1
|
Hinnu M, Putrinš M, Kogermann K, Kaldalu N, Tenson T. Fluorescent reporters give new insights into antibiotics-induced nonsense and frameshift mistranslation. Sci Rep 2024; 14:6883. [PMID: 38519558 PMCID: PMC10959953 DOI: 10.1038/s41598-024-57597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
We developed a reporter system based on simultaneous expression of two fluorescent proteins: GFP as a reporter of the capacity of protein synthesis and mutated mScarlet-I as a reporter of translational errors. Because of the unique stop codons or frameshift mutations introduced into the mScarlet-I gene, red fluorescence was produced only after a mistranslation event. These reporters allowed us to estimate mistranslation at a single cell level using either flow cytometry or fluorescence microscopy. We found that laboratory strains of Escherichia coli are more prone to mistranslation compared to the clinical isolates. As relevant for uropathogenic E. coli, growth in human urine elevated translational frameshifting compared to standard laboratory media, whereas different standard media had a small effect on translational fidelity. Antibiotic-induced mistranslation was studied by using amikacin (aminoglycoside family) and azithromycin (macrolide family). Bactericidal amikacin induced preferably stop-codon readthrough at a moderate level. Bacteriostatic azithromycin on the other hand induced both frameshifting and stop-codon readthrough at much higher level. Single cell analysis revealed that fluorescent reporter-protein signal can be lost due to leakage from a fraction of bacteria in the presence of antibiotics, demonstrating the complexity of the antimicrobial activity.
Collapse
Affiliation(s)
- Mariliis Hinnu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| |
Collapse
|
2
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
3
|
Antibiotics that affect translation can antagonize phage infectivity by interfering with the deployment of counter-defenses. Proc Natl Acad Sci U S A 2023; 120:e2216084120. [PMID: 36669116 PMCID: PMC9942909 DOI: 10.1073/pnas.2216084120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is becoming increasingly clear that antibiotics can both positively and negatively impact the infectivity of bacteriophages (phage), but the underlying mechanisms often remain unclear. Here we demonstrate that antibiotics that target the protein translation machinery can fundamentally alter the outcome of bacteria-phage interactions by interfering with the production of phage-encoded counter-defense proteins. Specifically, using Pseudomonas aeruginosa PA14 and phage DMS3vir as a model, we show that bacteria with Clustered Regularly Interspaced Short Palindromic Repeat, CRISPR associated (CRISPR-Cas) immune systems have elevated levels of immunity against phage that encode anti-CRISPR (acr) genes when translation inhibitors are present in the environment. CRISPR-Cas are highly prevalent defense systems that enable bacteria to detect and destroy phage genomes in a sequence-specific manner. In response, many phages encode acr genes that are expressed immediately following the infection to inhibit key steps of the CRISPR-Cas immune response. Our data show that while phage-carrying acr genes can amplify efficiently on bacteria with CRISPR-Cas immune systems in the absence of antibiotics, the presence of antibiotics that act on protein translation prevents phage amplification, while protecting bacteria from lysis.
Collapse
|
4
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Komarova ES, Slesarchuk AN, Rubtsova MP, Osterman IA, Tupikin AE, Pyshnyi DV, Dontsova OA, Kabilov MR, Sergiev PV. Flow-Seq Evaluation of Translation Driven by a Set of Natural Escherichia coli 5'-UTR of Variable Length. Int J Mol Sci 2022; 23:ijms232012293. [PMID: 36293163 PMCID: PMC9604319 DOI: 10.3390/ijms232012293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Flow-seq is a method that combines fluorescently activated cell sorting and next-generation sequencing to deduce a large amount of data about translation efficiency from a single experiment. Here, we constructed a library of fluorescent protein-based reporters preceded by a set of 648 natural 5'-untranslated regions (5'-UTRs) of Escherichia coli genes. Usually, Flow-seq libraries are constructed using uniform-length sequence elements, in contrast to natural situations, where functional elements are of heterogenous lengths. Here, we demonstrated that a 5'-UTR library of variable length could be created and analyzed with Flow-seq. In line with previous Flow-seq experiments with randomized 5'-UTRs, we observed the influence of an RNA secondary structure and Shine-Dalgarno sequences on translation efficiency; however, the variability of these parameters for natural 5'-UTRs in our library was smaller in comparison with randomized libraries. In line with this, we only observed a 30-fold difference in translation efficiency between the best and worst bins sorted with this factor. The results correlated with those obtained with ribosome profiling.
Collapse
Affiliation(s)
- Ekaterina S. Komarova
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna N. Slesarchuk
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria P. Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya A. Osterman
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitry V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olga A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: (M.R.K.); (P.V.S.)
| | - Petr V. Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (M.R.K.); (P.V.S.)
| |
Collapse
|
6
|
Volynkina IA, Zakalyukina YV, Alferova VA, Belik AR, Yagoda DK, Nikandrova AA, Buyuklyan YA, Udalov AV, Golovin EV, Kryakvin MA, Lukianov DA, Biryukov MV, Sergiev PV, Dontsova OA, Osterman IA. Mechanism-Based Approach to New Antibiotic Producers Screening among Actinomycetes in the Course of the Citizen Science Project. Antibiotics (Basel) 2022; 11:antibiotics11091198. [PMID: 36139977 PMCID: PMC9495171 DOI: 10.3390/antibiotics11091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Since the discovery of streptomycin, actinomycetes have been a useful source for new antibiotics, but there have been diminishing rates of new finds since the 1960s. The decreasing probability of identifying new active agents led to reduced interest in soil bacteria as a source for new antibiotics. At the same time, actinomycetes remain a promising reservoir for new active molecules. In this work, we present several reporter plasmids encoding visible fluorescent protein genes. These plasmids provide primary information about the action mechanism of antimicrobial agents at an early stage of screening. The reporters and the pipeline described have been optimized and designed to employ citizen scientists without specialized skills or equipment with the aim of essentially crowdsourcing the search for new antibiotic producers in the vast natural reservoir of soil bacteria. The combination of mechanism-based approaches and citizen science has proved its effectiveness in practice, revealing a significant increase in the screening rate. As a proof of concept, two new strains, Streptomyces sp. KB-1 and BV113, were found to produce the antibiotics pikromycin and chartreusin, respectively, demonstrating the efficiency of the pipeline.
Collapse
Affiliation(s)
- Inna A. Volynkina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Correspondence: (I.A.V.); (I.A.O.)
| | - Yuliya V. Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Albina R. Belik
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Daria K. Yagoda
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Arina A. Nikandrova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Yuliya A. Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Andrei V. Udalov
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Evgenii V. Golovin
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Maxim A. Kryakvin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Mikhail V. Biryukov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Center for Translational Medicine, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Correspondence: (I.A.V.); (I.A.O.)
| |
Collapse
|
7
|
Wang T, Li F, Lu Q, Wu G, Jiang Z, Liu S, Habden X, Razumova EA, Osterman IA, Sergiev PV, Dontsova OA, Hu X, You X, Sun C. Diversity, novelty, antimicrobial activity, and new antibiotics of cultivable endophytic actinobacteria isolated from psammophytes collected from Taklamakan Desert. J Pharm Anal 2021; 11:241-250. [PMID: 34012700 PMCID: PMC8116205 DOI: 10.1016/j.jpha.2020.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Three hundred and twenty endophytic actinobacterial strains were isolated from psammophytes collected from Taklamakan Desert and identified. Among them, three strains already had been identified as new species of two genera and sixteen isolates showed relatively low 16S rRNA similarities < 98.6% to validly described species. Seventy-five of the isolates were selected as representative strains to screen antibacterial activity and mechanism. Forty-seven strains showed antagonistic activity against at least one of the indicator bacteria. Two Streptomyces strains produced bioactive compounds inducing DNA damage, and two Streptomyces strains produced bioactive compounds with inhibitory activity on protein biosynthesis. Notably, the strain Streptomyces sp. 8P21H-1 that demonstrated both strong antibacterial activity and inhibitory activity on protein biosynthesis was prioritized for exploring new antibiotics. Under the strategy of integrating genetics-based discovery program and MS/MS-based molecular networking, two new streptogramin-type antibiotics, i.e., acetyl-griseoviridin and desulphurizing griseoviridin, along with known griseoviridin, were isolated from the culture broth of strain 8P21H-1. Their chemical structures were determined by HR-MS, and 1D and 2D NMR. Desulphurizing griseoviridin and griseoviridin exhibited antibacterial activities by inhibiting translation.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Feina Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qinpei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gang Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhongke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shaowei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xugela Habden
- College of Life Science, Xinjiang Normal University, Urumchi, 830054, China
| | | | - Ilya A. Osterman
- Lomonosov Moscow State University, Moscow, 119992, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Petr V. Sergiev
- Lomonosov Moscow State University, Moscow, 119992, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Moscow, 119992, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 119992, Russia
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Chenghang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Osterman IA, Chervontseva ZS, Evfratov SA, Sorokina AV, Rodin VA, Rubtsova MP, Komarova ES, Zatsepin TS, Kabilov MR, Bogdanov AA, Gelfand MS, Dontsova OA, Sergiev PV. Translation at first sight: the influence of leading codons. Nucleic Acids Res 2020; 48:6931-6942. [PMID: 32427319 PMCID: PMC7337518 DOI: 10.1093/nar/gkaa430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 01/31/2023] Open
Abstract
First triplets of mRNA coding region affect the yield of translation. We have applied the flowseq method to analyze >30 000 variants of the codons 2-11 of the fluorescent protein reporter to identify factors affecting the protein synthesis. While the negative influence of mRNA secondary structure on translation has been confirmed, a positive role of rare codons at the beginning of a coding sequence for gene expression has not been observed. The identity of triplets proximal to the start codon contributes more to the protein yield then more distant ones. Additional in-frame start codons enhance translation, while Shine-Dalgarno-like motifs downstream the initiation codon are inhibitory. The metabolic cost of amino acids affects the yield of protein in the poor medium. The most efficient translation was observed for variants with features resembling those of native Escherichia coli genes.
Collapse
Affiliation(s)
- Ilya A Osterman
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,Lomonosov Moscow State University, Moscow 119992, Russia
| | - Zoe S Chervontseva
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,A.A.Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia
| | | | - Alena V Sorokina
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia
| | | | - Maria P Rubtsova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina S Komarova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,Lomonosov Moscow State University, Moscow 119992, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,A.A.Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,Lomonosov Moscow State University, Moscow 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Petr V Sergiev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia.,Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
9
|
Komarova ES, Chervontseva ZS, Osterman IA, Evfratov SA, Rubtsova MP, Zatsepin TS, Semashko TA, Kostryukova ES, Bogdanov AA, Gelfand MS, Dontsova OA, Sergiev PV. Influence of the spacer region between the Shine-Dalgarno box and the start codon for fine-tuning of the translation efficiency in Escherichia coli. Microb Biotechnol 2020; 13:1254-1261. [PMID: 32202698 PMCID: PMC7264876 DOI: 10.1111/1751-7915.13561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023] Open
Abstract
Translation efficiency contributes several orders of magnitude difference in the overall yield of exogenous gene expression in bacteria. In diverse bacteria, the translation initiation site, whose sequence is the primary determinant of the translation performance, is comprised of the start codon and the Shine-Dalgarno box located upstream. Here, we have examined how the sequence of a spacer between these main components of the translation initiation site contributes to the yield of synthesized protein. We have created a library of reporter constructs with the randomized spacer region, performed fluorescently activated cell sorting and applied next-generation sequencing analysis (the FlowSeq protocol). As a result, we have identified sequence motifs for the spacer region between the Shine-Dalgarno box and AUG start codon that may modulate the translation efficiency in a 100-fold range.
Collapse
Affiliation(s)
- Ekaterina S. Komarova
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
| | - Zoya S. Chervontseva
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- A.A. Kharkevich Institute for Information Transmission Problems RASMoscow127051Russia
| | - Ilya A. Osterman
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
| | - Sergey A. Evfratov
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
| | - Maria P. Rubtsova
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
| | | | - Elena S. Kostryukova
- Research Institute for Physical‐Chemical MedicineFMBAMoscow119435Russia
- Moscow Institute of Physics and TechnologyMoscow region141700Russia
| | - Alexey A. Bogdanov
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
| | - Mikhail S. Gelfand
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- A.A. Kharkevich Institute for Information Transmission Problems RASMoscow127051Russia
- National Research University Higher School of EconomicsMoscow125319Russia
| | - Olga A. Dontsova
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryMoscow117997Russia
| | - Petr V. Sergiev
- Skolkovo Institute of Science and TechnologyMoscow143025Russia
- Department of ChemistryFaculty of Bioengineering and BioinformaticsInstitute of Functional GenomicsA.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119992Russia
| |
Collapse
|
10
|
Nolivos S, Cayron J, Dedieu A, Page A, Delolme F, Lesterlin C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science 2019; 364:778-782. [PMID: 31123134 DOI: 10.1126/science.aav6390] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
Drug-resistance dissemination by horizontal gene transfer remains poorly understood at the cellular scale. Using live-cell microscopy, we reveal the dynamics of resistance acquisition by transfer of the Escherichia coli fertility factor-conjugation plasmid encoding the tetracycline-efflux pump TetA. The entry of the single-stranded DNA plasmid into the recipient cell is rapidly followed by complementary-strand synthesis, plasmid-gene expression, and production of TetA. In the presence of translation-inhibiting antibiotics, resistance acquisition depends on the AcrAB-TolC multidrug efflux pump, because it reduces tetracycline concentrations in the cell. Protein synthesis can thus persist and TetA expression can be initiated immediately after plasmid acquisition. AcrAB-TolC efflux activity can also preserve resistance acquisition by plasmid transfer in the presence of antibiotics with other modes of action.
Collapse
Affiliation(s)
- Sophie Nolivos
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France
| | - Julien Cayron
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France
| | - Annick Dedieu
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, UCBL, ENS de Lyon, 69007 Lyon, France
| | - Frederic Delolme
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, UCBL, ENS de Lyon, 69007 Lyon, France
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France.
| |
Collapse
|
11
|
Preem L, Bock F, Hinnu M, Putrinš M, Sagor K, Tenson T, Meos A, Østergaard J, Kogermann K. Monitoring of Antimicrobial Drug Chloramphenicol Release from Electrospun Nano- and Microfiber Mats Using UV Imaging and Bacterial Bioreporters. Pharmaceutics 2019; 11:E487. [PMID: 31546922 PMCID: PMC6781501 DOI: 10.3390/pharmaceutics11090487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022] Open
Abstract
New strategies are continuously sought for the treatment of skin and wound infections due to increased problems with non-healing wounds. Electrospun nanofiber mats with antibacterial agents as drug delivery systems provide opportunities for the eradication of bacterial infections as well as wound healing. Antibacterial activities of such mats are directly linked with their drug release behavior. Traditional pharmacopoeial drug release testing settings are not always suitable for analyzing the release behavior of fiber mats intended for the local drug delivery. We tested and compared different drug release model systems for the previously characterized electrospun chloramphenicol (CAM)-loaded nanofiber (polycaprolactone (PCL)) and microfiber (PCL in combination with polyethylene oxide) mats with different drug release profiles. Drug release into buffer solution and hydrogel was investigated and drug concentration was determined using either high-performance liquid chromatography, ultraviolet-visible spectrophotometry, or ultraviolet (UV) imaging. The CAM release and its antibacterial effects in disc diffusion assay were assessed by bacterial bioreporters. All tested model systems enabled to study the drug release from electrospun mats. It was found that the release into buffer solution showed larger differences in the drug release rate between differently designed mats compared to the hydrogel release tests. The UV imaging method provided an insight into the interactions with an agarose hydrogel mimicking wound tissue, thus giving us information about early drug release from the mat. Bacterial bioreporters showed clear correlations between the drug release into gel and antibacterial activity of the electrospun CAM-loaded mats.
Collapse
Affiliation(s)
- Liis Preem
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Frederik Bock
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Mariliis Hinnu
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Kadi Sagor
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Andres Meos
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
12
|
Ivanenkov YA, Yamidanov RS, Osterman IA, Sergiev PV, Aladinskiy VA, Aladinskaya AV, Terentiev VA, Veselov MS, Ayginin AA, Skvortsov DA, Komarova KS, Chemeris AV, Baimiev AK, Sofronova AA, Malyshev AS, Machulkin AE, Petrov RA, Bezrukov DS, Filkov GI, Puchinina MM, Zainullina LF, Maximova MA, Zileeva ZR, Vakhitova YV, Dontsova OA. Identification of N-Substituted Triazolo-azetidines as Novel Antibacterials using pDualrep2 HTS Platform. Comb Chem High Throughput Screen 2019; 22:346-354. [DOI: 10.2174/1386207322666190412165316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Aim and Objective:
Antibiotic resistance is a serious constraint to the development of new
effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main
challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with
antibacterial activity.
Materials and Methods:
Using our unique double-reporter system, in-house large-scale HTS campaign
was conducted for the identification of antibacterial potency of small-molecule compounds. The
construction allows us to visually assess the underlying mechanism of action. After the initial HTS and
rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were
carried out.
Results:
HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted
triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary
hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation
blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high
concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not
demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of
direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an
improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the
same strain. In contrast to the parent hit, this compound was more active and selective, and provided a
robust IP position.
Conclusion:
N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the
development of novel active and selective antibacterial compounds.
Collapse
Affiliation(s)
- Yan A. Ivanenkov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Renat S. Yamidanov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Ilya A. Osterman
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| | - Petr V. Sergiev
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| | | | | | - Victor A. Terentiev
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Mark S. Veselov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Andrey A. Ayginin
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Dmitry A. Skvortsov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russian Federation
| | - Katerina S. Komarova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russian Federation
| | - Alexey V. Chemeris
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Alexey Kh. Baimiev
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Alina A. Sofronova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russian Federation
| | | | - Alexey E. Machulkin
- Lomonosov Moscow State University, Chemistry Dept, Leninskie gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Rostislav A. Petrov
- Lomonosov Moscow State University, Chemistry Dept, Leninskie gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Dmitry S. Bezrukov
- Lomonosov Moscow State University, Chemistry Dept, Leninskie gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Gleb I. Filkov
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation
| | - Maria M. Puchinina
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation
| | - Liana F. Zainullina
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Marina A. Maximova
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Zulfiya R. Zileeva
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Yulia V. Vakhitova
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Oktyabrya Prospekt 71, 450054, Ufa, Russian Federation
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Chemistry Dept, Leninskie gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| |
Collapse
|
13
|
2-Pyrazol-1-yl-thiazole derivatives as novel highly potent antibacterials. J Antibiot (Tokyo) 2019; 72:827-833. [DOI: 10.1038/s41429-019-0211-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/23/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023]
|
14
|
Ivanenkov YA, Komarova ES, Osterman IA, Sergiev PV, Yamidanov RS, Deineka EV, Terent’ev VA, Fil’kov GI, Sofronova AA, Mazhuga AG, Dontsova OA. N-Pyridyl-Substituted Carboxypiperidine Amides: A New Class of Prokaryote Translation Inhibitors. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01984-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Tevyashova AN, Bychkova EN, Korolev AM, Isakova EB, Mirchink EP, Osterman IA, Erdei R, Szücs Z, Batta G. Synthesis and evaluation of biological activity for dual-acting antibiotics on the basis of azithromycin and glycopeptides. Bioorg Med Chem Lett 2018; 29:276-280. [PMID: 30473176 DOI: 10.1016/j.bmcl.2018.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 11/27/2022]
Abstract
One of the promising directions of the combined approach is the design of dual-acting antibiotics - heterodimeric structures on the basis of antimicrobial agents of different classes. In this study a novel series of azithromycin-glycopeptide conjugates were designed and synthesized. The structures of the obtained compounds were confirmed using NMR spectroscopy and mass spectrometry data including MS/MS analysis. All novel hybrid antibiotics were found to be either as active as azithromycin and vancomycin against Gram-positive bacterial strains or have superior activity in comparison with their parent antibiotics. One compound, eremomycin-azithromycin conjugate 16, demonstrated moderate activity against Enterococcus faecium and Enterococcus faecalis strains resistant to vancomycin, and equal to vancomycin's activity for the treatment of mice with Staphylococcus aureus sepsis.
Collapse
Affiliation(s)
- Anna N Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia; D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, Russia.
| | - Elena N Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | | | - Elena B Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia; Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Réka Erdei
- Department of Organic Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - Zsolt Szücs
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem ter 1, Debrecen 4032, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| |
Collapse
|
16
|
Tevyashova AN, Korolev AM, Mirchink EP, Isakova EB, Osterman IA. Synthesis and evaluation of biological activity of benzoxaborole derivatives of azithromycin. J Antibiot (Tokyo) 2018; 72:22-33. [DOI: 10.1038/s41429-018-0107-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
|
17
|
Sergeeva OV, Bredikhin DO, Nesterchuk MV, Serebryakova MV, Sergiev PV, Dontsova OA. Possible Role of Escherichia coli Protein YbgI. BIOCHEMISTRY (MOSCOW) 2018; 83:270-280. [PMID: 29625546 DOI: 10.1134/s0006297918030070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins containing the NIF3 domain are highly conserved and are found in bacteria, eukaryotes, and archaea. YbgI is an Escherichia coli protein whose gene is conserved among bacteria. The structure of YbgI is known; however, the function of this protein in cells remains obscure. Our studies of E. coli cells with deleted ybgI gene suggest that YbgI is involved in formation of the bacterial cell wall.
Collapse
Affiliation(s)
- O V Sergeeva
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Moscow Region, Russia.
| | | | | | | | | | | |
Collapse
|
18
|
Evfratov SA, Osterman IA, Komarova ES, Pogorelskaya AM, Rubtsova MP, Zatsepin TS, Semashko TA, Kostryukova ES, Mironov AA, Burnaev E, Krymova E, Gelfand MS, Govorun VM, Bogdanov AA, Sergiev PV, Dontsova OA. Application of sorting and next generation sequencing to study 5΄-UTR influence on translation efficiency in Escherichia coli. Nucleic Acids Res 2017; 45:3487-3502. [PMID: 27899632 PMCID: PMC5389652 DOI: 10.1093/nar/gkw1141] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/31/2016] [Indexed: 12/24/2022] Open
Abstract
Yield of protein per translated mRNA may vary by four orders of magnitude. Many studies analyzed the influence of mRNA features on the translation yield. However, a detailed understanding of how mRNA sequence determines its propensity to be translated is still missing. Here, we constructed a set of reporter plasmid libraries encoding CER fluorescent protein preceded by randomized 5΄ untranslated regions (5΄-UTR) and Red fluorescent protein (RFP) used as an internal control. Each library was transformed into Escherchia coli cells, separated by efficiency of CER mRNA translation by a cell sorter and subjected to next generation sequencing. We tested efficiency of translation of the CER gene preceded by each of 48 natural 5΄-UTR sequences and introduced random and designed mutations into natural and artificially selected 5΄-UTRs. Several distinct properties could be ascribed to a group of 5΄-UTRs most efficient in translation. In addition to known ones, several previously unrecognized features that contribute to the translation enhancement were found, such as low proportion of cytidine residues, multiple SD sequences and AG repeats. The latter could be identified as translation enhancer, albeit less efficient than SD sequence in several natural 5΄-UTRs.
Collapse
Affiliation(s)
- Sergey A Evfratov
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ilya A Osterman
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ekaterina S Komarova
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexandra M Pogorelskaya
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Maria P Rubtsova
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Tatiana A Semashko
- Research Institute for Physical-Chemical Medicine, FMBA, Moscow, 119435, Russia
| | - Elena S Kostryukova
- Research Institute for Physical-Chemical Medicine, FMBA, Moscow, 119435, Russia.,Moscow Institute of Physics and Technology, Dolgoprpudny, Moscow, 141700, Russia
| | - Andrey A Mironov
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Evgeny Burnaev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Ekaterina Krymova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Mikhail S Gelfand
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia.,National Research University Higher School of Economics, Moscow, 123458, Russia
| | - Vadim M Govorun
- Research Institute for Physical-Chemical Medicine, FMBA, Moscow, 119435, Russia
| | - Alexey A Bogdanov
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Petr V Sergiev
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Olga A Dontsova
- Department of Chemistry, Faculty of Bioinformatics and Bioengeneering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
19
|
Mitochondria-targeted antioxidants as highly effective antibiotics. Sci Rep 2017; 7:1394. [PMID: 28469140 PMCID: PMC5431119 DOI: 10.1038/s41598-017-00802-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria-targeted antioxidants are known to alleviate mitochondrial oxidative damage that is associated with a variety of diseases. Here, we showed that SkQ1, a decyltriphenyl phosphonium cation conjugated to a quinone moiety, exhibited strong antibacterial activity towards Gram-positive Bacillus subtilis, Mycobacterium sp. and Staphylococcus aureus and Gram-negative Photobacterium phosphoreum and Rhodobacter sphaeroides in submicromolar and micromolar concentrations. SkQ1 exhibited less antibiotic activity towards Escherichia coli due to the presence of the highly effective multidrug resistance pump AcrAB-TolC. E. coli mutants lacking AcrAB-TolC showed similar SkQ1 sensitivity, as B. subtilis. Lowering of the bacterial membrane potential by SkQ1 might be involved in the mechanism of its bactericidal action. No significant cytotoxic effect on mammalian cells was observed at bacteriotoxic concentrations of SkQ1. Therefore, SkQ1 may be effective in protection of the infected mammals by killing invading bacteria.
Collapse
|
20
|
Komarova (Andreyanova) E, Osterman I, Pletnev P, Ivanenkov Y, Majouga A, Bogdanov A, Sergiev P. 2-Guanidino-quinazolines as a novel class of translation inhibitors. Biochimie 2017; 133:45-55. [DOI: 10.1016/j.biochi.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
|
21
|
Lapchinskaya OA, Katrukha GS, Gladkikh EG, Kulyaeva VV, Coodan PV, Topolyan AP, Alferova VA, Pogozheva VV, Sukonnikov MA, Rogozhin EA, Prokhorenko IA, Brylev VA, Korolev AM, Slyundina MS, Borisov RS, Serebryakova MV, Shuvalov MV, Ksenofontov AL, Stoyanova LG, Osterman IA, Formanovsky AA, Tashlitsky VN, Baratova LA, Timofeeva AV, Tyurin AP. Investigation of the complex antibiotic INA-5812. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Osterman IA, Komarova ES, Shiryaev DI, Korniltsev IA, Khven IM, Lukyanov DA, Tashlitsky VN, Serebryakova MV, Efremenkova OV, Ivanenkov YA, Bogdanov AA, Sergiev PV, Dontsova OA. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors. Antimicrob Agents Chemother 2016; 60:7481-7489. [PMID: 27736765 PMCID: PMC5119032 DOI: 10.1128/aac.02117-16] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals.
Collapse
Affiliation(s)
- Ilya A Osterman
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Ekaterina S Komarova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia
| | - Dmitry I Shiryaev
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Ilya A Korniltsev
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Irina M Khven
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia
| | - Dmitry A Lukyanov
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Vadim N Tashlitsky
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Marina V Serebryakova
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Olga V Efremenkova
- G. F. Gauze Institute for Search for New Antibiotics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Yan A Ivanenkov
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russia
| | - Alexey A Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Olga A Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
23
|
Osterman IA, Evfratov SA, Dzama MM, Pletnev PI, Kovalchuk SI, Butenko IO, Pobeguts OV, Golovina AY, Govorun VM, Bogdanov AA, Sergiev PV, Dontsova OA. A bacterial homolog YciH of eukaryotic translation initiation factor eIF1 regulates stress-related gene expression and is unlikely to be involved in translation initiation fidelity. RNA Biol 2016; 12:966-71. [PMID: 26177339 DOI: 10.1080/15476286.2015.1069464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
YciH is a bacterial protein, homologous to eukaryotic translation initiation factor eIF1. Preceding evidence obtained with the aid of in vitro translation initiation system suggested that it may play a role of a translation initiation factor, ensuring selection against suboptimal initiation complexes. Here we studied the effect of Escherichia coli yciH gene inactivation on translation of model mRNAs. Neither the translation efficiency of leaderless mRNAs, nor mRNAs with non AUG start codons, was found to be affected by YciH in vivo. Comparative proteome analysis revealed that yciH gene knockout leads to a more than fold2- increase in expression of 66 genes and a more than fold2- decrease in the expression of 20 genes. Analysis of these gene sets allowed us to suggest a role of YciH as an inhibitor of translation in a stress response rather than the role of a translation initiation factor.
Collapse
Affiliation(s)
- Ilya A Osterman
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| | - Sergey A Evfratov
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| | - Margarita M Dzama
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| | - Philipp I Pletnev
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| | - Sergey I Kovalchuk
- b Research Institute for Physical-Chemical Medicine of Ministry of Public Health of Russian Federation ; Moscow , Russia
| | - Ivan O Butenko
- b Research Institute for Physical-Chemical Medicine of Ministry of Public Health of Russian Federation ; Moscow , Russia
| | - Olga V Pobeguts
- b Research Institute for Physical-Chemical Medicine of Ministry of Public Health of Russian Federation ; Moscow , Russia
| | - Anna Ya Golovina
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| | - Vadim M Govorun
- b Research Institute for Physical-Chemical Medicine of Ministry of Public Health of Russian Federation ; Moscow , Russia
| | - Alexey A Bogdanov
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| | - Petr V Sergiev
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| | - Olga A Dontsova
- a Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology ; Lomonosov Moscow State University ; Moscow , Russia
| |
Collapse
|
24
|
Osterman IA, Bogdanov AA, Dontsova OA, Sergiev PV. Techniques for Screening Translation Inhibitors. Antibiotics (Basel) 2016; 5:antibiotics5030022. [PMID: 27348012 PMCID: PMC5039519 DOI: 10.3390/antibiotics5030022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 02/03/2023] Open
Abstract
The machinery of translation is one of the most common targets of antibiotics. The development and screening of new antibiotics usually proceeds by testing antimicrobial activity followed by laborious studies of the mechanism of action. High-throughput methods for new antibiotic screening based on antimicrobial activity have become routine; however, identification of molecular targets is usually a challenge. Therefore, it is highly beneficial to combine primary screening with the identification of the mechanism of action. In this review, we describe a collection of methods for screening translation inhibitors, with a special emphasis on methods which can be performed in a high-throughput manner.
Collapse
Affiliation(s)
- Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Alexey A Bogdanov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Olga A Dontsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Petr V Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
25
|
Sergiev PV, Osterman IA, Golovina AY, Andreyanova ES, Laptev IG, Pletnev FI, Evfratov SA, Marusich EI, Veselov MS, Leonov SV, Ivanenkov YA, Bogdanov AA, Dontsova OA. High throughput screening platform for new inhibitors of protein biosynthesis. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0027131416010144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Synthesis, characterisation, cytotoxicity and antibacterial activity of ruthenium(II) and rhodium(III) complexes with sulfur-containing terpyridines. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.12.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Sergiev P, Osterman I, Golovina A, Laptev I, Pletnev P, Evfratov S, Marusich E, Leonov S, Ivanenkov Y, Bogdanov A, Dontsova O. Application of reporter strains for new antibiotic screening. ACTA ACUST UNITED AC 2016; 62:117-23. [DOI: 10.18097/pbmc20166202117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Screening for new antibiotics remains an important area of biology and medical science. Indispensable for this type of research is early identification of antibiotic mechanism of action. Preferentially, it should be studied quickly and cost-effectively, on the stage of primary screening. In this review we describe an application of reporter strains for rapid classification of antibiotics by its target, without prior purification of an active compound and determination of chemical structure
Collapse
Affiliation(s)
- P.V. Sergiev
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - I.A. Osterman
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A.Ya. Golovina
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - I.G. Laptev
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - P.I. Pletnev
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - S.A. Evfratov
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - E.I. Marusich
- Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region, Russia
| | - S.V. Leonov
- Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region, Russia
| | - Ya.A. Ivanenkov
- Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region, Russia
| | - A.A. Bogdanov
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - O.A. Dontsova
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
28
|
Polikanov YS, Osterman IA, Szal T, Tashlitsky VN, Serebryakova MV, Kusochek P, Bulkley D, Malanicheva IA, Efimenko TA, Efremenkova OV, Konevega AL, Shaw KJ, Bogdanov AA, Rodnina MV, Dontsova OA, Mankin AS, Steitz TA, Sergiev PV. Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome. Mol Cell 2014; 56:531-40. [PMID: 25306919 DOI: 10.1016/j.molcel.2014.09.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/18/2014] [Accepted: 09/18/2014] [Indexed: 11/26/2022]
Abstract
We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Ilya A Osterman
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Teresa Szal
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vadim N Tashlitsky
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Marina V Serebryakova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Pavel Kusochek
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Irina A Malanicheva
- G.F. Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, 119867 Moscow, Russia
| | - Tatyana A Efimenko
- G.F. Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, 119867 Moscow, Russia
| | - Olga V Efremenkova
- G.F. Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, 119867 Moscow, Russia
| | - Andrey L Konevega
- B.P. Konstantinov Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; Saint Petersburg State Polytechnical University, Polytechnicheskaya 29, 195251 Saint Petersburg, Russia
| | - Karen J Shaw
- Hearts Consulting Group, San Diego, CA 92127, USA
| | - Alexey A Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Marina V Rodnina
- Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany
| | - Olga A Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| | - Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| |
Collapse
|
29
|
Prokhorova IV, Osterman IA, Burakovsky DE, Serebryakova MV, Galyamina MA, Pobeguts OV, Altukhov I, Kovalchuk S, Alexeev DG, Govorun VM, Bogdanov AA, Sergiev PV, Dontsova OA. Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon. Sci Rep 2013; 3:3236. [PMID: 24241179 PMCID: PMC3831192 DOI: 10.1038/srep03236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 12/30/2022] Open
Abstract
Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show – using proteomic analysis and dual fluorescence reporter in vivo assays – that m2G966 and m5C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m2G966 and m5C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.
Collapse
Affiliation(s)
- Irina V Prokhorova
- 1] Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia [2]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Osterman IA, Evfratov SA, Sergiev PV, Dontsova OA. Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res 2013; 41:474-86. [PMID: 23093605 PMCID: PMC3592434 DOI: 10.1093/nar/gks989] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/22/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Regulation of gene expression at the level of translation accounts for up to three orders of magnitude in its efficiency. We systematically compared the impact of several mRNA features on translation initiation at the first gene in an operon with those for the second gene. Experiments were done in a system with internal control based on dual cerulean and red (CER/RFP) fluorescent proteins. We demonstrated significant differences in the efficiency of Shine Dalgarno sequences acting at the leading gene and at the following genes in an operon. The majority of frequent intercistronic arrangements possess medium SD dependence, medium dependence on the preceding cistron translation and efficient stimulation by A/U-rich sequences. The second cistron starting immediately after preceding cistron stop codon displays unusually high dependence on the SD sequence.
Collapse
Affiliation(s)
| | | | - Petr V. Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | | |
Collapse
|
31
|
Golovina AY, Dzama MM, Osterman IA, Sergiev PV, Serebryakova MV, Bogdanov AA, Dontsova OA. The last rRNA methyltransferase of E. coli revealed: the yhiR gene encodes adenine-N6 methyltransferase specific for modification of A2030 of 23S ribosomal RNA. RNA (NEW YORK, N.Y.) 2012; 18:1725-1734. [PMID: 22847818 PMCID: PMC3425786 DOI: 10.1261/rna.034207.112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.
Collapse
Affiliation(s)
- Anna Y. Golovina
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Margarita M. Dzama
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Ilya A. Osterman
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Petr V. Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Marina V. Serebryakova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Alexey A. Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| |
Collapse
|