1
|
Corona A, De Santis V, Agarossi A, Prete A, Cattaneo D, Tomasini G, Bonetti G, Patroni A, Latronico N. Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics (Basel) 2023; 12:1262. [PMID: 37627683 PMCID: PMC10451333 DOI: 10.3390/antibiotics12081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Not enough data exist to inform the optimal duration and type of antimicrobial therapy against GN infections in critically ill patients. METHODS Narrative review based on a literature search through PubMed and Cochrane using the following keywords: "multi-drug resistant (MDR)", "extensively drug resistant (XDR)", "pan-drug-resistant (PDR)", "difficult-to-treat (DTR) Gram-negative infection," "antibiotic duration therapy", "antibiotic combination therapy" "antibiotic monotherapy" "Gram-negative bacteremia", "Gram-negative pneumonia", and "Gram-negative intra-abdominal infection". RESULTS Current literature data suggest adopting longer (≥10-14 days) courses of synergistic combination therapy due to the high global prevalence of ESBL-producing (45-50%), MDR (35%), XDR (15-20%), PDR (5.9-6.2%), and carbapenemases (CP)/metallo-β-lactamases (MBL)-producing (12.5-20%) Gram-negative (GN) microorganisms (i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumanii). On the other hand, shorter courses (≤5-7 days) of monotherapy should be limited to treating infections caused by GN with higher (≥3 antibiotic classes) antibiotic susceptibility. A general approach should be based on (i) third or further generation cephalosporins ± quinolones/aminoglycosides in the case of MDR-GN; (ii) carbapenems ± fosfomycin/aminoglycosides for extended-spectrum β-lactamases (ESBLs); and (iii) the association of old drugs with new expanded-spectrum β-lactamase inhibitors for XDR, PDR, and CP microorganisms. Therapeutic drug monitoring (TDM) in combination with minimum inhibitory concentration (MIC), bactericidal vs. bacteriostatic antibiotics, and the presence of resistance risk predictors (linked to patient, antibiotic, and microorganism) should represent variables affecting the antimicrobial strategies for treating GN infections. CONCLUSIONS Despite the strategies of therapy described in the results, clinicians must remember that all treatment decisions are dynamic, requiring frequent reassessments depending on both the clinical and microbiological responses of the patient.
Collapse
Affiliation(s)
- Alberto Corona
- Accident, Emergency and ICU Department and Surgical Theatre, ASST Valcamonica, University of Brescia, 25043 Breno, Italy
| | | | - Andrea Agarossi
- Accident, Emergency and ICU Department, ASST Santi Paolo Carlo, 20142 Milan, Italy
| | - Anna Prete
- AUSL Romagna, Umberto I Hospital, 48022 Lugo, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Via GB Grassi 74, 20157 Milan, Italy
| | - Giacomina Tomasini
- Urgency and Emergency Surgery and Medicine Division ASST Valcamonica, 25123 Brescia, Italy
| | - Graziella Bonetti
- Clinical Pathology and Microbiology Laboratory, ASST Valcamonica, 25123 Brescia, Italy
| | - Andrea Patroni
- Medical Directorate, Infection Control Unit, ASST Valcamonica, 25123 Brescia, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Sidor K, Skirecki T. A Bittersweet Kiss of Gram-Negative Bacteria: The Role of ADP-Heptose in the Pathogenesis of Infection. Microorganisms 2023; 11:1316. [PMID: 37317291 DOI: 10.3390/microorganisms11051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the global crisis caused by the dramatic rise of drug resistance among Gram-negative bacteria, there is an urgent need for a thorough understanding of the pathogenesis of infections of such an etiology. In light of the limited availability of new antibiotics, therapies aimed at host-pathogen interactions emerge as potential treatment modalities. Thus, understanding the mechanism of pathogen recognition by the host and immune evasion appear to be the key scientific issues. Until recently, lipopolysaccharide (LPS) was recognized as a major pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria. However, recently, ADP-L-glycero-β-D-manno-heptose (ADP-heptose), an intermediate carbohydrate metabolite of the LPS biosynthesis pathway, was discovered to activate the hosts' innate immunity. Therefore, ADP-heptose is regarded as a novel PAMP of Gram-negative bacteria that is recognized by the cytosolic alpha kinase-1 (ALPK1) protein. The conservative nature of this molecule makes it an intriguing player in host-pathogen interactions, especially in the context of changes in LPS structure or even in its loss by certain resistant pathogens. Here, we present the ADP-heptose metabolism, outline the mechanisms of its recognition and the activation of its immunity, and summarize the role of ADP-heptose in the pathogenesis of infection. Finally, we hypothesize about the routes of the entry of this sugar into cytosol and point to emerging questions that require further research.
Collapse
Affiliation(s)
- Karolina Sidor
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
3
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Erdem F, Díez-Aguilar M, Oksuz L, Kayacan C, Abulaila A, Oncul O, Morosini MI, Cantón R, Aktas Z. Time kill-assays of antibiotic combinations for multidrug resistant clinical isolates of OXA-48 carbapenemase producing Klebsiella pneumoniae. Acta Microbiol Immunol Hung 2022; 69:215-219. [PMID: 35895557 DOI: 10.1556/030.2022.01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022]
Abstract
Treatment of infections caused by OXA-48 carbapenemase producing multidrug-resistant isolates often necessitates combination therapy. In vitro effect of different antibiotic combinations against multidrug-resistant (MDR) Klebsiella pneumoniae isolates were evaluated in this study. Meropenem-tobramycin (MER+TOB), meropenem-ciprofloxacin (MER+CIP), colistin-meropenem (COL+MER), colistin-ciprofloxacin (COL+CIP) and colistin-tobramycin (COL+TOB) combinations were tested by time kill-assays. Each antibiotic alone and in combination at their Cmax values were tested against 4 clinical K. pneumoniae isolates at 1, 2, 4, 6, 8, 12 and 24 h. Effect of colistin and its associations were also assessed at 30 min. Bactericidal activity was defined as ≥3log10 CFU mL-1 decrease compared with initial inoculum. Synergy was defined as ≥2log10CFU mL-1 decrease by the combination compared with the most active single agent. Presence of bla OXA-48, bla NDM, bla VIM, bla IMP, bla KPC and bla CTX-M-1 genes was screened by PCR using specific primers. The bla OXA-48 gene was identified together with bla CTXM-1 group gene in all isolates. COL+MER demonstrated to be synergistic and bactericidal. MER+TOB showed synergistic and bactericidal effect on two strains although, regrowth was seen on other two strains at 24 h. MER+CIP exhibited indifferent effect on the strains. Combination therapy could be a potential alternative to treat MDR K. pneumoniae infections. This combination might prevent resistance development and secondary effects of colistin monotherapy. MER+TOB and MER+CIP might have an isolate-dependent effect, that may not always result in synergism.
Collapse
Affiliation(s)
- Fatma Erdem
- 1 Department of Medical Microbiology, Adana City Training and Research Hospital, Department of Medical Microbiology, Adana, Turkey
| | - María Díez-Aguilar
- 2 Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Lutfiye Oksuz
- 7 Department of Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Cigdem Kayacan
- 3 Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydın University, Turkey
| | - Ayham Abulaila
- 4 Department of Clinical Microbiology, Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Oral Oncul
- 5 Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - María Isabel Morosini
- 6 Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rafael Cantón
- 6 Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Zerrin Aktas
- 7 Department of Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| |
Collapse
|
5
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
6
|
Teo JQM, Fauzi N, Ho JJY, Tan SH, Lee SJY, Lim TP, Cai Y, Chang HY, Mohamed Yusoff N, Sim JHC, Tan TT, Ong RTH, Kwa ALH. In vitro Bactericidal Activities of Combination Antibiotic Therapies Against Carbapenem-Resistant Klebsiella pneumoniae With Different Carbapenemases and Sequence Types. Front Microbiol 2022; 12:779988. [PMID: 34970239 PMCID: PMC8713045 DOI: 10.3389/fmicb.2021.779988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is becoming increasingly problematic due to the limited effectiveness of new antimicrobials or other factors such as treatment cost. Thus, combination therapy remains a suitable treatment option. We aimed to evaluate the in vitro bactericidal activity of various antibiotic combinations against CRKP with different carbapenemase genotypes and sequence types (STs). Thirty-seven CRKP with various STs and carbapenemases were exposed to 11 antibiotic combinations (polymyxin B or tigecycline in combination with β-lactams including aztreonam, cefepime, piperacillin/tazobactam, doripenem, meropenem, and polymyxin B with tigecycline) in static time-kill studies (TKS) using clinically achievable concentrations. Out of the 407 isolate-combination pairs, only 146 (35.8%) were bactericidal (≥3 log10CFU/mL decrease from initial inoculum). Polymyxin B in combination with doripenem, meropenem, or cefepime was the most active, each demonstrating bactericidal activity in 27, 24, and 24 out of 37 isolates, respectively. Tigecycline in combination with β-lactams was rarely bactericidal. Aside from the lower frequency of bactericidal activity in the dual-carbapenemase producers, there was no apparent difference in combination activity among the strains with other carbapenemase types. In addition, bactericidal combinations were varied even in strains with similar STs, carbapenemases, and other genomic characteristics. Our findings demonstrate that the bactericidal activity of antibiotic combinations is highly strain-specific likely owing to the complex interplay of carbapenem-resistance mechanisms, i.e., carbapenemase genotype alone cannot predict in vitro bactericidal activity. The availability of WGS information can help rationalize the activity of certain combinations. Further studies should explore the use of genomic markers with phenotypic information to predict combination activity.
Collapse
Affiliation(s)
- Jocelyn Qi-Min Teo
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Nazira Fauzi
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Jayden Jun-Yuan Ho
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Si Hui Tan
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | | | - Tze Peng Lim
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Singhealth Duke-NUS Pathology Academic Clinical Programme, Singapore, Singapore.,Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
| | - Yiying Cai
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Hong Yi Chang
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | | | | | - Thuan Tong Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore.,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Opoku-Temeng C, Malachowa N, Kobayashi SD, DeLeo FR. Innate Host Defense against Klebsiella pneumoniae and the Outlook for Development of Immunotherapies. J Innate Immun 2021; 14:167-181. [PMID: 34628410 DOI: 10.1159/000518679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative commensal bacterium and opportunistic pathogen. In healthy individuals, the innate immune system is adept at protecting against K. pneumoniae infection. Notably, the serum complement system and phagocytic leukocytes (e.g., neutrophils) are highly effective at eliminating K. pneumoniae and thereby preventing severe disease. On the other hand, the microbe is a major cause of healthcare-associated infections, especially in individuals with underlying susceptibility factors, such as pre-existing severe illness or immune suppression. The burden of K. pneumoniae infections in hospitals is compounded by antibiotic resistance. Treatment of these infections is often difficult largely because the microbes are usually resistant to multiple antibiotics (multidrug resistant [MDR]). There are a limited number of treatment options for these infections and new therapies, and preventative measures are needed. Here, we review host defense against K. pneumoniae and discuss recent therapeutic measures and vaccine approaches directed to treat and prevent severe disease caused by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
8
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
9
|
Scudeller L, Righi E, Chiamenti M, Bragantini D, Menchinelli G, Cattaneo P, Giske CG, Lodise T, Sanguinetti M, Piddock LJV, Franceschi F, Ellis S, Carrara E, Savoldi A, Tacconelli E. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int J Antimicrob Agents 2021; 57:106344. [PMID: 33857539 DOI: 10.1016/j.ijantimicag.2021.106344] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) infections remains controversial. In vitro models may predict the efficacy of antibiotic regimens against CR-GNB. A systematic review and meta-analysis was performed including pharmacokinetic/pharmacodynamic (PK/PD) and time-kill (TK) studies examining the in vitro efficacy of antibiotic combinations against CR-GNB [PROSPERO registration no. CRD42019128104]. The primary outcome was in vitro synergy based on the effect size (ES): high, ES ≥ 0.75, moderate, 0.35 < ES < 0.75; low, ES ≤ 0.35; and absent, ES = 0). A network meta-analysis assessed the bactericidal effect and re-growth rate (secondary outcomes). An adapted version of the ToxRTool was used for risk-of-bias assessment. Over 180 combination regimens from 136 studies were included. The most frequently analysed classes were polymyxins and carbapenems. Limited data were available for ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. High or moderate synergism was shown for polymyxin/rifampicin against Acinetobacter baumannii [ES = 0.91, 95% confidence interval (CI) 0.44-1.00], polymyxin/fosfomycin against Klebsiella pneumoniae (ES = 1.00, 95% CI 0.66-1.00) and imipenem/amikacin against Pseudomonas aeruginosa (ES = 1.00, 95% CI 0.21-1.00). Compared with monotherapy, increased bactericidal activity and lower re-growth rates were reported for colistin/fosfomycin and polymyxin/rifampicin in K. pneumoniae and for imipenem/amikacin or imipenem/tobramycin against P. aeruginosa. High quality was documented for 65% and 53% of PK/PD and TK studies, respectively. Well-designed in vitro studies should be encouraged to guide the selection of combination therapies in clinical trials and to improve the armamentarium against carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Luigia Scudeller
- Clinical Epidemiology and Biostatistics, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Margherita Chiamenti
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Damiano Bragantini
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Cattaneo
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Christian G Giske
- Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura J V Piddock
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - François Franceschi
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Alessia Savoldi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12, 72074 Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| |
Collapse
|
10
|
Aye SM, Galani I, Yu H, Wang J, Chen K, Wickremasinghe H, Karaiskos I, Bergen PJ, Zhao J, Velkov T, Giamarellou H, Lin YW, Tsuji BT, Li J. Polymyxin Triple Combinations against Polymyxin-Resistant, Multidrug-Resistant, KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:e00246-20. [PMID: 32393492 PMCID: PMC7526826 DOI: 10.1128/aac.00246-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Resistance to polymyxin antibiotics is increasing. Without new antibiotic classes, combination therapy is often required. We systematically investigated bacterial killing with polymyxin-based combinations against multidrug-resistant (including polymyxin-resistant), carbapenemase-producing Klebsiella pneumoniae Monotherapies and double- and triple-combination therapies were compared to identify the most efficacious treatment using static time-kill studies (24 h, six isolates), an in vitro pharmacokinetic/pharmacodynamic model (IVM; 48 h, two isolates), and the mouse thigh infection model (24 h, six isolates). In static time-kill studies, all monotherapies (polymyxin B, rifampin, amikacin, meropenem, or minocycline) were ineffective. Initial bacterial killing was enhanced with various polymyxin B-containing double combinations; however, substantial regrowth occurred in most cases by 24 h. Most polymyxin B-containing triple combinations provided greater and more sustained killing than double combinations. Standard dosage regimens of polymyxin B (2.5 mg/kg of body weight/day), rifampin (600 mg every 12 h), and amikacin (7.5 mg/kg every 12 h) were simulated in the IVM. Against isolate ATH 16, no viable bacteria were detected across 5 to 25 h with triple therapy, with regrowth to ∼2-log10 CFU/ml occurring at 48 h. Against isolate BD 32, rapid initial killing of ∼3.5-log10 CFU/ml at 5 h was followed by a slow decline to ∼2-log10 CFU/ml at 48 h. In infected mice, polymyxin B monotherapy (60 mg/kg/day) generally was ineffective. With triple therapy (polymyxin B at 60 mg/kg/day, rifampin at 120 mg/kg/day, and amikacin at 300 mg/kg/day), at 24 h there was an ∼1.7-log10 CFU/thigh reduction compared to the starting inoculum for all six isolates. Our results demonstrate that the polymyxin B-rifampin-amikacin combination significantly enhanced in vitro and in vivo bacterial killing, providing important information for the optimization of polymyxin-based combinations in patients.
Collapse
Affiliation(s)
- Su Mon Aye
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Irene Galani
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Heidi Yu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ke Chen
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hasini Wickremasinghe
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Phillip J Bergen
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jinxin Zhao
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen Giamarellou
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, NYS Centre of Excellence in Bioinformatics & Life Sciences, Buffalo, New York, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Wnorowska U, Piktel E, Durnaś B, Fiedoruk K, Savage PB, Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis 2019; 19:369. [PMID: 31046689 PMCID: PMC6498624 DOI: 10.1186/s12879-019-3994-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug-resistant E. coli. METHODS Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. RESULTS We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. CONCLUSION We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-001, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| |
Collapse
|
12
|
Tang HJ, Lai CC, Chen CC, Zhang CC, Weng TC, Chiu YH, Toh HS, Chiang SR, Yu WL, Ko WC, Chuang YC. Colistin-sparing regimens against Klebsiella pneumoniae carbapenemase-producing K. pneumoniae isolates: Combination of tigecycline or doxycycline and gentamicin or amikacin. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:273-281. [DOI: 10.1016/j.jmii.2016.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/04/2016] [Accepted: 03/09/2016] [Indexed: 01/08/2023]
|
13
|
Dundar D, Duymaz Z, Genc S, Er DK, İrvem A, Kandemir N. In-vitro activities of imipenem-colistin, imipenem-tigecycline, and tigecycline-colistin combinations against carbapenem-resistant Enterobacteriaceae. J Chemother 2019; 30:342-347. [PMID: 30663555 DOI: 10.1080/1120009x.2018.1516270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of the study is to determine in-vitro effects of imipenem-tigecycline, imipenem-colistin and tigecycline-colistin against carbapenem-resistant Enterobacteriaceae (CRE) isolates. A total of 25 CRE isolates were included to the study. The minimum inhibition concentrations of imipenem, colistin-sulphate and tigecycline were determined with broth dilution method. Synergistic effects of imipenem-tigecycline, imipenem-colistin and tigecycline-colistin were investigated by microdilution checkerboard technique. All of the isolates were resistant to imipenem, whereas 25% of the isolates were resistant to colistin and tigecycline. Imipenem-colistin, imipenem-tigecycline and tigecycline-colistin combinations were synergistic against 40% (10/25), 24% (6/25), and 36% (9/25) of the isolates, respectively. Antagonism was observed in 8% (2/25) of the isolates in tigecycline-colistin combination. Tigecycline-colistin was the most effective (70% synergy) combination in Klebsiella spp. strains; whereas imipenem-colistin was the most effective (75% synergy) combination in Escherichia coli strains. Synergistic effect was variable and strain-depended against CRE isolates that have been tested.
Collapse
Affiliation(s)
- Devrim Dundar
- a Department of Medical Microbiology, Faculty of Medicine , Kocaeli University , Turkey
| | - Zehra Duymaz
- a Department of Medical Microbiology, Faculty of Medicine , Kocaeli University , Turkey
| | - Serpil Genc
- a Department of Medical Microbiology, Faculty of Medicine , Kocaeli University , Turkey
| | - Doganhan Kadir Er
- b Department of Medical Microbiology, Institute of Health Sciences , Kocaeli University , Turkey
| | - Arzu İrvem
- c Department of Medical Microbiology , Istanbul Umraniye Training and Research Hospital , Turkey
| | - Neslisah Kandemir
- d Department of Molecular Biology and Genetics , Istanbul Technical University , Turkey
| |
Collapse
|
14
|
Durdu B, Koc MM, Hakyemez IN, Akkoyunlu Y, Daskaya H, Gultepe BS, Aslan T. Risk Factors Affecting Patterns of Antibiotic Resistance and Treatment Efficacy in Extreme Drug Resistance in Intensive Care Unit-Acquired Klebsiella Pneumoniae Infections: A 5-Year Analysis. Med Sci Monit 2019; 25:174-183. [PMID: 30614487 PMCID: PMC6391853 DOI: 10.12659/msm.911338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We investigated the factors affecting antibiotic resistance in the intensive care unit (ICU)-related hospital-acquired infections caused by Klebsiella pneumoniae (KP-HAI) and the effects of antibiotics used for high-level antibiotic resistance on patient survival. MATERIAL AND METHODS This retrospective study was performed at the adult ICU of Bezmialem Vakif University Hospital. Patients who were followed up between 01 January 2012 and 31 May 2017 were evaluated. Each KP strain was categorized according to resistance patterns and analyzed. The efficiency of antibiotic therapy for highly-resistant KP-HAI was determined by patients' lifespans. RESULTS We evaluated 208 patients. With the prior use of carbapenem, antibiotics against resistant Gram-positives, and tigecycline, it was observed that the resistance rate of the infectious agents had a significant increase. As the resistance category increases, a significant decrease was seen in the survival time. We observed that if the treatment combination included trimethoprim-sulfamethoxazole, the survival time became significantly longer, and tigecycline-carbapenem-colistin and tigecycline-carbapenem combination patients showed significantly shorter survival times. CONCLUSIONS When the resistance increases, delays will occur in starting suitable and effective antibiotic treatment, with increased sepsis frequency and higher mortality rates. Trimethoprim-sulfamethoxazole can be an efficient alternative to extend survival time in trimethoprim-sulfamethoxazole-susceptible KP infections that have extensive drug resistance.
Collapse
Affiliation(s)
- Bulent Durdu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Meliha Meric Koc
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ismail N. Hakyemez
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yasemin Akkoyunlu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Hayrettin Daskaya
- Department of Anesthesia and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Bilge Sumbul Gultepe
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Turan Aslan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
15
|
Jean SS, Lee NY, Tang HJ, Lu MC, Ko WC, Hsueh PR. Carbapenem-Resistant Enterobacteriaceae Infections: Taiwan Aspects. Front Microbiol 2018; 9:2888. [PMID: 30538692 PMCID: PMC6277544 DOI: 10.3389/fmicb.2018.02888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE), a major resistance concern emerging during the last decade because of significantly compromising the efficacy of carbapenem agents, has currently become an important focus of infection control. Many investigations have shown a high association of CRE infections with high case-fatality rates. In Taiwan, a few surveys observed that a significant proportion (29–47%) of the CR-Klebsiella pneumoniae isolates harbored a plasmidic allele encoding K. pneumoniae carbapenemases (KPC, especially KPC-2). A significant increase in the number of oxacillinase (OXA)-48-like carbapenemases among CR-K. pneumoniae isolates was observed between 2012 and 2015. By striking contrast, isolates of CR-Escherichia coli and CR-Enterobacter species in Taiwan had a much lower percentage of carbapenemase production than CR-K. pneumoniae isolates. This differs from isolates found in China as well as in the India subcontinent. Apart from the hospital setting, CRE was also cultured from the inpatients from communities or long-term care facilities (LTCF). Therefore, implementation of regular CRE screening of LTCF residents, strict disinfectant use in nursing homes and hospital settings, and appropriate control of antibiotic prescriptions is suggested to alleviate the spread of clinical CRE isolates in Taiwan. Although there are some promising new antibiotics against CRE, such as ceftazidime-avibactam, meropenem-vaborbactam, aztreonam-avibactam and cefiderocol, these agents are not available in Taiwan currently. Therefore, in order to effectively decrease case-fatality rates among patients with the infections owing to carbapenemase-producing CRE isolates, combination antibiotic schemes, including colistin (or amikacin) and/or tigecycline in combination with an anti-pseudomonal carbapenem agent, remain the mainstay for treating clinical CRE infections.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine and Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
16
|
Laishram S, Pragasam AK, Bakthavatchalam YD, Veeraraghavan B. An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. Indian J Med Microbiol 2018; 35:445-468. [PMID: 29405135 DOI: 10.4103/ijmm.ijmm_17_189] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Testing for antimicrobial interactions has gained popularity in the last decade due to the increasing prevalence of drug-resistant organisms and limited options for the treatment of these infections. In vitro combination testing provides information, on which two or more antimicrobials can be combined for a good clinical outcome. Amongst the various in vitro methods of drug interactions, time-kill assay (TKA), checkerboard (CB) assay and E-test-based methods are most commonly used. Comparative performance of these methods reveals the TKA as the most promising method to detect synergistic combinations followed by CB assay and E-test. Various combinations of antimicrobials have been tested to demonstrate synergistic activity. Promising results were obtained for the combinations of meropenem plus colistin and rifampicin plus colistin against Acinetobacter baumannii, colistin plus carbapenem and carbapenem plus fluoroquinolones against Pseudomonas aeruginosa and colistin/polymyxin B plus rifampicin/meropenem against Klebsiella pneumoniae. Antagonism was detected in only few instances. The presence of synergy or antagonism with a combination seems to correlate with minimum inhibitory concentration of the agent and molecular mechanism involved in the resistance. Further studies need to be conducted to assess the utility of in vitro testing to predict clinical outcome and direct therapy for drug-resistant organisms.
Collapse
Affiliation(s)
- Shakti Laishram
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| |
Collapse
|
17
|
Colistin Does Not Potentiate Ceftazidime-Avibactam Killing of Carbapenem-Resistant Enterobacteriaceae In Vitro or Suppress Emergence of Ceftazidime-Avibactam Resistance. Antimicrob Agents Chemother 2018; 62:AAC.01018-18. [PMID: 29891598 DOI: 10.1128/aac.01018-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
We tested ceftazidime-avibactam and colistin against 24 carbapenem-resistant Enterobacteriaceae (CRE) isolates by time-kill studies. Ceftazidime-avibactam at 0.25×, 1×, and 4× the MIC was bactericidal against 8%, 21%, and 88% of the isolates, respectively. Colistin (2 μg/ml) was bactericidal against 83% (12 h) and 42% (24 h) of the isolates. In combination, synergy and antagonism were identified against 13% and 46% of the isolates, respectively. The combination did not suppress ceftazidime-avibactam resistance. Colistin plus ceftazidime-avibactam did not provide a benefit over ceftazidime-avibactam against most CRE isolates.
Collapse
|
18
|
Brennan-Krohn T, Truelson KA, Smith KP, Kirby JE. Screening for synergistic activity of antimicrobial combinations against carbapenem-resistant Enterobacteriaceae using inkjet printer-based technology. J Antimicrob Chemother 2018; 72:2775-2781. [PMID: 29091221 DOI: 10.1093/jac/dkx241] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/15/2017] [Indexed: 11/14/2022] Open
Abstract
Background Synergistic combination antimicrobial therapy may provide new options for treatment of MDR infections. However, comprehensive in vitro synergy data are limited and facile methods to perform synergy testing in a clinically actionable time frame are unavailable. Objectives To systematically investigate a broad range of antibiotic combinations for evidence of synergistic activity against a collection of carbapenem-resistant Enterobacteriaceae (CRE) isolates. Methods We made use of an automated method for chequerboard array synergy testing based on inkjet printer technology in the HP D300 digital dispenser to test 56 pairwise antimicrobial combinations of meropenem, aztreonam, cefepime, colistin, gentamicin, levofloxacin, chloramphenicol, fosfomycin, trimethoprim/sulfamethoxazole, minocycline and rifampicin, as well as the double carbapenem combination of meropenem and ertapenem. Results In a screening procedure, we tested these combinations against four CRE strains and identified nine antibiotic combinations that showed potential clinically relevant synergy. In confirmatory testing using 10 CRE strains, six combinations demonstrated clinically relevant synergy with both antimicrobials at the minimum fractional inhibitory concentration (FICI-MIN) in the susceptible or intermediate range in at least one trial. These included two novel combinations: minocycline plus colistin and minocycline plus meropenem. In 80% of strains at least one combination demonstrated clinically relevant synergy, but the combinations that demonstrated synergy varied from strain to strain. Conclusions This work establishes the foundation for future systematic, broad-range investigations into antibiotic synergy for CRE, emphasizes the need for individualized synergy testing and demonstrates the utility of inkjet printer-based technology for the performance of automated antimicrobial synergy assays.
Collapse
Affiliation(s)
- Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Katherine A Truelson
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Boston University, Boston, MA, USA
| | - Kenneth P Smith
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
19
|
Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev 2018; 31:31/2/e00079-17. [PMID: 29444952 DOI: 10.1128/cmr.00079-17] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapy of invasive infections due to multidrug-resistant Enterobacteriaceae (MDR-E) is challenging, and some of the few active drugs are not available in many countries. For extended-spectrum β-lactamase and AmpC producers, carbapenems are the drugs of choice, but alternatives are needed because the rate of carbapenem resistance is rising. Potential active drugs include classic and newer β-lactam-β-lactamase inhibitor combinations, cephamycins, temocillin, aminoglycosides, tigecycline, fosfomycin, and, rarely, fluoroquinolones or trimethoprim-sulfamethoxazole. These drugs might be considered in some specific situations. AmpC producers are resistant to cephamycins, but cefepime is an option. In the case of carbapenemase-producing Enterobacteriaceae (CPE), only some "second-line" drugs, such as polymyxins, tigecycline, aminoglycosides, and fosfomycin, may be active; double carbapenems can also be considered in specific situations. Combination therapy is associated with better outcomes for high-risk patients, such as those in septic shock or with pneumonia. Ceftazidime-avibactam was recently approved and is active against KPC and OXA-48 producers; the available experience is scarce but promising, although development of resistance is a concern. New drugs active against some CPE isolates are in different stages of development, including meropenem-vaborbactam, imipenem-relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam-avibactam. Overall, therapy of MDR-E infection must be individualized according to the susceptibility profile, type, and severity of infection and the features of the patient.
Collapse
|
20
|
Pouch SM, Satlin MJ. Carbapenem-resistant Enterobacteriaceae in special populations: Solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence 2017; 8:391-402. [PMID: 27470662 PMCID: PMC5477691 DOI: 10.1080/21505594.2016.1213472] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 07/09/2016] [Indexed: 01/28/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are a major global public health concern and pose a serious threat to immunocompromised hosts, particularly patients with hematologic malignancies and solid organ (SOT) and stem cell transplant recipients. In endemic areas, carbapenem-resistant Klebsiella pneumoniae infections occur in 1-18% of SOT recipients, and patients with hematologic malignancies represent 16-24% of all patients with CRE bacteremia. Mortality rates approaching 60% have been reported in these patient populations. Early diagnosis and rapid initiation of targeted therapy is critical in the management of immunocompromised hosts with CRE infections, as recommended empiric regimens are not active against CRE. Therapeutic options are limited by antibiotic-associated toxicities, interactions with immunosuppressive agents, and paucity of antibiotic options currently available. Prevention of CRE infection in these patients requires a multidisciplinary approach involving hospital epidemiology and antimicrobial stewardship. Large, multicenter studies are needed to develop risk-stratification tools to assist in guiding the management of these individuals.
Collapse
Affiliation(s)
- Stephanie M. Pouch
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | |
Collapse
|
21
|
Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii. Sci Rep 2017; 7:45527. [PMID: 28358014 PMCID: PMC5371981 DOI: 10.1038/srep45527] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Combination therapy is deployed for the treatment of multidrug-resistant Acinetobacter baumannii, as it can rapidly develop resistance to current antibiotics. This is the first study to investigate the synergistic effect of colistin/doripenem combination on the metabolome of A. baumannii. The metabolite levels were measured using LC-MS following treatment with colistin (2 mg/L) or doripenem (25 mg/L) alone, and their combination at 15 min, 1 hr and 4 hr (n = 4). Colistin caused early (15 min and 1 hr) disruption of the bacterial outer membrane and cell wall, as demonstrated by perturbation of glycerophospholipids and fatty acids. Concentrations of peptidoglycan biosynthesis metabolites decreased at 4 hr by doripenem alone, reflecting its mechanism of action. The combination induced significant changes to more key metabolic pathways relative to either monotherapy. Down-regulation of cell wall biosynthesis (via D-sedoheptulose 7-phosphate) and nucleotide metabolism (via D-ribose 5-phosphate) was associated with perturbations in the pentose phosphate pathway induced initially by colistin (15 min and 1 hr) and later by doripenem (4 hr). We discovered that the combination synergistically killed A. baumannii via time-dependent inhibition of different key metabolic pathways. Our study highlights the significant potential of systems pharmacology in elucidating the mechanism of synergy and optimizing antibiotic pharmacokinetics/pharmacodynamics.
Collapse
|
22
|
Oliva A, Scorzolini L, Cipolla A, Mascellino MT, Cancelli F, Castaldi D, D’Abramo A, D’Agostino C, Russo G, Ciardi MR, Mastroianni CM, Vullo V. In vitro evaluation of different antimicrobial combinations against carbapenemase-producing Klebsiella pneumoniae: the activity of the double-carbapenem regimen is related to meropenem MIC value. J Antimicrob Chemother 2017; 72:1981-1984. [DOI: 10.1093/jac/dkx084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 11/12/2022] Open
|
23
|
Laishram S, Anandan S, Devi BY, Elakkiya M, Priyanka B, Bhuvaneshwari T, Peter JV, Subramani K, Balaji V. Determination of synergy between sulbactam, meropenem and colistin in carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii isolates and correlation with the molecular mechanism of resistance. J Chemother 2017; 28:297-303. [PMID: 27461479 DOI: 10.1080/1120009x.2016.1143261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Treatment of infections with carbapenem-resistant Gram negative organism is a major challenge especially among intensive care patients. Combinations of sulbactam, meropenem and colistin was studied for its synergistic activity against 100 invasive isolates of carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii-calcoaceticus complex by checkerboard assay and time kill assay (TKA). In addition, presence of carbapenemase production was determined by multiplex PCR. Time kill assay detected more synergy than checkerboard assay. Good bactericidal activity of 70-100% was noted with the combinations tested. Among K. pneumoniae, isolates producing NDM carbapenemase alone showed significantly more synergy than isolates producing OXA-48-like carbapenemases. In treatment of infection with carbapenem-resistant organisms, the site of infection and the type of carbapenemase produced may help to determine the most effective combination of antimicrobials.
Collapse
Affiliation(s)
- Shakti Laishram
- a Department of Microbiology , Christian Medical College , Vellore , Tamil Nadu , India
| | - Shalini Anandan
- a Department of Microbiology , Christian Medical College , Vellore , Tamil Nadu , India
| | | | - Munusamy Elakkiya
- a Department of Microbiology , Christian Medical College , Vellore , Tamil Nadu , India
| | - Babu Priyanka
- a Department of Microbiology , Christian Medical College , Vellore , Tamil Nadu , India
| | | | - John Victor Peter
- b Medical Intensive Care Unit , Christian Medical College , Vellore , Tamil Nadu , India
| | - Kandasmy Subramani
- c Surgical Intensive Care Unit , Christian Medical College , , Vellore , Tamil Nadu , India
| | - Veeraraghavan Balaji
- a Department of Microbiology , Christian Medical College , Vellore , Tamil Nadu , India
| |
Collapse
|
24
|
Synergistic combinations of polymyxins. Int J Antimicrob Agents 2016; 48:607-613. [PMID: 27865626 DOI: 10.1016/j.ijantimicag.2016.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/15/2016] [Accepted: 09/15/2016] [Indexed: 01/19/2023]
Abstract
The proliferation of extensively drug-resistant Gram-negative pathogens has necessitated the therapeutic use of colistin and polymyxin B. However, treatment failures with polymyxin monotherapies and the emergence of polymyxin resistance have catalysed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and -resistant organisms. This mini-review examines recent (2011-2016) in vitro and in vivo studies that have attempted to identify synergistic polymyxin combinations against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Clinical evidence for the use of combination regimens is also discussed.
Collapse
|
25
|
Perez F, El Chakhtoura NG, Papp-Wallace K, Wilson BM, Bonomo RA. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply "precision medicine" to antimicrobial chemotherapy? Expert Opin Pharmacother 2016; 17:761-81. [PMID: 26799840 PMCID: PMC4970584 DOI: 10.1517/14656566.2016.1145658] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION For the past three decades, carbapenems played a central role in our antibiotic armamentarium, trusted to effectively treat infections caused by drug-resistant bacteria. The utility of this class of antibiotics has been compromised by the emergence of resistance especially among Enterobacteriaceae. AREAS COVERED We review the current mainstays of pharmacotherapy against infections caused by carbapenem-resistant Enterobacteriaceae (CRE) including tigecycline, aminoglycosides, and rediscovered 'old' antibiotics such as fosfomycin and polymyxins, and discuss their efficacy and potential toxicity. We also summarize the contemporary clinical experience treating CRE infections with antibiotic combination therapy. Finally, we discuss ceftazidime/avibactam and imipenem/relebactam, containing a new generation of beta-lactamase inhibitors, which may offer alternatives to treat CRE infections. We critically evaluate the published literature, identify relevant clinical trials and review documents submitted to the United States Food and Drug Administration. EXPERT OPINION Defining the molecular mechanisms of resistance and applying insights about pharmacodynamic and pharmacokinetic properties of antibiotics, in order to maximize the impact of old and new therapeutic approaches should be the new paradigm in treating infections caused by CRE. A concerted effort is needed to carry out high-quality clinical trials that: i) establish the superiority of combination therapy vs. monotherapy; ii) confirm the role of novel beta-lactam/beta-lactamase inhibitor combinations as therapy against KPC- and OXA-48 producing Enterobacteriaceae; and, iii) evaluate new antibiotics active against CRE as they are introduced into the clinic.
Collapse
Affiliation(s)
- Federico Perez
- Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
| | | | - Krisztina Papp-Wallace
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Robert A. Bonomo
- Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- VISN-10 Geriatrics Research, Cleveland, Ohio
| |
Collapse
|
26
|
Mezzatesta ML, Caio C, Gona F, Zingali T, Salerno I, Stefani S. Colistin Increases the Cidal Activity of Antibiotic Combinations Against Multidrug-Resistant Klebsiella pneumoniae: An In Vitro Model Comparing Multiple Combination Bactericidal Testing at One Peak Serum Concentration and Time-Kill Method. Microb Drug Resist 2016; 22:360-3. [PMID: 26909754 DOI: 10.1089/mdr.2015.0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of treatment for multidrug-resistant (MDR) Enterobacteriaceae often leads to the use of double or triple antibiotic combinations to increase the option of clinical success. This study analyzes multiple combination bactericidal testing (MCBT) to screen double and triple antibiotic combinations, at standard peak serum concentration, for bactericidal activity against 21 MDR Klebsiella pneumoniae isolates. This method was compared with time-killing curves. The full bactericidal activity against all strains was obtained only by adding colistin. MCBT has a potential to become a rapid method for testing multiple antibiotic combinations for MDR microorganisms when colistin is used, providing clinicians with in vitro cidal data within 48 hr of strain isolation.
Collapse
Affiliation(s)
- Maria Lina Mezzatesta
- 1 Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
| | - Carla Caio
- 1 Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
| | - Floriana Gona
- 2 Department of Laboratory Medicine and Advanced Biotechnologies, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT) , Palermo, Italy
| | - Tiziana Zingali
- 1 Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
| | - Iasmine Salerno
- 1 Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
| | - Stefania Stefani
- 1 Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
| |
Collapse
|
27
|
Factores relacionados con el control exitoso de un brote por Klebsiella pneumoniae productora de KPC-2 en una unidad de cuidado intensivo en Bogotá, Colombia. INFECTIO 2016. [DOI: 10.1016/j.infect.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Considerations About Antimicrobial Stewardship in Settings with Epidemic Extended-Spectrum β-Lactamase-Producing or Carbapenem-Resistant Enterobacteriaceae. Infect Dis Ther 2015; 4:65-83. [PMID: 26362292 PMCID: PMC4569644 DOI: 10.1007/s40121-015-0081-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Indexed: 10/26/2022] Open
Abstract
Infections caused by gram-negative bacteria (GNB) resistant to multiple classes of antibiotics are increasing in many hospitals. Extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant Enterobacteriaceae in particular are now endemic in many parts of the world and represent a serious public health threat. In this era, antimicrobial stewardship programs are essential as targeted and responsible use of antibiotics improves patient outcomes and hopefully limits the selective pressure that drives the further emergence of resistance. However, some stewardship strategies aimed at promoting carbapenem-sparing regimens remain controversial and are difficult to implement when resistance rates to non-carbapenem antibiotics are increasing. Coordinated efforts between stewardship programs and infection control are essential for reversing conditions that favor the emergence and dissemination of multidrug-resistant GNB within the hospital and identifying extra-institutional "feeder reservoirs" of resistant strains such as long-term care facilities, where colonization is common despite limited numbers of serious infections. In settings where ESBL resistance is endemic, the cost-effectiveness of expanded infection control efforts and antimicrobial stewardship is still unknown. Once a patient has been colonized, selective oral or digestive decontamination may be considered, but evidence supporting its effectiveness is limited in patients who are already colonized or in centers with high rates of resistance. Moreover, temporary success at decolonization may be associated with a higher risk of relapse with strains that are resistant to the decolonizing antibiotics.
Collapse
|
29
|
New Insight on Epidemiology and Management of Bacterial Bloodstream Infection in Patients with Hematological Malignancies. Mediterr J Hematol Infect Dis 2015; 7:e2015044. [PMID: 26185609 PMCID: PMC4500473 DOI: 10.4084/mjhid.2015.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/08/2015] [Indexed: 01/25/2023] Open
Abstract
Bloodstream infections (BSI) are a significant cause of morbidity and mortality in onco-hematologic patients. The Gram-negative bacteria were the main responsible for the febrile neutropenia in the sixties; their impact declined due to the use of fluoroquinolone prophylaxis. This situation was followed by the gradual emergence of Gram-positive bacteria also following the increased use of intravascular devices and the introduction of new chemotherapeutic strategies. In the last decade, the Gram-negative etiology is raising again because of the emergence of resistant strains that make questionable the usefulness of current strategies for prophylaxis and empirical treatment. Gram-negative BSI attributable mortality is relevant, and the appropriate empirical treatment significantly improves the prognosis; on the other hand the adequate delayed treatment of Gram-positive BSI does not seem to have a high impact on survival. The clinician has to be aware of the epidemiology of his institution and colonizations of his patients to choose the most appropriate empiric therapy. In a setting of high endemicity of multidrug-resistant infections also the choice of targeted therapy can be a challenge, often requiring strategies based on off-label prescriptions and low grade evidence. In this review, we summarize the current evidence for the best targeted therapies for difficult to treat bacteria BSIs and future perspectives in this topic. We also provide a flow chart for a rational approach to the empirical treatment of febrile neutropenia in a multidrug resistant, high prevalence setting.
Collapse
|
30
|
Bailey KL, Kalil AC. Ventilator-Associated Pneumonia (VAP) with Multidrug-Resistant (MDR) Pathogens: Optimal Treatment? Curr Infect Dis Rep 2015; 17:494. [PMID: 26092246 DOI: 10.1007/s11908-015-0494-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ventilator-associated pneumonia (VAP) due to multidrug-resistant bacteria (MDR) is an emerging problem worldwide. Both gram-negative and gram-positive microorganisms are associated with VAP. We first describe the magnitude of the problem of MDR VAP followed by its clinical impact on survival outcomes, with the primary aim to review the optimal antibiotic choices to treat patients with MDR VAP. We discuss the challenges of intravenous and inhaled antibiotic treatments, as well as of monotherapy and combination antimicrobial therapies.
Collapse
Affiliation(s)
- Kristina L Bailey
- Pulmonary, Critical Care Allergy and Sleep Medicine Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
31
|
Abstract
The interaction between host immunity and infections in the context of a suppressed immune system presents an opportunity to study the interaction of colonization and infection with the development of acute and chronic pulmonary morbidity and mortality. This article summarizes presentations at the Pittsburgh International Lung Conference about comorbid consequences in two categories of immunosuppressed hosts: HIV-infected individuals and lung transplant recipients. Specifically, chronic obstructive pulmonary disease, pulmonary hypertension, and chronic lung rejection after transplant are three diseases that may be consequences of colonization or infection by viruses or fungi, whether HIV itself or the opportunistic infections Pneumocystis and cytomegalovirus. In the fourth section, we discuss unique aspects of infections after lung transplant as well as the battle against multidrug-resistant organisms in this population and theorize that the immunosuppressed population may provide a unique group of patients in which to study ways to overcome nosocomial pathogenic challenges. These host-pathogen interactions serve as models for developing new strategies to reduce acute and chronic morbidity due to colonization and subclinical infection, and potential therapeutic avenues, which are often overlooked in the clinical arena.
Collapse
|
32
|
Goel G, Hmar L, Sarkar De M, Bhattacharya S, Chandy M. Colistin-resistant Klebsiella pneumoniae: report of a cluster of 24 cases from a new oncology center in eastern India. Infect Control Hosp Epidemiol 2015; 35:1076-7. [PMID: 25026633 DOI: 10.1086/677170] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections. Open Forum Infect Dis 2015; 2:ofv050. [PMID: 26125030 PMCID: PMC4462593 DOI: 10.1093/ofid/ofv050] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
This article provides a comprehensive review of currently available treatment options for infections due to carbapenem-resistant Enterobacteriaceae (CRE). Antimicrobial resistance in Gram-negative bacteria is an emerging and serious global public health threat. Carbapenems have been used as the "last-line" treatment for infections caused by resistant Enterobacteriaceae, including those producing extended spectrum ß-lactamases. However, Enterobacteriaceae that produce carbapenemases, which are enzymes that deactivate carbapenems and most other ß-lactam antibiotics, have emerged and are increasingly being reported worldwide. Despite this increasing burden, the most optimal treatment for CRE infections is largely unknown. For the few remaining available treatment options, there are limited efficacy data to support their role in therapy. Nevertheless, current treatment options include the use of older agents, such as polymyxins, fosfomycin, and aminoglycosides, which have been rarely used due to efficacy and/or toxicity concerns. Optimization of dosing regimens and combination therapy are additional treatment strategies being explored. Carbapenem-resistant Enterobacteriaceae infections are associated with poor outcomes and high mortality. Continued research is critically needed to determine the most appropriate treatment.
Collapse
Affiliation(s)
- Haley J Morrill
- Veterans Affairs Medical Center , Infectious Diseases Research Program , Providence, Rhode Island ; College of Pharmacy, Department of Pharmacy Practice , University of Rhode Island , Kingston
| | | | - Keith S Kaye
- Division of Infectious Diseases , Detroit Medical Center, Wayne State University , Michigan
| | - Kerry L LaPlante
- Veterans Affairs Medical Center , Infectious Diseases Research Program , Providence, Rhode Island ; College of Pharmacy, Department of Pharmacy Practice , University of Rhode Island , Kingston ; Division of Infectious Diseases , Warren Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
34
|
Jean SS, Lee WS, Lam C, Hsu CW, Chen RJ, Hsueh PR. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol 2015; 10:407-25. [DOI: 10.2217/fmb.14.135] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Sen Lee
- Division of infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Carlos Lam
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine & Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
35
|
Ni W, Cai X, Wei C, Di X, Cui J, Wang R, Liu Y. Efficacy of polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infections: a systematic review and meta-analysis. Braz J Infect Dis 2015; 19:170-80. [PMID: 25636193 PMCID: PMC9425407 DOI: 10.1016/j.bjid.2014.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 11/16/2022] Open
Abstract
In recent years, carbapenem-resistant Enterobacteriaceae has become endemic in many countries. Because of limited treatment options, the abandoned "old antibiotics", polymyxins, have been reintroduced to the clinic. To evaluate the clinical efficacy of polymyxins in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae, we systemically searched the PubMed, Embase, and Cochrane Library databases and analyzed the available evidence. The Preferred Reporting Items for Systematic reviews and Meta-Analysis statement were followed, and the I(2) method was used for heterogeneity. Nineteen controlled and six single-arm cohort studies comprising 1086 patients met the inclusion criteria. For controlled studies, no significant difference was noted for overall mortality (OR, 0.79; 95% CI, 0.58-1.08; p=0.15), clinical response rate (OR, 1.24; 95% CI, 0.61-2.54; p=0.55), or microbiological response rate (OR, 0.59; 95% CI, 0.26-1.36; p=0.22) between polymyxin-treated groups and the control groups. Subgroup analyses showed that 28-day or 30-day mortality was lower in patients who received polymyxin combination therapy than in those who received monotherapy (OR, 0.36; 95% CI, 0.19-0.68; p<0.01) and the control groups (OR, 0.49; 95% CI, 0.31-0.75; p<0.01). The results of the six single-arm studies were in accordance with the findings of controlled studies. One controlled and two single-arm studies that evaluated the occurrence of nephrotoxicity reported a pooled incidence rate of 19.2%. Our results suggest that polymyxins may be as efficacious as other antimicrobial therapies for the treatment of carbapenem-resistant Enterobacteriaceae infection. Compared to polymyxin monotherapy, combination regimens may achieve lower 28-day or 30-day mortality. Future large-volume, well-designed randomized control trials are required to determine the role of polymyxins in treating carbapenem-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Wentao Ni
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xuejiu Cai
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chuanqi Wei
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiuzhen Di
- Department of Clinical Pharmacology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junchang Cui
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Rui Wang
- Department of Clinical Pharmacology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Youning Liu
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
36
|
Henry R, Crane B, Powell D, Deveson Lucas D, Li Z, Aranda J, Harrison P, Nation RL, Adler B, Harper M, Boyce JD, Li J. The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J Antimicrob Chemother 2015; 70:1303-13. [PMID: 25587995 DOI: 10.1093/jac/dku536] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Colistin remains a last-line treatment for MDR Acinetobacter baumannii and combined use of colistin and carbapenems has shown synergistic effects against MDR strains. In order to understand the bacterial responses to these antibiotics, we analysed the transcriptome of A. baumannii following exposure to each. METHODS RNA sequencing was employed to determine changes in the transcriptome following treatment with colistin and doripenem, both alone and in combination, using an in vitro pharmacokinetics (PK)/pharmacodynamics model to mimic the PK of both antibiotics in patients. RESULTS After treatment with colistin (continuous infusion at 2 mg/L), >400 differentially regulated genes were identified, including many associated with outer membrane biogenesis, fatty acid metabolism and phospholipid trafficking. No genes were differentially expressed following treatment with doripenem (Cmax 25 mg/L, t1/2 1.5 h) for 15 min, but 45 genes were identified as differentially expressed after 1 h of growth under this condition. Treatment of A. baumannii with both colistin and doripenem together for 1 h resulted in >450 genes being identified as differentially expressed. More than 70% of these gene expression changes were also observed following colistin treatment alone. CONCLUSIONS These data suggest that colistin causes gross damage to the outer membrane, facilitates lipid exchange between the inner and outer membrane and alters the normal asymmetric outer membrane composition. The transcriptional response to colistin was highly similar to that observed for an LPS-deficient strain, indicating that many of the observed changes are responses to outer membrane instability resulting from LPS loss.
Collapse
Affiliation(s)
- Rebekah Henry
- Department of Microbiology, Monash University, Clayton, Australia
| | - Bethany Crane
- Department of Microbiology, Monash University, Clayton, Australia
| | - David Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton, Australia
| | | | - Zhifeng Li
- Department of Microbiology, Monash University, Clayton, Australia State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, Shandong, P. R. China
| | - Jesús Aranda
- Department of Microbiology, Monash University, Clayton, Australia
| | - Paul Harrison
- Victorian Bioinformatics Consortium, Monash University, Clayton, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | - Marina Harper
- Department of Microbiology, Monash University, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | - John D Boyce
- Department of Microbiology, Monash University, Clayton, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
37
|
Doripenem MICs and ompK36 porin genotypes of sequence type 258, KPC-producing Klebsiella pneumoniae may predict responses to carbapenem-colistin combination therapy among patients with bacteremia. Antimicrob Agents Chemother 2014; 59:1797-801. [PMID: 25534733 DOI: 10.1128/aac.03894-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment failures of a carbapenem-colistin regimen among patients with bacteremia due to sequence type 258 (ST258), KPC-2-producing Klebsiella pneumoniae were significantly more likely if both agents were inactive in vitro, as defined by a colistin MIC of >2 μg/ml and the presence of either a major ompK36 porin mutation (guanine and alanine insertions at amino acids 134 and 135 [ins aa 134-135 GD], IS5 promoter insertion [P = 0.007]) or a doripenem MIC of >8 μg/ml (P = 0.01). Major ompK36 mutations among KPC-K. pneumoniae strains are important determinants of carbapenem-colistin responses in vitro and in vivo.
Collapse
|
38
|
Effects of various antibiotics alone or in combination with doripenem against Klebsiella pneumoniae strains isolated in an intensive care unit. BIOMED RESEARCH INTERNATIONAL 2014; 2014:397421. [PMID: 25530961 PMCID: PMC4228717 DOI: 10.1155/2014/397421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
Colistin, tigecycline, levofloxacin, tobramycin, and rifampin alone and in combination with doripenem were investigated for their in vitro activities and postantibiotic effects (PAEs) on Klebsiella pneumoniae. The in vitro activities of tested antibiotics in combination with doripenem were determined using a microbroth checkerboard technique. To determine the PAEs, K. pneumoniae strains in the logarithmic phase of growth were exposed for 1 h to antibiotics, alone and in combination. Recovery periods of test cultures were evaluated using viable counting after centrifugation. Colistin, tobramycin, and levofloxacin produced strong PAEs ranging from 2.71 to 4.23 h, from 1.31 to 3.82 h, and from 1.35 to 4.72, respectively, in a concentration-dependent manner. Tigecycline and rifampin displayed modest PAEs ranging from 1.18 h to 1.55 h and 0.92 to 1.19, respectively. Because it is a beta-lactam, PAEs were not exactly induced by doripenem (ranging from 0.10 to 0.18 h). In combination, doripenem scarcely changed the duration of PAE of each tested antibiotic alone. The findings of this study may have important implications for the timing of doses during K. pneumoniae therapy with tested antibiotics.
Collapse
|
39
|
Maraki S, Papadakis IS. Evaluation of antimicrobial combinations against colistin-resistant carbapenemase (KPC)-producing Klebsiella pneumoniae. J Chemother 2014; 27:348-52. [PMID: 25248023 DOI: 10.1179/1973947814y.0000000218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- S Maraki
- Department of Bacteriology, Parasitology, Zoonoses and Geographical Medicine, University Hospital of Heraklion , Crete, Greece
| | | |
Collapse
|
40
|
Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 2014; 58:4443-51. [PMID: 24867988 DOI: 10.1128/aac.00099-14] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We measured in vitro activity of plazomicin, a next-generation aminoglycoside, and other aminoglycosides against 50 carbapenem-resistant Klebsiella pneumoniae strains from two centers and correlated the results with the presence of various aminoglycoside-modifying enzymes (AMEs). Ninety-four percent of strains were sequence type 258 (ST258) clones, which exhibited 5 ompK36 genotypes; 80% and 10% of strains produced Klebsiella pneumoniae carbapenemase 2 (KPC-2) and KPC-3, respectively. Ninety-eight percent of strains possessed AMEs, including AAC(6')-Ib (98%), APH(3')-Ia (56%), AAC(3)-IV (38%), and ANT(2")-Ia (2%). Gentamicin, tobramycin, and amikacin nonsusceptibility rates were 40, 98, and 16%, respectively. Plazomicin MICs ranged from 0.25 to 1 μg/ml. Tobramycin and plazomicin MICs correlated with gentamicin MICs (r = 0.75 and 0.57, respectively). Plazomicin exerted bactericidal activity against 17% (1× MIC) and 94% (4× MIC) of strains. All strains with AAC(6')-Ib were tobramycin-resistant; 16% were nonsusceptible to amikacin. AAC(6')-Ib combined with another AME was associated with higher gentamicin, tobramycin, and plazomicin MICs than AAC(6')-Ib alone (P = 0.01, 0.0008, and 0.046, respectively). The presence of AAC(3)-IV in a strain was also associated with higher gentamicin, tobramycin, and plazomicin MICs (P = 0.0006, P < 0.0001, and P = 0.01, respectively). The combination of AAC(6')-Ib and another AME, the presence of AAC(3)-IV, and the presence of APH(3')-Ia were each associated with gentamicin resistance (P = 0.0002, 0.003, and 0.01, respectively). In conclusion, carbapenem-resistant K. pneumoniae strains (including ST258 clones) exhibit highly diverse antimicrobial resistance genotypes and phenotypes. Plazomicin may offer a treatment option against strains resistant to other aminoglycosides. The development of molecular assays that predict antimicrobial responses among carbapenem-resistant K. pneumoniae strains should be a research priority.
Collapse
|
41
|
Qin W, Panunzio M, Biondi S. β-Lactam Antibiotics Renaissance. Antibiotics (Basel) 2014; 3:193-215. [PMID: 27025744 PMCID: PMC4790388 DOI: 10.3390/antibiotics3020193] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 11/16/2022] Open
Abstract
Since the 1940s β-lactam antibiotics have been used to treat bacterial infections. However, emergence and dissemination of β-lactam resistance has reached the point where many marketed β-lactams no longer are clinically effective. The increasing prevalence of multidrug-resistant bacteria and the progressive withdrawal of pharmaceutical companies from antibiotic research have evoked a strong reaction from health authorities, who have implemented initiatives to encourage the discovery of new antibacterials. Despite this gloomy scenario, several novel β-lactam antibiotics and β-lactamase inhibitors have recently progressed into clinical trials, and many more such compounds are being investigated. Here we seek to provide highlights of recent developments relating to the discovery of novel β-lactam antibiotics and β-lactamase inhibitors.
Collapse
Affiliation(s)
- Wenling Qin
- ISOF-CNR Department of Chemistry "G. Ciamician", Via Selmi, 2 I-40126 Bologna, Italy.
| | - Mauro Panunzio
- ISOF-CNR Department of Chemistry "G. Ciamician", Via Selmi, 2 I-40126 Bologna, Italy.
| | - Stefano Biondi
- Allecra Therapeutics SAS, 13, rue de Village-Neuf, F-68300 St-Louis, France.
| |
Collapse
|
42
|
Ah YM, Kim AJ, Lee JY. Colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents 2014; 44:8-15. [PMID: 24794735 DOI: 10.1016/j.ijantimicag.2014.02.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 11/18/2022]
Abstract
Increasing use of colistin for multidrug-resistant Gram-negative bacterial infections has led to the emergence of colistin resistance in Klebsiella pneumoniae in several countries worldwide, including Europe (especially Greece), and colistin resistance rates are continually increasing. Heteroresistance rates, which were significantly higher than resistance rates, were found to be important. Although the mechanism underlying resistance is unclear, it has been suggested that it is related to lipopolysaccharide modification via diverse routes. Several factors have been reported as being associated with colistin resistance, with improper use and patient-to-patient transmission being most often cited. Total infections and infection-related mortality from colistin-resistant K. pneumoniae are high, but currently there are no established treatment regimens. However, several combination regimens that are mainly colistin-based have been found to be successful for treating such infections.
Collapse
Affiliation(s)
- Young-Mi Ah
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-no, Sangnok-gu, Ansan, Gyeonggi-do 462-791, South Korea
| | - Ah-Jung Kim
- Department of Pharmacy, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, South Korea
| | - Ju-Yeun Lee
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-no, Sangnok-gu, Ansan, Gyeonggi-do 462-791, South Korea.
| |
Collapse
|
43
|
Doripenem, gentamicin, and colistin, alone and in combinations, against gentamicin-susceptible, KPC-producing Klebsiella pneumoniae strains with various ompK36 genotypes. Antimicrob Agents Chemother 2014; 58:3521-5. [PMID: 24566172 DOI: 10.1128/aac.01949-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gentamicin doses of 2 and 10 μg/ml were bactericidal against 64% and 100%, respectively, of gentamicin-susceptible KPC-2-producing Klebsiella pneumoniae strains. Treatment with the combination of doripenem (8 μg/ml) plus colistin (2 μg/ml) was inferior to treatment with gentamicin (2 μg/ml), doripenem-gentamicin, gentamicin-colistin, and doripenem-gentamicin-colistin against strains with glycine and aspartic acid insertions in OpmK36 porin at amino acid (aa) positions 134 and 135 (n = 9). Doripenem-colistin was comparable to other 2- or 3-drug regimens and superior to single drugs against wild-type/minor ompK36 mutants (n = 5). An algorithm incorporating ompK36 genotypes and susceptibility to gentamicin and doripenem may predict antimicrobial activity against KPC-producing K. pneumoniae.
Collapse
|
44
|
Lemmenmeier E, Kohler P, Bruderer T, Goldenberger D, Kleger GR, Schlegel M. First documented outbreak of KPC-2-producing Klebsiella pneumoniae in Switzerland: infection control measures and clinical management. Infection 2014; 42:529-34. [PMID: 24477886 DOI: 10.1007/s15010-013-0578-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
Abstract
We report the epidemiological and clinical features of the first outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP) type 2 in Switzerland. The outbreak took place in the medical intensive care unit (MICU) of our tertiary care hospital and affected three severely ill patients. After the implementation of strict infection control measures, no further patients colonised with KPC-KP could be detected by the screening of exposed patients. Successful treatment of patients infected with KPC-KP consisted of a combination therapy of meropenem, colistin and tigecycline.
Collapse
Affiliation(s)
- E Lemmenmeier
- Division of Infectious Diseases and Infection Control, Department of Internal Medicine, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland,
| | | | | | | | | | | |
Collapse
|
45
|
Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis 2014; 58:1274-83. [PMID: 24463280 DOI: 10.1093/cid/ciu052] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are emerging global pathogens. The spread of CRE to transplant recipients and patients with hematologic malignancies has ominous implications. These patients rely on timely, active antibacterial therapy to combat gram-negative infections; however, recommended empirical regimens are not active against CRE. Approximately 3%-10% of solid organ transplant (SOT) recipients in CRE-endemic areas develop CRE infection, and the infection site correlates with the transplanted organ. Mortality rates associated with CRE infections approach 40% in SOT recipients and 65% in patients with hematologic malignancies. Given that the current antimicrobial armamentarium to combat CRE is extremely limited, a multifaceted approach that includes antimicrobial stewardship and active surveillance is needed to prevent CRE infections in immunocompromised hosts. Improving outcomes of established infections will require the use of risk factor-based prediction tools and molecular assays to more rapidly administer CRE-active therapy and the development of new antimicrobial agents with activity against CRE.
Collapse
Affiliation(s)
- Michael J Satlin
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases
| | | | | |
Collapse
|
46
|
Nastro M, Rodríguez CH, Monge R, Zintgraff J, Neira L, Rebollo M, Vay C, Famiglietti A. Activity of the colistin–rifampicin combination against colistin-resistant, carbapenemase-producing Gram-negative bacteria. J Chemother 2013; 26:211-6. [DOI: 10.1179/1973947813y.0000000136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Pankey GA, Ashcraft DS, Dornelles A. Comparison of 3 Etest® methods and time-kill assay for determination of antimicrobial synergy against carbapenemase-producing Klebsiella species. Diagn Microbiol Infect Dis 2013; 77:220-6. [DOI: 10.1016/j.diagmicrobio.2013.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/03/2013] [Accepted: 07/18/2013] [Indexed: 11/28/2022]
|
48
|
Cardile AP, Briggs H, Burguete SR, Herrera M, Wickes BL, Jorgensen JH. Treatment of KPC-2 Enterobacter cloacae empyema with cefepime and levofloxacin. Diagn Microbiol Infect Dis 2013; 78:199-200. [PMID: 24268534 DOI: 10.1016/j.diagmicrobio.2013.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae infections are becoming more common, are associated with high mortality rates, and are difficult to treat due to multiple mechanisms of resistance. We describe the successful treatment of Klebsiella pneumoniae carbapenemase-expressing Enterobacter cloacae empyema in a lung transplant recipient with cefepime and levofloxacin.
Collapse
Affiliation(s)
- Anthony P Cardile
- Infectious Disease Service Brooke Army Medical Center, Houston, TX, USA.
| | - Heather Briggs
- Department of Medicine University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - S Rodrigo Burguete
- Department of Medicine University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Monica Herrera
- Department of Microbiology University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Brian L Wickes
- Department of Microbiology University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James H Jorgensen
- Department of Medicine University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Microbiology University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Pathology University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
49
|
Alexander EL, Satlin MJ, Gamaletsou MN, Sipsas NV, Walsh TJ. Worldwide challenges of multidrug-resistant bacteria in patients with hematologic malignancies. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The emergence of infections due to multidrug-resistant (MDR) bacteria poses a major public health threat to all patients, but patients with hematologic malignancies are especially at risk. A common thread across all classes of bacteria is that increased reliance on and usage of broad-spectrum antibacterial agents, combined with the intrinsic ability of bacteria to develop and transmit resistance-conferring mutations, has led to the widespread dissemination of MDR organisms. In this article, we summarize the most worrisome MDR bacteria, assess their clinical impact on patients with hematologic malignancies and outline measures that are required to mitigate this impact.
Collapse
Affiliation(s)
| | - Michael J Satlin
- Division of Infectious Diseases, Weill Cornell Medical Center, New York, NY, USA
- Transplantation–Oncology Infectious Diseases Program, Department of Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - Maria N Gamaletsou
- University of Athens School of Medicine & Laikon Hospital, Athens, Greece
| | - Nikolaos V Sipsas
- University of Athens School of Medicine & Laikon Hospital, Athens, Greece
| | - Thomas J Walsh
- Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
50
|
Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother 2013; 58:654-63. [PMID: 24080646 DOI: 10.1128/aac.01222-13] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We sought to evaluate the effectiveness of the antibiotic treatment administered for infections caused by carbapenemase-producing Enterobacteriaceae. The PubMed and Scopus databases were systematically searched. Articles reporting the clinical outcomes of patients infected with carbapenemase-producing Enterobacteriaceae according to the antibiotic treatment administered were eligible. Twenty nonrandomized studies comprising 692 patients who received definitive treatment were included. Almost all studies reported on Klebsiella spp. In 8 studies, the majority of infections were bacteremia, while pneumonia and urinary tract infections were the most common infections in 12 studies. In 10 studies, the majority of patients were critically ill. There are methodological issues, including clinical heterogeneity, that preclude the synthesis of the available evidence using statistical analyses, including meta-analysis. From the descriptive point of view, among patients who received combination treatment, mortality was up to 50% for the tigecycline-gentamicin combination, up to 64% for tigecycline-colistin, and up to 67% for carbapenem-colistin. Among the monotherapy-treated patients, mortality was up to 57% for colistin and up to 80% for tigecycline. Certain regimens were administered to a small number of patients in certain studies. Three studies reporting on 194 critically ill patients with bacteremia showed individually significantly lower mortality in the combination arm than in the monotherapy arm. In the other studies, no significant difference in mortality was recorded between the compared groups. Combination antibiotic treatment may be considered the optimal option for severely ill patients with severe infections. However, well-designed randomized studies of specific patient populations are needed to further clarify this issue.
Collapse
|