatin-like structure during early infection, and viral gene expression appears to be regulated by cellular epigenetic processes. Thus, one potential therapeutic strategy to combat HAdV disease may be to target the cellular proteins involved in modifying the viral nucleoprotein structure and facilitating HAdV gene expression and replication. We have screened a panel of small molecules that modulate the activity of epigenetic regulatory proteins for compounds affecting HAdV gene expression. Several of the compounds, specifically chaetocin, gemcitabine and lestaurtinib, reduced HAdV recovery by 100- to 1000-fold, while showing limited effects on cell health, suggesting that these compounds may indeed be promising as anti-HAdV therapeutics.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
18
|
Aguilar-Guisado M, Marrugal-Lorenzo JA, Berastegui-Cabrera J, Merino L, Pachón J, Sánchez-Céspedes J. In vitro co-infection by cytomegalovirus improves the antiviral activity of ganciclovir against human adenovirus. Int J Antimicrob Agents 2020; 56:106046. [PMID: 32540429 DOI: 10.1016/j.ijantimicag.2020.106046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/25/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
Human adenovirus (HAdV) infection has an important clinical impact in the immunosuppressed population and is associated with high morbidity and mortality rates. The lack of a specific, safe and effective antiviral treatment against HAdV makes necessary the search for new therapeutic options. The aim of this study was to evaluate the in vitro activity of ganciclovir (GCV) against HAdV in co-infection by human cytomegalovirus (HCMV) and HAdV in cellular cultures. Quantitative real-time polymerase chain reaction (qPCR) was used to measure HAdV and HCMV DNA replication efficiency in monocultures and in co-infection situations in the presence of both cidofovir (CDV) and GCV. The effects of GCV and CDV were also evaluated in a burst assay (used to measure the production of virus particles) for both viruses, alone and in combination. GCV decreased by 1-log the HAdV DNA replication efficiency in co-infection with HCMV compared with its activity in HAdV monoculture. The burst assay showed that the reductions in virus yield in the presence of GCV were higher for HCMV and co-infection than for HAdV in monoculture (145.2±35.5- vs. 116.4±27.3- vs. 23.0±10.0-fold, respectively, P<0.05). The improved anti-HAdV activity of GCV during co-infection may be because of the more efficient phosphorylation of GCV by the HCMV protein kinase, UL97. Patients treated with GCV as pre-emptive therapy for HCMV infection may be considered as low-risk for developing HAdV infections; however, further evaluations are required to confirm these results.
Collapse
Affiliation(s)
- Manuela Aguilar-Guisado
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| | - José Antonio Marrugal-Lorenzo
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Laura Merino
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Jerónimo Pachón
- Department of Medicine, University of Seville, Spain; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| |
Collapse
|
19
|
Labib BA, Minhas BK, Chigbu DI. Management of Adenoviral Keratoconjunctivitis: Challenges and Solutions. Clin Ophthalmol 2020; 14:837-852. [PMID: 32256043 PMCID: PMC7094151 DOI: 10.2147/opth.s207976] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Human adenovirus (HAdV) is the most common cause of infectious conjunctivitis, accounting for up to 75% of all conjunctivitis cases and affecting people of all ages and demographics. In addition to ocular complications, it can cause systemic infections in the form of gastroenteritis, respiratory disease, and dissemination in immunocompromised individuals. HAdV causes lytic infection of the mucoepithelial cells of the conjunctiva and cornea, as well as latent infection of lymphoid and adenoid cells. Epidemic keratoconjunctivitis (EKC) is the most severe ocular manifestation of HAdV infection, in which the presence of subepithelial infiltrates (SEIs) in the cornea is a hallmark feature of corneal involvement. SEIs have the tendency to recur and may lead to long-term visual disability. HAdV persistence and dissemination are linked to sporadic outbreaks of adenoviral keratoconjunctivitis. There is no FDA-approved antiviral for treating adenoviral keratoconjunctivitis, and as such, solutions should be proffered to handle the challenges associated with viral persistence and dissemination. Several treatment modalities have been investigated, both systemically and locally, to not only mitigate symptoms but reduce the course of the infection and prevent the risk of long-term complications. These options include systemic and topical antivirals, in-office povidone-iodine irrigation (PVI), immunoglobulin-based therapy, anti-inflammatory therapy, and immunotherapy. More recently, combination PVI/dexamethasone ophthalmic formulations have shown favorable outcomes and were well tolerated in clinical trials for the treatment of EKC. Possible, future treatment considerations include sialic acid analogs, cold atmospheric plasma, N-chlorotaurine, and benzalkonium chloride. Continued investigation and evaluation of treatment are warranted to reduce the economic burden and potential long-term visual debilitation in affected patients. This review will focus on how persistence and dissemination of HAdV pose a significant challenge to the management of adenoviral keratoconjunctivitis. Furthermore, current and future trends in prophylactic and therapeutic modalities for adenoviral keratoconjunctivitis will be discussed.
Collapse
Affiliation(s)
- Bisant A Labib
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | - Bhawanjot K Minhas
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | - DeGaulle I Chigbu
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| |
Collapse
|
20
|
Mystery eye: Human adenovirus and the enigma of epidemic keratoconjunctivitis. Prog Retin Eye Res 2019; 76:100826. [PMID: 31891773 DOI: 10.1016/j.preteyeres.2019.100826] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
Known to occur in widespread outbreaks, epidemic keratoconjunctivitis (EKC) is a severe ocular surface infection with a strong historical association with human adenovirus (HAdV). While the conjunctival manifestations can vary from mild follicular conjunctivitis to hyper-acute, exudative conjunctivitis with formation of conjunctival membranes, EKC is distinct as the only form of adenovirus conjunctivitis in which the cornea is also involved, likely due to the specific corneal epithelial tropism of its causative viral agents. The initial development of a punctate or geographic epithelial keratitis may herald the later formation of stromal keratitis, and manifest as subepithelial infiltrates which often persist or recur for months to years after the acute infection has resolved. The chronic keratitis in EKC is associated with foreign body sensation, photophobia, glare, and reduced vision. However, over a century since the first clinical descriptions of EKC, and over 60 years since the first causative agent, human adenovirus type 8, was identified, our understanding of this disorder remains limited. This is underscored by a current lack of effective diagnostic tools and treatments. In part, stasis in our knowledge base has been encouraged by the continued acceptance, and indeed propagation of, inaccurate paradigms pertaining to disease etiology and pathogenesis, particularly with regard to mechanisms of innate and adaptive immunity within the cornea. Owing to its often persistent and medically refractory visual sequelae, reconsideration of key aspects of EKC disease biology is warranted to identify new treatment targets to curb its worldwide socioeconomic burden.
Collapse
|
21
|
Saha B, Varette O, Stanford WL, Diallo JS, Parks RJ. Development of a novel screening platform for the identification of small molecule inhibitors of human adenovirus. Virology 2019; 538:24-34. [PMID: 31561058 DOI: 10.1016/j.virol.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/01/2022]
Abstract
Human adenovirus (HAdV) can cause severe disease and death in both immunocompromised and immunocompetent patients. The current standards of treatment are often ineffective, and no approved antiviral therapy against HAdV exists. We report here the design and validation of a fluorescence-based high-content screening platform for the identification of novel anti-HAdV compounds. The screen was conducted using a wildtype-like virus containing the red fluorescent protein (RFP) gene under the regulation of the HAdV major late promoter. Thus, RFP expression allows monitoring of viral late gene expression (a surrogate marker for virus replication), and compounds affecting virus growth can be easily discovered by quantifying RFP intensity. We used our platform to screen ~1200 FDA-approved small molecules, and identified several cardiotonic steroids, corticosteroids and chemotherapeutic agents as anti-HAdV compounds. Our screening platform provides the stringency necessary to detect compounds with varying degrees of antiviral activity, and facilitates drug discovery/repurposing to combat HAdV infections.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver Varette
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
22
|
Biliavska L, Pankivska Y, Povnitsa O, Zagorodnya S. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5. ACTA ACUST UNITED AC 2019; 55:medicina55090519. [PMID: 31443536 PMCID: PMC6780409 DOI: 10.3390/medicina55090519] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: The use of antagonistic probiotic microorganisms and their byproducts represents a promising approach for the treatment of viral diseases. In the current work, the effect of exopolysaccharides (EPSs) produced by lactic acid bacteria from different genera on the structural and functional characteristics of cells and the development of adenoviral infection in vitro was studied. Materials and Methods: Cytotoxicity of six EPSs of lactic acid bacteria of the genera Lactobacillus, Leuconostoc and Pediococcus was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The influence of the EPSs on the infectivity of human adenovirus type 5 (HAdV-5) and on the cell cycle under a condition of adenovirus infection was studied using plaque reduction assay and flow cytometric analysis, respectively. Results: It was shown that exopolysaccharides were non-toxic to Madin-Darby bovine kidney cells (MDBK) as they reduced their viability by 3-17%. A change in the distribution of the cell cycle phases in the non-infected cell population treated with EPSs was observed. The analysis demonstrated an increase in the number of cells in the S phase by 47% when using EPSs 15a and a decrease in the number of cells in the G1 phase by 20-27% when treated with the EPSs 15a, 33a, and 19s. The use of EPSs did not led to the normalization of the life cycle of HAdV-5 infected cells to the level of non-infected cells. The EPSs showed low virucidal activity and reduced the HAdV-5 infectivity to 85%. Among the studied exopolysaccharides, anti-adenovirus activity was found for EPS 26a that is produced by Lactobacillus spp. strain. The treatment of cells with the EPS following virus adsorption completely (100%) suppressed the formation and release of HAdV-5 infectious. Conclusions: EPS 26a possessed distinct anti-HAdV-5 activity and the obtained data demonstrate the potential of using exopolysaccharides as anti-adenoviral agents.
Collapse
Affiliation(s)
- Liubov Biliavska
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine.
| | - Yulia Pankivska
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Olga Povnitsa
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Svitlana Zagorodnya
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| |
Collapse
|
23
|
Wold WSM, Tollefson AE, Ying B, Spencer JF, Toth K. Drug development against human adenoviruses and its advancement by Syrian hamster models. FEMS Microbiol Rev 2019; 43:380-388. [PMID: 30916746 DOI: 10.1093/femsre/fuz008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 02/02/2023] Open
Abstract
The symptoms of human adenovirus infections are generally mild and self-limiting. However, these infections have been gaining importance in recent years because of a growing number of immunocompromised patients. Solid organ and hematopoietic stem cell transplant patients are subjected to severe immunosuppressive regimes and cannot efficaciously eliminate virus infections. In these patients, adenovirus infections can develop into deadly multi-organ disseminated disease. Presently, in the absence of approved therapies, physicians rely on drugs developed for other purposes to treat adenovirus infections. As there is a need for anti-adenoviral therapies, researchers have been developing new agents and repurposing existing ones to treat adenovirus infections. There are several small molecule drugs that are being tested for their efficacy against human adenoviruses; some of these have reached clinical trials, while others are still in the preclinical phase. Besides these compounds, research on immunotherapy against adenoviral infection has made significant progress, promising another modality for treatment. The availability of an animal model confirmed the activity of some drugs already in clinical use while proving that others are inactive. This led to the identification of several lead compounds that await further development. In the present article, we review the current status of anti-adenoviral therapies and their advancement by in vivo studies in the Syrian hamster model.
Collapse
Affiliation(s)
- William S M Wold
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Ann E Tollefson
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Baoling Ying
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Jacqueline F Spencer
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Karoly Toth
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| |
Collapse
|
24
|
Overcoming the limitations of locally administered oncolytic virotherapy. BMC Biomed Eng 2019; 1:17. [PMID: 32903299 PMCID: PMC7422506 DOI: 10.1186/s42490-019-0016-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Adenovirus (Ad) has been most extensively evaluated gene transfer vector in clinical trials due to facile production in high viral titer, highly efficient transduction, and proven safety record. Similarly, an oncolytic Ad, which replicates selectively in cancer cells through genetic modifications, is actively being evaluated in various phases of clinical trials as a promising next generation therapeutic against cancer. Most of these trials with oncolytic Ads to date have employed intratumoral injection as the standard administration route. Although these locally administered oncolytic Ads have shown promising outcomes, the therapeutic efficacy is not yet optimal due to poor intratumoral virion retention, nonspecific shedding of virion to normal organs, variable infection efficacy due to heterogeneity of tumor cells, adverse antiviral immune response, and short biological activity of oncolytic viruses in situ. These inherent problems associated with locally administered Ad also holds true for other oncolytic viral vectors. Thus, this review will aim to discuss various nanomaterial-based delivery strategies to improve the intratumoral administration efficacy of oncolytic Ad as well as other types of oncolytic viruses.
Collapse
|
25
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Suppresses Human Adenovirus Gene Expression and Replication. J Virol 2019; 93:JVI.00088-19. [PMID: 30944181 DOI: 10.1128/jvi.00088-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Human adenovirus (HAdV) causes minor illnesses in most patients but can lead to severe disease and death in pediatric, geriatric, and immunocompromised individuals. No approved antiviral therapy currently exists for the treatment of these severe HAdV-induced diseases. In this study, we show that the pan-histone deacetylase (HDAC) inhibitor SAHA reduces HAdV-5 gene expression and DNA replication in tissue culture, ultimately decreasing virus yield from infected cells. Importantly, SAHA also reduced gene expression from more virulent and clinically relevant serotypes, including HAdV-4 and HAdV-7. In addition to SAHA, several other HDAC inhibitors (e.g., trichostatin A, apicidin, and panobinostat) also affected HAdV gene expression. We determined that loss of class I HDAC activity, mainly HDAC2, impairs efficient expression of viral genes, and that E1A physically interacts with HDAC2. Our results suggest that HDAC activity is necessary for HAdV replication, which may represent a novel pharmacological target in HAdV-induced disease.IMPORTANCE Although human adenovirus (HAdV) can cause severe diseases that can be fatal in some populations, there are no effective treatments to combat HAdV infection. In this study, we determined that the pan-histone deacetylase (HDAC) inhibitor SAHA has inhibitory activity against several clinically relevant serotypes of HAdV. This U.S. Food and Drug Administration-approved compound affects various stages of the virus lifecycle and reduces virus yield even at low concentrations. We further report that class I HDAC activity, particularly HDAC2, is required for efficient expression of viral genes during lytic infection. Investigation of the mechanism underlying SAHA-mediated suppression of HAdV gene expression and replication will enhance current knowledge of virus-cell interaction and may aid in the development of more effective antivirals with lower toxicity for the treatment of HAdV infections.
Collapse
|
26
|
Abstract
Recent commentary in Neurotherapeutics by Nath critically addresses the earlier report by Tzeng et al. that aggressive antiviral treatment (AVT) against herpes simplex virus (HSV) was associated with a later decrease in the incidence of Alzheimer's disease (AD). Nath raises issues that we respond to: we point out that (i) the treated group (probably with severe infection) is likely to harbor genetic risk alleles that predispose to both AD and HSV infection-the potential treatment bias cited by Nath would support (rather than challenge) the preventive effect of AVT; (ii) HSV is well known to establish persistent infection in the brain; and (iii) current AVT compounds used to combat herpes viruses are highly specific for this class of viruses. Instead of "alternative fact," the findings of Tzeng et al. argue in favor of clinical trials of AVT in AD.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh, UK.
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | - Ruth Itzhaki
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
27
|
Abstract
Human adenovirus (HAdV) is a ubiquitous virus that infects the mucosa of the eye. It is the most common cause of infectious conjunctivitis worldwide, affecting people of all ages and demographics. Pharyngoconjunctival fever outbreak is due to HAdV types 3, 4, and 7, whereas outbreaks of epidemic keratoconjunctivitis are usually caused by HAdV types 8, 19, 37, and 54. Primary cellular receptors, such as CAR, CD46, and sialic acid interact with fiber-knob protein to mediate adenoviral attachment to the host cell, whereas adenoviral penton base–integrin interaction mediates internalization of adenovirus. Type 1 immunoresponse to adenoviral ocular infection involves both innate immunity mediated by natural killer cells and type 1 interferon, as well as adaptive immunity mediated mainly by CD8 T cells. The resulting ocular manifestations are widely variable, with pharyngoconjunctival fever being the most common, manifesting clinically with fever, pharyngitis, and follicular conjunctivitis. Epidemic keratoconjunctivitis, however, is the severest form, with additional involvement of the cornea leading to development of subepithelial infiltrates. Because there is currently no US Food and Drug Administration-approved treatment for adenoviral ocular infection, current management is palliative. The presence of sight-threatening complications following ocular adenoviral infection warrants the necessity for developing antiadenoviral therapy with enhanced therapeutic index. Future trends that focus on adenoviral pathogenesis, including adenoviral protein, which utilize host receptors to promote infection, could be potential therapeutic targets, yielding shorter active disease duration and reduced disease burden.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, USA,
| | - Bisant A Labib
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, USA,
| |
Collapse
|
28
|
Toth K, Spencer JF, Ying B, Tollefson AE, Hartline CB, Richard ET, Fan J, Lyu J, Kashemirov BA, Harteg C, Reyna D, Lipka E, Prichard MN, McKenna CE, Wold WSM. USC-087 protects Syrian hamsters against lethal challenge with human species C adenoviruses. Antiviral Res 2018; 153:1-9. [PMID: 29510156 PMCID: PMC5891362 DOI: 10.1016/j.antiviral.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 02/08/2023]
Abstract
Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections.
Collapse
Affiliation(s)
- Karoly Toth
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | - Baoling Ying
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ann E Tollefson
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | - Eric T Richard
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jiajun Fan
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jinglei Lyu
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Cheryl Harteg
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Dawn Reyna
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Elke Lipka
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Mark N Prichard
- University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - William S M Wold
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
29
|
Wang X, Zhang Q, Zhou Z, Liu M, Chen Y, Li J, Xu L, Guo J, Li Q, Yang J, Wang S. Retinoic acid receptor β, a potential therapeutic target in the inhibition of adenovirus replication. Antiviral Res 2018; 152:84-93. [PMID: 29421320 DOI: 10.1016/j.antiviral.2018.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Human adenoviruses (HAdVs) usually cause mild respiratory infections, but they can also lead to fatal outcomes for immunosuppressive patients. Unfortunately, there has been no specific anti-HAdV drug approved for medical use. A better understanding of the nature of virus-host interactions during infection is beneficial to the discovery of potential antiviral targets and new antiviral drugs. In this study, a time-course transcriptome analysis of HAdV-infected human lung epithelial cells (A549 cells) was performed to investigate virus-host interactions, and several key host molecules involved in the HAdV infection process were identified. The RARβ (retinoic acid receptor β) molecule, one of the upstream regulatory factors of differentially expressed genes (DEGs), played important roles in HAdV replication. The results of reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting showed that RARβ mRNA and protein were downregulated by HAdV infection in the A549 cells. The knockdown of RARβ by RARβ siRNA increased the HAdV production and the overexpression of RARβ decreased the HAdV production. Furthermore, FDA-approved Tazarotene, which is an RAR selective agonist with relatively more selectivity for RARβ, was found to inhibit HAdV replication in vitro. Taken together, our study presents a key host molecule in adenovirus infection, which could be developed as a potential host target to an anti-adenovirus drug. In addition, this study provides evidence for the re-exploitation of an FDA-approved small molecule for therapeutic applications in adenovirus replication.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qiling Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zhe Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Manjiao Liu
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Yubao Chen
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Jianbo Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Linlin Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jing Guo
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
30
|
Toth K, Tollefson AE, Spencer JF, Ying B, Wold WS. Combination therapy with brincidofovir and valganciclovir against species C adenovirus infection in the immunosuppressed Syrian hamster model allows for substantial reduction of dose for both compounds. Antiviral Res 2017; 146:121-129. [DOI: 10.1016/j.antiviral.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022]
|
31
|
Biodistribution and residence time of adenovector serotype 5 in normal and immunodeficient mice and rats detected with bioluminescent imaging. Sci Rep 2017; 7:3597. [PMID: 28620164 PMCID: PMC5472566 DOI: 10.1038/s41598-017-03852-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
As concerns increase about adenovirus type 5 (Ad5) being a safe gene transfer vector, it is important to evaluate its distribution, residence time, and possible toxicity in immunodeficient populations. To characterize the potential risk associated with different Ad5 vector delivery modes, we used immunocompetent and immunodeficient Rag2−/− animals to establish mouse and rat models that could be monitored with bioluminescent imaging following intramuscular or intravascular infection with an engineered replication-incompetent Ad5 virus carrying the firefly luciferase gene (Ad5-Fluc). The Ad5 vector was less well-tolerated by Rag2−/− animals than by wildtype ones, with delayed residence time, wider virus dissemination, less weight gain, and relatively severe pathological changes. In intravascularly Ad5-Fluc-infected Rag2−/− mice, systemic virus dissemination extended from the abdomen to the limbs and head on day 9 post-infection. Additionally, significant increases in plasma TNF-α and IFN-γ, which may be important factors in the heightened immunopathology in the liver and brain, were detected in the Rag2−/− mice 30 days after intravascular delivery. The Ad5 vector was better tolerated after intramuscular delivery than after intravascular delivery. Ad5-Fluc/Rag2−/− mice and rats can be used as reliable models of an immunodeficient population in which to evaluate the safety of Ad5-vectored vaccines or gene therapy products.
Collapse
|
32
|
HAdV-C6 Is a More Relevant Challenge Virus than HAdV-C5 for Testing Antiviral Drugs with the Immunosuppressed Syrian Hamster Model. Viruses 2017; 9:v9060147. [PMID: 28608847 PMCID: PMC5490823 DOI: 10.3390/v9060147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 01/24/2023] Open
Abstract
Adenovirus infections of immunocompromised patients can cause a severe multi-organ disease that often results in the patients' death. Presently, there are no drugs specifically approved to treat adenovirus infections, and clinicians resort to the off-label use of antivirals that are approved to treat other DNA virus infections, most frequently cidofovir (CDV). CDV, however, has considerable nephrotoxicity, thus it is recommended only for the most severe cases of adenovirus infections. To facilitate the development of effective, non-toxic antivirals against adenovirus, we have developed a permissive animal model based on the Syrian hamster that can be used to test the efficacy of antiviral compounds. Here, we show that in the hamster model, HAdV-C6 is a more useful challenge virus than the previously described HAdV-C5, because it is filtered out by tissue macrophages to a lesser extent. HAdV-C6 has a 10-fold lower LD50 in hamsters than HAdV-C5 and the pathology is caused by virus replication to a larger extent. We show that valganciclovir (VGCV), a drug that was shown to be active against intravenous HAdV-C5 infection previously, is efficacious against HAdV-C6 when administered either prophylactically or therapeutically. Further, we show for the first time that VGCV, and to a lesser extent CDV, can be used to treat respiratory adenovirus infections in the hamster model. These results extend the utility of the hamster model, and demonstrate the efficacy of two drugs available for clinicians to treat adenovirus infections.
Collapse
|
33
|
Tollefson AE, Ying B, Spencer JF, Sagartz JE, Wold WSM, Toth K. Pathology in Permissive Syrian Hamsters after Infection with Species C Human Adenovirus (HAdV-C) Is the Result of Virus Replication: HAdV-C6 Replicates More and Causes More Pathology than HAdV-C5. J Virol 2017; 91:e00284-17. [PMID: 28250128 PMCID: PMC5411597 DOI: 10.1128/jvi.00284-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Syrian hamsters are permissive for the replication of species C human adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these animals after intravenous infection, while respiratory infection results in virus replication in the lung. Here we show that two types belonging to species C, HAdV-C5 and HAdV-C6, replicate to significantly different extents and cause pathology with significantly different severities, with HAdV-C6 replicating better and inducing more severe and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected hamsters are higher than the virus burdens in HAdV-C5-infected ones because more of the permissive hepatocytes get infected. Furthermore, when hamsters are infected intravenously with HAdV-C6, live, infectious virus can be isolated from the lung and the kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters, HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells also dramatically increases the pathology induced by HAdV-C5. These findings indicate that in hamsters, pathology resulting from intravenous infection with adenoviruses is caused mostly by replication in hepatocytes and not by the abortive infection of Kupffer cells and the following cytokine storm.IMPORTANCE Immunocompromised human patients can develop severe, often lethal adenovirus infections. Respiratory adenovirus infection among military recruits is a serious problem, in some cases requiring hospitalization of the patient. Furthermore, adenovirus-based vectors are frequently used as experimental viral therapeutic agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses in a permissive animal model. Syrian hamsters are susceptible to infection with certain human adenoviruses, and the pathology accompanying these infections is similar to what is observed with adenovirus-infected human patients. We demonstrate that replication in permissive cells in a susceptible host animal is a major part of the mechanism by which systemic adenovirus infection induces pathology, as opposed to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These findings support the use of compounds inhibiting adenovirus replication as a means to block adenovirus-induced pathology.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Abstract
Human adenoviruses can cause serious disseminated infections including death in immunosuppressed patients, especially pediatric allogeneic hematopoietic stem cell transplant (allo-HSCT) patients. There are no drugs approved to treat such infections. Cidofovir is used intravenously in many transplant clinics, probably with some effect, but controlled trials have not been completed. Cidofovir is an acyclic nucleoside phosphonate analog of cytidine monophosphate. Following conversion to its diphosphate form within cells, cidofovir is a preferred substrate for the adenovirus DNA polymerase, leading to viral DNA chain termination. Problems with cidofovir include poor cellular uptake and nephrotoxicity. Brincidofovir, a lipid-linked derivative of cidofovir which is active against five families of double-stranded DNA viruses, represents a major advance in anti-adenovirus therapy. It is administered orally, taken up readily by cells followed by release of cidofovir within cells, and is not nephrotoxic. Brincidofovir, under development by Chimerix, Inc., is being evaluated against adenovirus infections in transplant patients including allo-HSCT patients in a phase III clinical trial (AdVise Study). Preliminary results indicate that brincidofovir is safe and very effective at decreasing adenovirus viremia and adenovirus-induced pathogenicity and mortality. Anti-adenovirus adoptive T cell therapy is another very promising approach to treating allo-HSCT patients as demonstrated in clinical studies.
Collapse
Affiliation(s)
- William S M Wold
- a 1 Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology , 1100 S. Grand Boulevard, St. Louis, MO, USA +1 314 977 8857 ; +1 314 977 8717 ;
| | - Karoly Toth
- b 2 Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology , 1100 S. Grand Boulevard, St. Louis, MO, USA
| |
Collapse
|
35
|
STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control. PLoS Pathog 2015; 11:e1005084. [PMID: 26291525 PMCID: PMC4546297 DOI: 10.1371/journal.ppat.1005084] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022] Open
Abstract
Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models.
Collapse
|
36
|
Abstract
Human adenoviruses (HAdV) are the cause of many acute infections, mostly in the respiratory and gastrointestinal (GI) tracts, as well as conjunctivitis. HAdV diseases in immunocompetent individuals are mostly self-limiting; however, in immunocompromised individuals, especially in pediatric units, HAdV infections are the cause of high morbidity and mortality. Despite the significant clinical impact, there are currently no approved antiviral therapies for HAdV infections. Here, we provide an overview of the different targets that could be considered for the design of specific drugs against HAdV, as well as the available in vitro and in vivo tools for the screening and evaluation of candidate molecules.
Collapse
|
37
|
Toth K, Ying B, Tollefson AE, Spencer JF, Balakrishnan L, Sagartz JE, Buller RML, Wold WSM. Valganciclovir inhibits human adenovirus replication and pathology in permissive immunosuppressed female and male Syrian hamsters. Viruses 2015; 7:1409-28. [PMID: 25807051 PMCID: PMC4379578 DOI: 10.3390/v7031409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.
Collapse
Affiliation(s)
- Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Lata Balakrishnan
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Robert Mark L Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
38
|
Ackoundou-N'Guessan C, Coulibaly N, Guei CM, Aye D, N'guessan FY, N'Dah JK, Lagou DA, Tia MW, Coulibaly PA, Nzoue S, Konan S, Gnionsahe DA. [Hemorrhagic cystitis due to adenovirus in a renal transplant recipient: the first reported case in black Africa in a setting of a very beginning of a kidney transplantation program and review of the literature]. Nephrol Ther 2015; 11:104-10. [PMID: 25684056 DOI: 10.1016/j.nephro.2014.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Viral infections are an important complication of transplantation. Polyomavirus are the commonest viruses that infect the renal allograft. Herpes virus nephropathy has also been described. In the past 15 years, adenovirus nephritis has emerged as a potentially life-threatening disease in renal transplant patients in developed countries. Most of the papers devoted to adenovirus nephritis are reported cases. The fate of such patients in resources-limited countries is not known. Herein, we describe the clinical, biological and prognostic findings of a black African transplanted patient with adenoviral hemorrhagic cystitis. This case is the very first of its kind reported in black Africa in a setting of a start of a renal transplantation pilot project. The patient is a 54-year-old man admitted at the nephrology service for gross haematuria and fever occurred 1 month after kidney transplantation. The diagnosis of adenoviral hemorrhagic cystitis has been suspected because the patient has displayed recurrent conjunctivitis and gastroenteritis well before transplantation, which was then confirmed by the real-time polymerase chain reaction performed on the blood. Conservatory measures associated with immunosuppression reduction have permitted the discontinuation of haematuria. This case has been discussed in regard of the epidemiology, the diagnosis, the treatment, the evolution and the prognosis of the adenoviral infection in the renal transplant patient. A review of the literature has been performed subsequently.
Collapse
Affiliation(s)
| | - Noël Coulibaly
- Unité pilote de transplantation rénale, service d'urologie, institut de cardiologie, CHU de Treichville, Km 1 boulevard de Marseille, BP V 206 Abidjan, Abidjan, Côte d'Ivoire
| | - Cyr Monley Guei
- Service de néphrologie et hémodialyse, CHU de Yopougon, Abidjan, Côte d'Ivoire
| | - Denis Aye
- Service d'anesthésie et de réanimation, CHU de Yopougon, Abidjan, Côte d'Ivoire
| | - Francis Yapi N'guessan
- Service d'anesthésie et de réanimation, CHU de Cocody, université Félix Houphouët-Boigny, Abidjan, Cocody, BP V 32 Abidjan, Abidjan, Côte d'Ivoire
| | - Justin Kouame N'Dah
- Service d'anatomie pathologique, CHU de Cocody, université Félix Houphouët-Boigny, Abidjan, Cocody, BP V 32 Abidjan, Abidjan, Côte d'Ivoire
| | | | - Mélanie Weu Tia
- Service de néphrologie et hémodialyse, CHU de Yopougon, Abidjan, Côte d'Ivoire
| | | | - Sita Nzoue
- Service de néphrologie et hémodialyse, CHU de Yopougon, Abidjan, Côte d'Ivoire
| | - Serges Konan
- Service de néphrologie et hémodialyse, CHU de Yopougon, Abidjan, Côte d'Ivoire
| | | |
Collapse
|