1
|
Huang S, An S, Kannan PR, Wahab A, Alamgir, Ali S, Xiaoqing L, Suhail M, Iqbal MZ, Kong X. Development and characterization of biodegradable antibacterial hydrogels of xanthan gum for controlled ciprofloxacin release. Int J Biol Macromol 2025; 309:142637. [PMID: 40158579 DOI: 10.1016/j.ijbiomac.2025.142637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
The global public health challenge of antimicrobial resistance necessitates new treatment strategies, as existing antibiotics like ciprofloxacin face limitations such as short half-life, frequent dosing, adverse effects, and poor patient compliance. To attempt this, ciprofloxacin-loaded xanthan gum hydrogels were developed and characterized, and their cytotoxicity and antibacterial activities were evaluated. The interaction among hydrogel contents was confirmed by FTIR, whereas a decrease in the crystallinity of xanthan gum and drug was shown by XRD analysis of prepared hydrogels. After being polymerized with other hydrogel ingredients, xanthan gum's thermal stability was enhanced, as demonstrated by TGA and DSC analysis. SEM indicated a hard surface of hydrogel with a few pores. Similarly, a greater mechanical stability of 63.42 % was observed with applied force. The sol and gel fractions were found within the 3-10 % and 82-97 % ranges, while a porosity of 71-93 % was achieved for all formulations of hydrogels. The swelling and drug-release behaviors of developed hydrogels were found to be pH-dependent as an increase in both swelling and drug release was seen with the change in the pH of the medium from lower to higher values. A biodegradation study demonstrated a slow and steady degradation of hydrogel networks with increasing concentrations of hydrogel contents. Likewise, a cytotoxicity study was performed on mouse fibroblast L929 and human colon cancer T84 cells, which indicated no toxic effects as maximum cells were found live even using high concentrations of prepared hydrogels. The scratched gap of the cells was found closed by cell migration after 24 h. The antibacterial study indicated high inhibition zones of 47.635 ± 0.41 mm and 44.321 ± 0.24 mm for gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria, respectively. Thus, the results demonstrate that the newly fabricated hydrogel networks seem to be highly potential and effective agents for the controlled release of ciprofloxacin due to their excellent biocompatibility, biodegradability, minimal cytotoxicity, and antibacterial activities.
Collapse
Affiliation(s)
- Siru Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Susu An
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Abdul Wahab
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Alamgir
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sajid Ali
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Xiaoqing
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan.
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Herrera-Espejo S, Carretero-Ledesma M, Bahamonde-García MA, Cordero E, Pachón J, Pachón-Ibáñez ME. Assessing the Influence of Urine pH on the Efficacy of Ciprofloxacin and Fosfomycin in Immunocompetent and Immunocompromised Murine Models of Escherichia coli and Klebsiella pneumoniae Infection in the Lower Urinary Tract. Antibiotics (Basel) 2024; 13:827. [PMID: 39335001 PMCID: PMC11429092 DOI: 10.3390/antibiotics13090827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
In vitro studies have suggested that acidic pH may reduce and increase the efficacy of ciprofloxacin and fosfomycin, respectively, when used to treat Escherichia coli and Klebsiella pneumoniae infections. We assessed the effects of acidic, neutral, and alkaline urine pH on the efficacy of optimized ciprofloxacin and fosfomycin dosages in UTI murine model of E. coli and K. pneumoniae. Immunocompetent and immunocompromised mice with adjusted urine pH were inoculated with E. coli and K. pneumoniae strains, and the efficacy was assessed based on the bacterial concentrations in tissues and fluids at 72 h, with respect to untreated controls. At acidic urine pH, both antimicrobials were effective, achieving similar reductions in E. coli concentrations in the kidneys in immunocompetent and immunocompromised mice and in K. pneumoniae in immunocompetent mice. At a neutral urine pH, both therapies reduced the presence of E. coli in the kidneys of immunocompetent mice. However, in immunocompromised mice, antimicrobials were ineffective at treating E. coli infection in the kidneys at a neutral urine pH and showed reduced efficacy against K. pneumoniae at both acidic and neutral urine pH. The results showed no correlation between urine pH and antimicrobial efficacy, suggesting that the reduced effectiveness is associated with the animals' immunocompetence status.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Marta Carretero-Ledesma
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Manuel Anselmo Bahamonde-García
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jerónimo Pachón
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A, Sadanandan P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology 2023; 21:414. [PMID: 37946240 PMCID: PMC10634178 DOI: 10.1186/s12951-023-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Alosh Greeny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Amritasree Nandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Ranjay Kumar Sah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | | | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| |
Collapse
|
4
|
Geyer AC, VanLangen KM, Jameson AP, Dumkow LE. Outcomes of high-dose oral beta-lactam definitive therapy compared to fluoroquinolone or trimethoprim-sulfamethoxazole oral therapy for bacteremia secondary to a urinary tract infection. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e148. [PMID: 37771747 PMCID: PMC10523554 DOI: 10.1017/ash.2023.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Objective Compare outcomes of patients receiving high-dose oral beta-lactam versus standard oral therapy for Enterobacterales bacteremia from a urinary tract infection (UTI). Design Retrospective, multicenter, observational cohort. Setting Three Michigan community teaching hospitals. Patients Adult patients admitted between February 1, 2020, and October 1, 2022, with gram-negative bacteremia from a urinary source were evaluated. Patients receiving active empiric intravenous (IV) antibiotics and transitioned to appropriately dosed oral cephalexin, amoxicillin, fluoroquinolone (FQ), or trimethoprim/sulfamethoxazole (TMP/SMX) were included. Patients receiving less than 72 hours of oral therapy, diagnosed with renal abscess, lobar nephronia, or expired during admission were excluded. Methods Standard oral therapy was defined as FQ or TMP/SMX. The primary outcome compared the composite of recurrent bacteremia or mortality within 30 days of therapy between groups. Secondary outcomes compared recurrent UTI, emergency department or hospital readmission, and Clostridioides difficile within 30 days. Results 194 patients were included (beta-lactam, n = 75 vs standard therapy, n =119). Patients in both groups were treated for a median of 11 days, with 4 days IV and 7 days oral therapy. There was no difference in the primary outcome between groups (beta-lactam 1.3% vs standard therapy 1.7%, OR 1.27 [95% CI 0.11-14.2]). No patients experienced C. difficile in either group (p = 1.0). Infectious disease consultation was independently associated with standard therapy prescribing (OR 4.4 [95% CI 2.24-8.26]). Conclusion High-dose oral beta-lactams were as safe and effective as oral FQ or TMP/SMX for the treatment of bacteremia from a urinary source. Most patients received 8-10 days of therapy in both groups.
Collapse
Affiliation(s)
- Abigail C. Geyer
- Department of Pharmacy, Trinity Health Grand Rapids, Grand Rapids, MI, USA
| | - Kali M. VanLangen
- Department of Pharmacy, Trinity Health Grand Rapids, Grand Rapids, MI, USA
- Ferris State University, College of Pharmacy, Grand Rapids, MI, USA
| | - Andrew P. Jameson
- Division of Infectious Disease, Trinity Health Grand Rapids, Grand Rapids, MI, USA
- Department of Medicine, Michigan State College of Human Medicine, Grand Rapids, MI, USA
| | - Lisa E. Dumkow
- Department of Pharmacy, Trinity Health Grand Rapids, Grand Rapids, MI, USA
| |
Collapse
|
5
|
Maeda Y, Teraoka H, Okada A, Yamamoto M, Natsuyama S, Hieda Y, Nagatsuka Y, Sato Y, Goromaru T, Murakami T. Development and Evaluation of EDTA-Treated Rabbits for Bioavailability Study of Chelating Drugs Using Levofloxacin, Ciprofloxacin, Hemiacetal Ester Prodrugs, and Tetracycline. Pharmaceutics 2023; 15:1589. [PMID: 37376038 DOI: 10.3390/pharmaceutics15061589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Laboratory rabbits are fed foods rich with cationic metals, and while fasting cannot empty gastric contents because of their coprophagic habits. This implies that, in rabbits, the oral bioavailability of chelating drugs could be modulated by the slow gastric emptying rates and the interaction (chelation, adsorption) with gastric metals. In the present study, we tried to develop a rabbit model with low amounts of cationic metals in the stomach for preclinical oral bioavailability studies of chelating drugs. The elimination of gastric metals was achieved by preventing food intake and coprophagy and administering a low concentration of EDTA 2Na solution one day before experiments. Control rabbits were fasted but coprophagy was not prevented. The efficacy of rabbits treated with EDTA 2Na was evaluated by comparing the gastric contents, gastric metal contents and gastric pH between EDTA-treated and control rabbits. The treatment with more than 10 mL of 1 mg/mL EDTA 2Na solution decreased the amounts of gastric contents, cationic metals and gastric pH, without causing mucosal damage. The absolute oral bioavailabilities (mean values) of levofloxacin (LFX), ciprofloxacin (CFX) and tetracycline hydrochloride (TC), chelating antibiotics, were significantly higher in EDTA-treated rabbits than those in control rabbits as follows: 119.0 vs. 87.2%, 9.37 vs. 13.7%, and 4.90 vs. 2.59%, respectively. The oral bioavailabilities of these drugs were significantly decreased when Al(OH)3 was administered concomitantly in both control and EDTA-treated rabbits. In contrast, the absolute oral bioavailabilities of ethoxycarbonyl 1-ethyl hemiacetal ester (EHE) prodrugs of LFX and CFX (LFX-EHE, CFX-EHE), which are non-chelating prodrugs at least in in vitro condition, were comparable between control and EDTA-treated rabbits irrespective of the presence of Al(OH)3, although some variation was observed among rabbits. The oral bioavailabilities of LFX and CFX from their EHE prodrugs were comparable with LFX and CFX alone, respectively, even in the presence of Al(OH)3. In conclusion, LFX, CFX and TC exhibited higher oral bioavailabilities in EDTA-treated rabbits than in control rabbits, indicating that the oral bioavailabilities of these chelating drugs are reduced in untreated rabbits. In conclusion, EDTA-treated rabbits were found to exhibit low gastric contents including metals and low gastric pH, without causing mucosal damage. Ester prodrug of CFX was effective in preventing chelate formation with Al(OH)3 in vitro and in vivo, as well as in the case of ester prodrugs of LFX. EDTA-treated rabbits are expected to provide great advantages in preclinical oral bioavailability studies of various drugs and dosage formulations. However, a marked interspecies difference was still observed in the oral bioavailability of CFX and TC between EDTA-treated rabbits and humans, possibly due to the contribution of adsorptive interaction in rabbits. Further study is necessary to seek out the usefulness of the EDTA-treated rabbit with less gastric contents and metals as an experimental animal.
Collapse
Affiliation(s)
- Yorinobu Maeda
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Honoka Teraoka
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Ami Okada
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Mirei Yamamoto
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Shintaro Natsuyama
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Yuhzo Hieda
- Common Resources Center, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Yuka Nagatsuka
- Laboratory of Clinical Evaluation of Drug Efficacy, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Yuhki Sato
- Laboratory of Clinical Evaluation of Drug Efficacy, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Takeshi Goromaru
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Hiroshima 729-0292, Japan
| | - Teruo Murakami
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima 739-2631, Japan
| |
Collapse
|
6
|
Malu K, Khubchandani M. Triple Antibiotic Paste: A Suitable Medicament for Intracanal Disinfection. Cureus 2022; 14:e29186. [PMID: 36258984 PMCID: PMC9569130 DOI: 10.7759/cureus.29186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
With increasing cases of odontogenic infections, advancements in the treatment modality gain utmost importance. Complexity in the anatomy of the root canal necessitates the selection of the correct medicament and disinfectant. Furthermore, exacerbation of the problem results due to improper cleaning and disinfection of the root canal space. In such cases, manual preparation and irrigation alone will be of no help. The treatment outcome mostly depends upon the correct selection and application of the proper intracanal disinfectant along with the proper choice of medicament. One such intracanal disinfectant is triple antibiotic paste (TAP), a mix of three antibiotics. It’s the combined effect of the three drugs mixed in the paste that makes the mix a potent antimicrobial agent effective against microbes. This review aims to evaluate the properties of TAP, its composition, its various application, and its property to help maintain the vitality of the diseased pulp. This review also talks about its drawbacks and its application in primary teeth.
Collapse
|
7
|
Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial Constructs for Wound Healing and Skin Regeneration. Drug Metab Rev 2022; 54:63-94. [PMID: 35129408 DOI: 10.1080/03602532.2021.2025387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are lacking; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss 1) the biological aspects of wound healing and skin regeneration, 2) important characteristics and functions of biomaterials for skin regeneration applications, and 3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.
Collapse
Affiliation(s)
- Ingrid Safina
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Luke T Childress
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Srinivas R Myneni
- Department of Periodontology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| |
Collapse
|
8
|
Czyrski A. The spectrophotometric determination of lipophilicity and dissociation constants of ciprofloxacin and levofloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120343. [PMID: 34500409 DOI: 10.1016/j.saa.2021.120343] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Lipophilicity plays a significant role in the permeability of the drugs through cell membranes and impacts the drug activity in the human body. In this paper, the spectrophotometric method was used to determine the apparent partition coefficients of two amphoteric drugs: ciprofloxacin and levofloxacin. The apparent partition coefficient was determined with the classic shake-flask method with n-octanol according to OECD guidelines. The lipophilicity profiles in a wide range of pH were determined and described quantitatively with the quadratic function. Basing on the macro- and microdissociation constants, the true partition coefficient for both drugs was calculated. Both levofloxacin and ciprofloxacin were lipophilic. The neutral forms, i.e., zwitterionic and uncharged, dominate in the pH relevant to the one in the intestines, the place from which they are absorbed.
Collapse
Affiliation(s)
- Andrzej Czyrski
- Chair and Department of Physical Pharmacy and Pharmacokinetics, Święcickiego 6 Street, 60-781 Poznań, Poland.
| |
Collapse
|
9
|
Narayana S, Ahmed MG. Design and evaluation of ocular hydrogel containing combination of ofloxacin and dexamethasone for the treatment of conjunctivitis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Ebrahimi R. Radiation initiated synthesis, characterization, and swelling behavior of poly (acrylic acid‐co‐acrylamide)/starch grafted hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.50931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rajabali Ebrahimi
- Department of Chemistry Takestan Branch, Islamic Azad University Takestan Iran
| |
Collapse
|
11
|
Selection of Resistant Bacteria in Mallards Exposed to Subinhibitory Concentrations of Ciprofloxacin in Their Water Environment. Antimicrob Agents Chemother 2021; 65:AAC.01858-20. [PMID: 33318021 DOI: 10.1128/aac.01858-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Emergence and selection of antibiotic resistance following exposure to high antibiotic concentrations have been repeatedly shown in clinical and agricultural settings, whereas the role of the weak selective pressures exerted by antibiotic levels below the MIC (sub-MIC) in aquatic environments due to anthropogenic contamination remains unclear. Here, we studied how exposure to sub-MIC levels of ciprofloxacin enriches for Escherichia coli with reduced susceptibility to ciprofloxacin using a mallard colonization model. Mallards were inoculated with two isogenic extended-spectrum-β-lactamase (ESBL)-encoding E. coli strains, differing only by a gyrA mutation that results in increased MICs of ciprofloxacin, and exposed to different levels of ciprofloxacin in their swimming water. Changes in the ratios of mutant to parental strains excreted in feces over time and ESBL plasmid spread within the gut microbiota from individual birds were investigated. Results show that in vivo selection of gyrA mutants occurred in mallards during exposure to ciprofloxacin at concentrations previously found in aquatic environments. During colonization, resistance plasmids were readily transferred between strains in the intestines of the mallards, but conjugation frequencies were not affected by ciprofloxacin exposure. Our results highlight the potential for enrichment of resistant bacteria in wildlife and underline the importance of reducing antibiotic pollution in the environment.
Collapse
|
12
|
de Vroom SL, van Hest RM, van Daalen FV, Kuil SD, Mathôt RAA, Geerlings SE, Jager NGL. Pharmacokinetic/pharmacodynamic target attainment of ciprofloxacin in adult patients on general wards with adequate and impaired renal function. Int J Antimicrob Agents 2020; 56:106166. [PMID: 32941947 DOI: 10.1016/j.ijantimicag.2020.106166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/05/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023]
Abstract
Limited prospective data on pharmacokinetic/pharmacodynamic (PK/PD) target attainment of ciprofloxacin in patients with adequate and impaired renal function (eGFR <30 mL/min/1.73m2) are available in the literature. We aimed to investigate whether the PK/PD target (AUC/MIC ≥125) is attained in patients with adequate and impaired renal function receiving regular and reduced ciprofloxacin doses. This prospective observational cohort study included adult patients on general wards treated with ciprofloxacin. Three blood samples per patient were obtained for ciprofloxacin concentration measurement. Individual AUCs were calculated using a population PK model developed by non-linear mixed-effects modelling. Forty patients were included, of whom eight had impaired renal function and were treated with a guideline-recommended reduced dose. Using the clinical breakpoint MIC of the most isolated bacteria (Escherichia coli, 0.25 mg/L), AUC0-24/MIC ≥125 was attained in 13/32 (41%) patients with adequate renal function receiving regular doses and in 1/8 (13%) patients with impaired renal function receiving reduced doses. Median drug exposure (AUC0-24) for patients with impaired renal function was 19.0 [interquartile range (IQR) 14.2-23.3] mg/L•h, which was statistically significantly lower than that for patients with adequate renal function [29.3 (IQR 25.0-36.0) mg/L•h] (P < 0.01). AUC0-24/MIC ≥125 is not attained in the majority of adult patients on general wards for clinically relevant bacteria with MICs at or just below the clinical breakpoint. The risk of not attaining the target appears to be highest in patients with impaired renal function receiving guideline-recommended reduced doses, as drug exposure is significantly lower in these patients.
Collapse
Affiliation(s)
- Suzanne L de Vroom
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Infection and Immunity (AI&II), Meibergdreef 9, Amsterdam, Netherlands.
| | - Reinier M van Hest
- Amsterdam UMC, University of Amsterdam, Department of Hospital Pharmacy, Division of Clinical Pharmacology, Meibergdreef 9, Amsterdam, Netherlands.
| | - Frederike V van Daalen
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Infection and Immunity (AI&II), Meibergdreef 9, Amsterdam, Netherlands
| | - Sacha D Kuil
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Ron A A Mathôt
- Amsterdam UMC, University of Amsterdam, Department of Hospital Pharmacy, Division of Clinical Pharmacology, Meibergdreef 9, Amsterdam, Netherlands
| | - Suzanne E Geerlings
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Infection and Immunity (AI&II), Meibergdreef 9, Amsterdam, Netherlands
| | - Nynke G L Jager
- Amsterdam UMC, University of Amsterdam, Department of Hospital Pharmacy, Division of Clinical Pharmacology, Meibergdreef 9, Amsterdam, Netherlands; Radboud University Medical Center, Department of Hospital Pharmacy, Geert Grooteplein 10, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Kawahara I, Nishikawa S, Yamamoto A, Kono Y, Fujita T. The Impact of Breast Cancer Resistance Protein (BCRP/ABCG2) on Drug Transport Across Caco-2 Cell Monolayers. Drug Metab Dispos 2020; 48:491-498. [PMID: 32193356 DOI: 10.1124/dmd.119.088674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is expressed on the apical membrane of small intestinal epithelial cells and functions as an efflux pump with broad substrate recognition. Therefore, quantitative evaluation of the contribution of BCRP to the intestinal permeability of new chemical entities is very important in drug research and development. In this study, we assessed the BCRP-mediated efflux of several model drugs in Caco-2 cells using WK-X-34 as a dual inhibitor of P-glycoprotein (P-gp) and BCRP and LY335979 as a selective inhibitor of P-gp. The permeability of daidzein was high with an apparent permeability coefficient for apical-to-basal transport (P AB) of 20.3 × 10-6 cm/s. In addition, its efflux ratio (ER) was 1.55, indicating that the contribution of BCRP to its transport is minimal. Estrone-3-sulfate and ciprofloxacin showed relatively higher ER values (>2.0), whereas their BCRP-related absorptive quotient (AQ BCRP) was 0.21 and 0.3, respectively. These results indicate that BCRP does not play a major role in regulating the permeability of estrone-3-sulfate and ciprofloxacin in Caco-2 cells. Nitrofurantoin showed a P AB of 1.8 × 10-6 cm/s, and its ER was 7.6. However, the AQ BCRP was 0.37, suggesting minimal contribution of BCRP to nitrofurantoin transport in Caco-2 cells. In contrast, topotecan, SN-38, and sulfasalazine had low P AB values (0.81, 1.13, and 0.19 × 10-6 cm/s, respectively), and each AQ BCRP was above 0.6, indicating that BCRP significantly contributes to the transport of these compounds in Caco-2 cells. In conclusion, Caco-2 cells are useful to accurately estimate the contribution of BCRP to intestinal drug absorption. SIGNIFICANCE STATEMENT: We performed an in vitro assessment of the contribution of breast cancer resistance protein (BCRP) to the transport of BCRP and/or P-glycoprotein (P-gp) substrates across Caco-2 cell monolayers using absorptive quotient, which has been proposed to represent the contribution of drug efflux transporters to the net efflux. The present study demonstrates that the combined use of a BCRP/P-gp dual inhibitor and a P-gp selective inhibitor is useful to estimate the impact of BCRP and P-gp on the permeability of tested compounds in Caco-2 cells.
Collapse
Affiliation(s)
- Iichiro Kawahara
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Satoyo Nishikawa
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Yusuke Kono
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Takuya Fujita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| |
Collapse
|
14
|
Kawahara I, Nishikawa S, Yamamoto A, Kono Y, Fujita T. Assessment of contribution of BCRP to intestinal absorption of various drugs using portal-systemic blood concentration difference model in mice. Pharmacol Res Perspect 2020; 8:e00544. [PMID: 31988753 PMCID: PMC6968775 DOI: 10.1002/prp2.544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/27/2019] [Indexed: 01/16/2023] Open
Abstract
Prediction of the intestinal absorption of new chemical entities (NCEs) is still difficult, in part because drug efflux transporters, including breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp), restrict their intestinal permeability. We have demonstrated that the absorptive quotient (AQ) obtained from the in vitro Caco-2 permeability study would be a valuable parameter for estimating the impact of BCRP on the intestinal absorption of drugs. In this study, in order to assess the correlation between the in vitro AQ for BCRP and in vivo contribution of BCRP on drug absorption, we evaluated the oral absorption of various compounds by portal-systemic blood concentration (P-S) difference method in wild-type (WT), Bcrp(-/-), and Mdr1a/1b(-/-) mice. In addition, we also calculated a rate of BCRP contribution (Rbcrp ). Ciprofloxacin and nitrofurantoin showed the low Rbcrp value (0.05 and 0.15), and their apparent fractions of intestinal absorption in WT mice were 46.5% and 63.7%, respectively. These results suggest that BCRP hardly affects their intestinal absorption in mice. On the other hand, the apparent fraction of intestinal absorption of topotecan and sulfasalazine was significantly lower in WT mice than in Bcrp(-/-) mice. Moreover, their Rbcrp values were 0.42 and 0.79, respectively, indicating the high contribution of BCRP to their oral absorption. Furthermore, in vivo Rbcrp calculated in this study was almost comparable to in vitro AQ obtained from Caco-2 permeability study. This study provides useful concepts in assessing the contribution of BCRP on intestinal absorption in drug discovery and development process.
Collapse
Affiliation(s)
- Iichiro Kawahara
- Department of BiopharmaceuticsKyoto Pharmaceutical UniversityKyotoJapan
- Present address:
Japan Tabacco, IncOsakaJapan
| | - Satoyo Nishikawa
- Department of BiopharmaceuticsKyoto Pharmaceutical UniversityKyotoJapan
- Present address:
Shionogi & Co. Ltd.OsakaJapan
| | - Akira Yamamoto
- Department of BiopharmaceuticsKyoto Pharmaceutical UniversityKyotoJapan
| | - Yusuke Kono
- Graduate School of Pharmaceutical SciencesRitsumeikan UniversityShigaJapan
| | - Takuya Fujita
- Graduate School of Pharmaceutical SciencesRitsumeikan UniversityShigaJapan
| |
Collapse
|
15
|
Schlender JF, Teutonico D, Coboeken K, Schnizler K, Eissing T, Willmann S, Jaehde U, Stass H. A Physiologically-Based Pharmacokinetic Model to Describe Ciprofloxacin Pharmacokinetics Over the Entire Span of Life. Clin Pharmacokinet 2019; 57:1613-1634. [PMID: 29737457 PMCID: PMC6267540 DOI: 10.1007/s40262-018-0661-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Physiologically-based pharmacokinetic (PBPK) modeling has received growing interest as a useful tool for the assessment of drug pharmacokinetics by continuous knowledge integration. Objective The objective of this study was to build a ciprofloxacin PBPK model for intravenous and oral dosing based on a comprehensive literature review, and evaluate the predictive performance towards pediatric and geriatric patients. Methods The aim of this report was to establish confidence in simulations of the ciprofloxacin PBPK model along the development process to facilitate reliable predictions outside of the tested adult age range towards the extremes of ages. Therefore, mean data of 69 published clinical trials were identified and integrated into the model building, simulation and verification process. The predictive performance on both ends of the age scale was assessed using individual data of 258 subjects observed in own clinical trials. Results Ciprofloxacin model verification demonstrated no concentration-related bias and accurate simulations for the adult age range, with only 4.8% of the mean observed data points for intravenous administration and 12.1% for oral administration being outside the simulated twofold range. Predictions towards the extremes of ages for the area under the plasma concentration–time curve (AUC) and the maximum plasma concentration (Cmax) over the entire span of life revealed a reliable estimation, with only two pediatric AUC observations outside the 90% prediction interval. Conclusion Overall, this ciprofloxacin PBPK modeling approach demonstrated the predictive power of a thoroughly informed middle-out approach towards age groups of interest to potentially support the decision-making process. Electronic supplementary material The online version of this article (10.1007/s40262-018-0661-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan-Frederik Schlender
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany.
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany.
| | - Donato Teutonico
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
- Division of Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Katrin Coboeken
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
| | - Katrin Schnizler
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
| | - Thomas Eissing
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
| | | | - Ulrich Jaehde
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Heino Stass
- Clinical Pharmacology, Bayer AG, Wuppertal, Germany
| |
Collapse
|
16
|
Rancan F, Contardi M, Jurisch J, Blume-Peytavi U, Vogt A, Bayer IS, Schaudinn C. Evaluation of Drug Delivery and Efficacy of Ciprofloxacin-Loaded Povidone Foils and Nanofiber Mats in a Wound-Infection Model Based on Ex Vivo Human Skin. Pharmaceutics 2019; 11:E527. [PMID: 31614886 PMCID: PMC6836216 DOI: 10.3390/pharmaceutics11100527] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/05/2022] Open
Abstract
Topical treatment of wound infections is often a challenge due to limited drug availability at the site of infection. Topical drug delivery is an attractive option for reducing systemic side effects, provided that a more selective and sustained local drug delivery is achieved. In this study, a poorly water-soluble antibiotic, ciprofloxacin, was loaded on polyvinylpyrrolidone (PVP)-based foils and nanofiber mats using acetic acid as a solubilizer. Drug delivery kinetics, local toxicity, and antimicrobial activity were tested on an ex vivo wound model based on full-thickness human skin. Wounds of 5 mm in diameter were created on 1.5 × 1.5 cm skin blocks and treated with the investigated materials. While nanofiber mats reached the highest amount of delivered drug after 6 h, foils rapidly achieved a maximum drug concentration and maintained it over 24 h. The treatment had no effect on the overall skin metabolic activity but influenced the wound healing process, as observed using histological analysis. Both delivery systems were efficient in preventing the growth of Pseudomonas aeruginosa biofilms in ex vivo human skin. Interestingly, foils loaded with 500 µg of ciprofloxacin accomplished the complete eradication of biofilm infections with 1 × 109 bacteria/wound. We conclude that antimicrobial-loaded resorbable PVP foils and nanofiber mats are promising delivery systems for the prevention or topical treatment of infected wounds.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Jana Jurisch
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, ZBS4, Robert Koch Institute, 13353 Berlin, Germany.
| |
Collapse
|
17
|
Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ, Wurster JI, Nilson R, Guang A, Sano WH, Rowan-Nash AD, Li H, Belenky P. Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metab 2019; 30:800-823.e7. [PMID: 31523007 PMCID: PMC6948150 DOI: 10.1016/j.cmet.2019.08.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/24/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although antibiotics disturb the structure of the gut microbiota, factors that modulate these perturbations are poorly understood. Bacterial metabolism is an important regulator of susceptibility in vitro and likely plays a large role within the host. We applied a metagenomic and metatranscriptomic approach to link antibiotic-induced taxonomic and transcriptional responses within the murine microbiome. We found that antibiotics significantly alter the expression of key metabolic pathways at the whole-community and single-species levels. Notably, Bacteroides thetaiotaomicron, which blooms in response to amoxicillin, upregulated polysaccharide utilization. In vitro, we found that the sensitivity of this bacterium to amoxicillin was elevated by glucose and reduced by polysaccharides. Accordingly, we observed that dietary composition affected the abundance and expansion of B. thetaiotaomicron, as well as the extent of microbiome disruption with amoxicillin. Our work indicates that the metabolic environment of the microbiome plays a role in the response of this community to antibiotics.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Elizabeth M Reinhart
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - August Guang
- Center for Computation & Visualization, Brown University, Brown University, Providence, RI 02906, USA; Center for Computational Biology of Human Disease, Brown University, Providence, RI 02906, USA
| | - William H Sano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
18
|
Cattrall JWS, Asín-Prieto E, Freeman J, Trocóniz IF, Kirby A. A pharmacokinetic-pharmacodynamic assessment of oral antibiotics for pyelonephritis. Eur J Clin Microbiol Infect Dis 2019; 38:2311-2321. [PMID: 31494827 PMCID: PMC6858297 DOI: 10.1007/s10096-019-03679-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/11/2019] [Indexed: 11/30/2022]
Abstract
Antibiotic resistance to oral antibiotics recommended for pyelonephritis is increasing. The objective was to determine if there is a pharmacological basis to consider alternative treatments/novel dosing regimens for the oral treatment of pyelonephritis. A systematic review identified pharmacokinetic models of suitable quality for a selection of antibiotics with activity against Escherichia coli. MIC data was obtained for a population of E. coli isolates derived from patients with pyelonephritis. Pharmacokinetic/pharmacodynamic (PK/PD) simulations determined probability of target attainment (PTA) and cumulative fraction response (CFR) values for sub-populations of the E. coli population at varying doses. There are limited high-quality models available for the agents investigated. Pharmacokinetic models of sufficient quality for simulation were identified for amoxicillin, amoxicillin-clavulanic acid, cephalexin, ciprofloxacin, and fosfomycin trometamol. These antibiotics were predicted to have PTAs ≥ 0.85 at or below standard doses for the tested E. coli population including cephalexin 1500 mg 8 hourly for 22% of the population (MIC ≤ 4 mg/L) and ciprofloxacin 100 mg 12 hourly for 71% of the population (MIC ≤ 0.06 mg/L). For EUCAST-susceptible E. coli isolates, doses achieving CFRs ≥ 0.9 included amoxicillin 2500 mg 8 hourly, cephalexin 4000 mg 6 hourly, ciprofloxacin 200 mg 12 hourly, and 3000 mg of fosfomycin 24 hourly. Limitations in the PK data support carrying out additional PK studies in populations of interest. Oral antibiotics including amoxicillin, amoxicillin-clavulanic acid, and cephalexin have potential to be effective for a proportion of patients with pyelonephritis. Ciprofloxacin may be effective at lower doses than currently prescribed.
Collapse
Affiliation(s)
| | - E Asín-Prieto
- Pharmacometrics & Systems Pharmacology Research Unit, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - J Freeman
- University of Leeds, Leeds, LS2 9JT, UK.,Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF, UK
| | - I F Trocóniz
- Pharmacometrics & Systems Pharmacology Research Unit, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - A Kirby
- University of Leeds, Leeds, LS2 9JT, UK. .,Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF, UK. .,Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds, LS1 3EX, UK.
| |
Collapse
|
19
|
Mouwen AMA, Dijkstra JA, Jong E, Buijtels PCAM, Pasker-de Jong PCM, Nagtegaal JE. Early switching of antibiotic therapy from intravenous to oral using a combination of education, pocket-sized cards and switch advice: A practical intervention resulting in reduced length of hospital stay. Int J Antimicrob Agents 2019; 55:105769. [PMID: 31362046 DOI: 10.1016/j.ijantimicag.2019.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/30/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To assess the effectiveness of a combined intervention on the timing and rate of switching from intravenous (IV) to oral antibiotic therapy. MATERIALS AND METHODS The study used a historically-controlled prospective intervention design. Interventions consisted of educating physicians, handing out pocket-sized cards and providing switch advice in the electronic patient record (EPR). All patients hospitalized at the surgery department who were treated with IV antibiotics for at least 24 h and who fulfilled the switch criteria within 72 h of IV treatment were included. Outcomes before and during the intervention were compared. RESULTS An early IV to oral switch took place in 35.4% (35/99) of the antibiotic courses in the baseline period and in 67.7% (42/62) of the antibiotic courses in the intervention period (odds ratio [OR] 3.84, 95% confidence interval [CI] 1.96-7.53). Duration of IV therapy was significantly reduced from 5 to 3 days (P<0.01). Length of hospitalization was reduced from 6 to 5 days (P<0.05). CONCLUSIONS The interventions were effective in promoting an early IV to oral antibiotic switch by shortening the length of IV therapy and hospital stay.
Collapse
Affiliation(s)
- A M A Mouwen
- Department of Clinical Pharmacy, Meander Medical Center, Amersfoort, The Netherlands
| | - J A Dijkstra
- Department of Clinical Pharmacy, Meander Medical Center, Amersfoort, The Netherlands
| | - E Jong
- Department of Internal Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - P C A M Buijtels
- Department of Microbial Diseases, Meander Medical Center, Amersfoort, The Netherlands
| | - P C M Pasker-de Jong
- Department of Epidemiology and Statistics, Meander Academy, Meander Medical Center, Amersfoort, The Netherlands
| | - J E Nagtegaal
- Department of Clinical Pharmacy, Meander Medical Center, Amersfoort, The Netherlands.
| |
Collapse
|
20
|
Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg Chem 2018; 84:115-124. [PMID: 30500521 DOI: 10.1016/j.bioorg.2018.11.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022]
Abstract
The aim of the present work was to investigate the preparation of polyelectrolyte hydrogel as potential drug carrier for antibacterial Ciprofloxacin drug (CFX), intended for controlled release formulation. Hydrogel of N-trimehtyl chitosan (TMC)/sodium carboxymethyl xanthan gum (CMXG) was prepared and ciprofloxacin was employed as a model drug to investigate the loading and release performance of the prepared hydrogel. FTIR, DSC, TGA and SEM analysis were used to characterize the TMC/CMXG hydrogel and its CFX loaded hydrogel. The results showed that the ciprofloxacin was successfully incorporated and released from the prepared hydrogel without the loss of structural integrity or the change in its functionality. The encapsulation efficiency of CFX within the prepared hydrogel was found to be increased with increasing the concentration of drug reaching about 93.8 ± 2.1% with concentration of CFX 250 µg/ml. It was shown also that the drug is entrapped within the gel without significant interaction as confirmed from FTIR spectra and DSC analysis. In vitro release study in phosphate buffer saline (PBS), indicated the steady rise in cumulative drug release with the highest release amount, reaching about 96.1 ± 1.8% up to 150 min, whereby the gel with high drug loading efficiency (3.52 ± 0.07%) displayed faster and higher release rate than that of gel containing a smaller amount of drug (0.44 ± 0.01%). The release kinetics of loaded drug followed zero-order kinetics. CFX drug loaded hydrogel showed high activity against the gram positive and gram negative bacterial strains due to the successful released of CFX from the CFX loaded hydrogel into the tested bacterial strains with the highest diameter of inhibition zone against Escherichia coli (67.0 ± 1.0) as compared to reference antibiotic, Gentamicin (28 ± 0.5). Cytotoxicity of the prepared hydrogel was examined in vitro using lung human normal cell lines and showed the highest cell viability (97 ± 0.5%) at concentration up to 50 µg/ml. Consequently, TMC/CMXG hydrogel can be proposed as new controlled release drug delivery system.
Collapse
|
21
|
Ghosh S, Qi R, Carter KA, Zhang G, Pfeifer BA, Lovell JF. Loading and Releasing Ciprofloxacin in Photoactivatable Liposomes. Biochem Eng J 2018; 141:43-48. [PMID: 31105464 DOI: 10.1016/j.bej.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We demonstrate that ciprofloxacin can be actively loaded into liposomes that contain small amounts of porphyrin-phospholipid (PoP). PoP renders the liposomes photoactivatable, so that the antibiotic is released from the carrier under red light irradiation (665 nm). The use of 2 molar % PoP in the liposomes accommodated active loading of ciprofloxacin. Further inclusion of 2 molar % of an unsaturated phospholipid accelerated light-triggered drug release, with more than 90 % antibiotic release from the liposomes occurring in less than 30 seconds. With or without laser treatment, ciprofloxacin PoP liposomes inhibited the growth of Bacillus subtilis in liquid media, apparently due to uptake of the liposomes by the bacteria. However, when liposomes were first separated from smaller molecules with centrifugal filtration, only the filtrate from laser-treated liposomes was bactericidal, confirming effective release of active antibiotic. These results establish the feasibility of remote loading antibiotics into photoactivatable liposomes, which could lead to opportunities for enhanced localized antibiotic therapy.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Ruiquan Qi
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| |
Collapse
|
22
|
Sharif Makhmal Zadeh B, Esfahani G, Salimi A. Permeability of Ciprofloxacin-Loaded Polymeric Micelles Including Ginsenoside as P-glycoprotein Inhibitor through a Caco-2 Cells Monolayer as an Intestinal Absorption Model. Molecules 2018; 23:E1904. [PMID: 30065147 PMCID: PMC6222528 DOI: 10.3390/molecules23081904] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
The low oral bioavailability of ciprofloxacin is associated with two distinct challenges: its low aqueous solubility and efflux by p-glycoproteins (P-gp) in the intestinal membrane. Several studies were conducted in order to improve its solubility and permeability through the gastrointestinal membrane. In this study, in a full factorial design study, eight polymeric micelles were prepared and their characteristics, including particle size, loading and release rate were evaluated. Polymeric micelles demonstrated particle sizes below 190 nm and 27⁻88% loading efficiency. Drug release was affected by drug solubility, polymeric micelle erosion and swelling in simulated gastrointestinal fluids. An optimized polymeric micelle was prepared based on appropriate characteristics such as high drug loading and low particle size; and was used for a permeation study on Caco-2 cells. Optimized polymeric micelles with and without ginsenoside and ginsenoside alone enhanced drug permeability through Caco-2 cells significantly in the absorptive direction. The effect of ginsenoside was dose dependent and the maximum effect was seen in 0.23 mg/mL concentration. Results showed that P-gp may not be responsible for ciprofloxacin secretion into the gut. The main mechanism of ciprofloxacin transport through Caco-2 cells in both directions is active diffusion and P-gp has inhibitory effects on ciprofloxacin permeability in the absorptive direction that was blocked by ginsenoside and micelles without ginsenoside.
Collapse
Affiliation(s)
- Behzad Sharif Makhmal Zadeh
- Nanotechnology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Golestan Ave, Ahvaz 67123, Iran.
| | - Golbarg Esfahani
- Nanotechnology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Golestan Ave, Ahvaz 67123, Iran.
| | - Anayatollah Salimi
- Nanotechnology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Golestan Ave, Ahvaz 67123, Iran.
| |
Collapse
|
23
|
Abstract
BACKGROUND Complicated appendicitis, characterized by perforation and/or peritonitis, is common in children, and late infectious complications are frequent. The best antibiotic treatment approach is unknown, resulting in substantial variation in care. We evaluated the effects of 2 successive interventions, an antimicrobial stewardship program (ASP) and a condition-specific clinical practice guideline (CPG), on antimicrobial utilization and patient outcomes in these patients. METHODS The ASP at our institution was begun in March 2012. The CPG, a standardized antibiotic treatment, was implemented in July 2013. We reviewed every case of complicated appendicitis managed with early appendectomy between January 2011 and October 2014. Patients were thus divided into 3 eras based on their exposure to the following: (1) neither intervention, (2) ASP only or (3) both ASP and CPG. We compared measures of antibiotic utilization and clinical outcomes among the 3 eras. RESULTS A total of 313 patients were included in the study: 91 exposed to neither intervention; 100 exposed to only the ASP; and 122 exposed to both interventions. With ASP implementation, there were declines in the use of unnecessarily broad or toxic antibiotic regimens. With CPG implementation, there was a decrease in total antibiotic utilization and discharges with intravenous antibiotics. Compliance with CPG-recommended antibiotics exceeded 90%. There was no significant change in overall adverse events; there was a decline in the incidence of surgical-site infections in patients exposed to both interventions. CONCLUSIONS Complicated appendicitis is an important target for antimicrobial stewardship and quality improvement efforts. A condition-specific CPG can improve both antimicrobial utilization and clinical outcomes.
Collapse
|
24
|
Ebrahimi R, Salavaty M. Controlled drug delivery of ciprofloxacin from ultrasonic hydrogel. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractCiprofloxacin is an antibacterial fluoroquinolone that stops the DNA synthesis, after penetration into the bacterial cells. This drug is applied in the curing of bacterial infections, as well as in antibiotics to treat urinary infections in women, infectious diarrhea and typhoid fever. The objective of the present work is to study controlled release of ciprofloxacin by hydrogel prepared by ultrasound. For this, first the swelling properties of hydrogel and then the absorption of drug were evaluated. The swollen hydrogel was dried in oven (50°C) and was ready for release experiments. During release, the loaded powder of the hydrogel was added to a buffer solution of pH 7.4, similar to human body condition. Then drug concentration was measured using a UV-visible (UV-Vis) spectrophotometer and a calibration curve. The results showed that the hydrogel is sensitive to pH, which makes it a good candidate for ciprofloxacin delivery in intestine. In addition, it was shown that the drug absorption is proportional with the swelling content of the hydrogel and the drug concentration in the loading process. The chemical structure and morphology of the hydrogels and loaded drug were characterized using Fourier transform infrared, UV-Vis, scanning electronic microscopy and thermal gravimetric analysis spectroscopy. According to the results presented here, acrylic-based hydrogels can be used in biomedical fields, especially for controlled drug release.
Collapse
Affiliation(s)
- Rajabali Ebrahimi
- Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, Iran, Phone: +989123825118
| | - Molod Salavaty
- Department of Chemistry, Payame Noor University, P.O. BOX 19395-3697 Tehran, Iran
| |
Collapse
|
25
|
Darweesh RS, Sakagami M. In vitro lung epithelial cell transport and anti-interleukin-8 releasing activity of liposomal ciprofloxacin. Eur J Pharm Sci 2018; 115:68-76. [PMID: 29337216 DOI: 10.1016/j.ejps.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/28/2017] [Accepted: 01/08/2018] [Indexed: 01/14/2023]
Abstract
As a promising long-acting inhaled formulation, liposomal ciprofloxacin (Lipo-CPFX) was characterized in the in vitro human lung epithelial Calu-3 cell monolayer system, compared to ciprofloxacin in solution (CPFX). Its modulated absorptive transport and uptake, and sustained inhibitory activity against induced pro-inflammatory interleukin-8 (IL-8) release were examined. The absorptive transport and uptake kinetics for Lipo-CPFX and CPFX were determined at 0.1-50 mg/ml in the Transwell system. The Lipo-CPFX transport was then challenged for mechanistic exploration via cell energy depletion, a reduced temperature, endocytosis and/or lipid fusion inhibition, and addition of excess non-loaded liposomes. The inhibitory activities of Lipo-CPFX and CPFX against lipopolysaccharide (LPS)-induced IL-8 release were assessed in a co-incubation or pre-incubation mode. In the tight Calu-3 cell monolayers, Lipo-CPFX yielded 15-times slower ciprofloxacin flux of absorptive transport and 5-times lower cellular drug uptake than CPFX. Its transport appeared to be transcellular; kinetically linear, proportional to encapsulated ciprofloxacin concentration; and consistent with the cell energy-independent lipid bilayer fusion mechanism. Lipo-CPFX was equipotent to CPFX in the anti-IL-8 releasing activity upon 24 h co-incubation with LPS. Additionally, Lipo-CPFX, but not CPFX, retained the anti-IL-8 releasing activity even 24 h after pre-incubation. In conclusion, Lipo-CPFX enabled slower absorptive lung epithelial cell transport and uptake of ciprofloxacin, apparently via the lipid bilayer fusion mechanism, and the sustained inhibitory activity against LPS-induced IL-8 release, compared to CPFX.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA.; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22,110, Jordan
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA..
| |
Collapse
|
26
|
An in silico approach to determine challenges in the bioavailability of ciprofloxacin, a poorly soluble weak base with borderline solubility and permeability characteristics. Eur J Pharm Biopharm 2017; 122:186-196. [PMID: 29111469 DOI: 10.1016/j.ejpb.2017.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022]
Abstract
Ciprofloxacin is administered as the hydrochloride salt in immediate release formulations for the treatment of various infectious diseases in different patient populations. Due to its weakly basic properties and poor solubility, the in vivo behaviour of this compound could be influenced by both physicochemical and physiological factors. The first aim of this study was to investigate the behaviour of ciprofloxacin (Ciprobay® 500 mg tablets) in the human gastro-intestinal tract with in vitro dissolution, transfer and two-stage experiments. Ciprobay® IR tablets dissolved completely in FaSSGF-V2, but dissolution was incomplete in FaSSIF-V2 and in an achlorhydric medium (FaSSGF-achlorhydric) and slow precipitation was observed in all three media. Ciprofloxacin did not precipitate in the transfer model but in the two-stage test, a simplified version of the transfer model, some precipitation was detected. In the second part of this study the data obtained in the in vitro transfer experiment were integrated into a Physiologically Based Pharmacokinetic (PBPK) Model. Based on the in vitro results, it was concluded that precipitation of ciprofloxacin would be unlikely in vivo. When precipitation was assumed to be negligible in the PBPK model, good predictions of plasma concentration time profiles provided by Bayer Pharma AG and obtained from the open literature were attained. Parameter Sensitivity Analysis (PSA) was conducted on several parameters which may influence the in vivo behaviour of ciprofloxacin. It was shown that precipitation in the gastro-intestinal tract in humans after a dose of 500 mg is not a determinant of the PK profile. PSA further suggested that ciprofloxacin behaves in vivo as a BCS Class I drug according to the Biopharmaceutics Classification System (BCS), even though on the basis of available solubility and permeability data the compound has been categorised as a BCS II/IV drug. These findings illustrate the importance of coupling in vitro results with in silico PBPK models to better understand the in vivo behaviour of weakly basic drugs. The PBPK model of ciprofloxacin, which was set up for healthy volunteers, was also modified to predict the in vivo behaviour of ciprofloxacin in several different patient populations. It was shown on the basis of these simulations that the plasma concentration time profile may be less influenced by disease state than previously expected.
Collapse
|
27
|
Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 2017; 104:133-144. [PMID: 28366652 DOI: 10.1016/j.ejps.2017.03.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | | | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Paola Valentini
- Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Raffaele Spanò
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Luca Goldoni
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Rosalia Bertorelli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | | | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy.
| |
Collapse
|
28
|
Shankhwar N, Kumar M, Mandal BB, Robi PS, Srinivasan A. Electrospun polyvinyl alcohol-polyvinyl pyrrolidone nanofibrous membranes for interactive wound dressing application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 27:247-62. [PMID: 26573740 DOI: 10.1080/09205063.2015.1120474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cross-linked polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) composite nanofibrous membranes have been prepared by electrospinning. Mechanical properties of the membranes improved significantly with PVP addition. PVP improved hydrophilicity and sustainable degradation of the membranes. Biocompatibility of the membranes was assessed by in vitro culture of native skin cells (L929 fibroblast and HaCaT keratinocytes). Tests showed sustained release of the antibiotic ciprofloxacin hydrochloride monohydrate by the membranes. Further, zone of inhibition study against Staphylococcus aureus growth demonstrated protective action against external pathogenic microbes. These studies show these simple PVA-PVP nanofibrous membranes are promising interactive antibiotic-eluting wound dressing materials.
Collapse
Affiliation(s)
- Nisha Shankhwar
- a Department of Physics , Indian Institute of Technology Guwahati , Guwahati , India
| | - Manishekhar Kumar
- b Biomaterials Tissue Engineering Laboratory, Department of Biosciences Bioengineering , Indian Institute of Technology Guwahati , Guwahati , India
| | - Biman B Mandal
- b Biomaterials Tissue Engineering Laboratory, Department of Biosciences Bioengineering , Indian Institute of Technology Guwahati , Guwahati , India
| | - P S Robi
- c Department of Mechanical Engineering , Indian Institute of Technology Guwahati , Guwahati , India
| | - A Srinivasan
- a Department of Physics , Indian Institute of Technology Guwahati , Guwahati , India
| |
Collapse
|
29
|
Tsai D, Jamal JA, Davis JS, Lipman J, Roberts JA. Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet 2015; 54:243-60. [PMID: 25385446 DOI: 10.1007/s40262-014-0209-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal antibacterial dosing is imperative for maximising clinical outcome. Many factors can contribute to changes in the pharmacokinetics of antibacterials to the extent where dose adjustment may be needed. In acute illness, substantial changes in important pharmacokinetic parameters such as volume of distribution and clearance can occur for certain antibacterials. The possibility of interethnic pharmacokinetic differences can further complicate attempts to design an appropriate dosing regimen. Factors of ethnicity, such as genetics, body size and fat distribution, contribute to differences in absorption, distribution, metabolism and elimination of drugs. Despite extensive previous work on the altered pharmacokinetics of antibacterials in some patient groups such as the critically ill, knowledge of interethnic pharmacokinetic differences for antibacterials is limited. OBJECTIVES This systematic review aims to describe any pharmacokinetic differences in antibacterials between different ethnic groups, and discuss their probable mechanisms as well as any clinical implications. METHODS We performed a structured literature review to identify and describe available data of the interethnic differences in the pharmacokinetics of antibacterials. RESULTS We found 50 articles that met our inclusion criteria and only six of these compared antibacterial pharmacokinetics between different ethnicities within the same study. Overall, there was limited evidence available. We found that interethnic pharmacokinetic differences are negligible for carbapenems, most β-lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid and daptomycin, whereas significant difference is likely for ciprofloxacin, macrolides, clindamycin, tinidazole and some cephalosporins. In general, subjects of Asian ethnicity achieve drug exposures up to two to threefold greater than Caucasian counterparts for these antibacterials. This difference is caused by a comparatively lower volume of distribution and/or drug clearance. CONCLUSION Interethnic pharmacokinetic differences of antibacterials are likely; however, the clinical relevance of these differences is unknown and warrants further research.
Collapse
Affiliation(s)
- Danny Tsai
- Burns, Trauma and Critical Care Research Centre, School of Medicine, The University of Queensland, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| | | | | | | | | |
Collapse
|
30
|
Antimicrobial activity and synergism of Sami-Hyanglyun-Hwan with ciprofloxacin against methicillin-resistant Staphylococcus aureus. ASIAN PAC J TROP MED 2015; 8:538-42. [DOI: 10.1016/j.apjtm.2015.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 11/17/2022] Open
|
31
|
Shrinivas S, Revanasiddappa M. Analytical Stability Indicative Method Development and Validation by High Pressure Liquid Chromatography for Assay in Ciprofloxacin hydrochloride Drug Substances. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajac.2015.69069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Hyung Choi W, Jiang M. Evaluation of antibacterial activity of hexanedioic acid isolated from Hermetia illucens larvae. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
33
|
Abstract
Background Oral and intravenous formulations of ciprofloxacin have established efficacy and safety profiles in respiratory infections. A dry powder for inhalation (DPI) that uses Novartis’ PulmoSphere™ technology has been developed to deliver high concentrations of ciprofloxacin to the lung with low systemic exposure using a portable and convenient passive dry powder inhaler (Novartis’ T-326 inhaler). Objectives The primary objective was to investigate the safety and tolerability of ciprofloxacin DPI in healthy male subjects, with a secondary objective to investigate the pharmacokinetics of ciprofloxacin after ciprofloxacin DPI administration. Methods This was a phase I, single-dose, single-site, randomized, single-blind, placebo-controlled, crossover study conducted in the hospital setting. Subjects were followed up for safety for approximately 2 weeks. Six healthy male subjects, aged 27–42 years with no history of pulmonary disease, repeated bronchitis or respiratory allergies were enrolled. In randomized order and separated by a 1-week washout period, subjects inhaled a single dose of ciprofloxacin DPI 32.5 mg or placebo from the T-326 inhaler. Primary safety parameters included vital signs, electrocardiogram, laboratory tests, adverse events and lung function (total specific resistance, thoracic gas volume and forced expiratory volume in 1 s). Plasma concentration–time data were used to calculate pharmacokinetic parameters. Results Ciprofloxacin DPI was well tolerated with no clinically relevant adverse effects on lung function. Estimates of lung deposition derived from physiology-based pharmacokinetic modelling suggest that approximately 40 % of the total dose of ciprofloxacin DPI reached the trachea/bronchi and alveolar space. Systemic ciprofloxacin was detected soon after inhalation [peak concentration in plasma (Cmax) 56.42 μg/L, median time to Cmax 0.625 h], but total systemic exposure was minimal (area under the plasma concentration–time curve 354.4 μg·h/L). Terminal elimination half-life (9.5 h), apparent total clearance from plasma after non-intravenous administration (91.7 L/h) and apparent volume of distribution (1,262 L) data suggest that elimination from the respiratory tract was prolonged. Conclusions In healthy subjects, ciprofloxacin DPI was well tolerated, delivered ciprofloxacin to the lungs and resulted in minimal systemic exposure, allowing further investigation of its clinical use for the management of specific, chronic infections in pulmonary diseases.
Collapse
|
34
|
Alphonsa BM, Sudheesh Kumar PT, Praveen G, Biswas R, Chennazhi KP, Jayakumar R. Antimicrobial Drugs Encapsulated in Fibrin Nanoparticles for Treating Microbial Infested Wounds. Pharm Res 2013; 31:1338-51. [DOI: 10.1007/s11095-013-1254-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/10/2013] [Indexed: 11/27/2022]
|
35
|
Stass H, Weimann B, Nagelschmitz J, Rolinck-Werninghaus C, Staab D. Tolerability and Pharmacokinetic Properties of Ciprofloxacin Dry Powder for Inhalation in Patients With Cystic Fibrosis: A Phase I, Randomized, Dose-Escalation Study. Clin Ther 2013; 35:1571-81. [DOI: 10.1016/j.clinthera.2013.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 04/25/2013] [Accepted: 08/09/2013] [Indexed: 11/15/2022]
|
36
|
Lv HS, Ding XL, Zhao BX. Synthesis and X-ray Structure Characterisation of Novel Pyrazole Carboxamide Derivatives. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751913x13633729862156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of novel pyrazole carboxamide derivatives containing piperazine moiety was synthesised and determined by IR, 1H NMR and HRMS spectroscopy. Especially, the structure was confirmed by the X-ray crystal analysis of [1-(4- tert-butylbenzyl)-4-chloro-3-(4-chlorophenyl)-1 H-pyrazol-5-yl](4-phenylpiperazin-1-yl)methanone.
Collapse
Affiliation(s)
- Hong-Shui Lv
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xiao-Ling Ding
- College of Advanced Professional Technology, Qingdao University, Qingdao 266061, P. R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
37
|
Breda SA, Guzmán ML, Confalonieri A, González C, Sparo M, Manzo RH, Bruni SS, Olivera ME. Systemic exposure, tissue distribution, and disease evolution of a high solubility ciprofloxacin-aluminum complex in a murine model of septicemia induced by salmonella enterica serotype Enteritidis. Mol Pharm 2013; 10:598-605. [PMID: 23273286 DOI: 10.1021/mp300356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new pharmaceutical derivative obtained by stoichiometric complexation of ciprofloxacin (CIP) with aluminum (CIP-complex) has been investigated and reported in this study. Such product has high solubility in the gastrointestinal pH range and was successful in the development of optimized formulations while maintaining its antimicrobial potency. The systemic exposure, tissue distribution, and the disease evolution after given CIP-complex were assessed. The systemic exposure and distribution in intestines, lungs, and kidneys after a single intragastric administration of CIP-complex and CIP given alone, used as reference, were performed in Balb-C mice at a dose of 5 mg CIP/kg. For the assessment of the disease evolution assay, mice were infected with a virulent strain of Salmonella enterica serotype Enteritidis and treated intragastrically once or twice daily during 5 consecutive days with solutions of CIP-complex or the reference. Clinical follow up and survival was measured during 15 days post inoculation and health state was scored during this period from 0 to 5. CIP-complex showed a 32% increase in C(max), an earlier T(max), and a smaller AUC(0-12) than the reference. Maximum tissue concentrations (0.5-1 h) were significantly higher in CIP-complex (447% in intestine, 93% in kidney, and 44% in lungs). In the infection model used in this study, survival in CIP-complex versus CIP groups was 40% versus 20% (twice-daily administration) and 30% versus 0% (once-daily administration). Health state of the survivors of CIP-complex group (5/5) was higher than CIP group (3/5). The greater effectiveness of CIP-complex is attributed to the higher levels of CIP in the intestine. Our results supported the fact that CIP-complex is a promising candidate to develop dose-efficient formulations of CIP for oral administration.
Collapse
Affiliation(s)
- Susana Andrea Breda
- Departamento de Farmacia, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende, Ciudad Universitaria (5000), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Williamson EA, Damiani L, Leitao A, Hu C, Hathaway H, Oprea T, Sklar L, Shaheen M, Bauman J, Wang W, Nickoloff JA, Lee SH, Hromas R. Targeting the transposase domain of the DNA repair component Metnase to enhance chemotherapy. Cancer Res 2012; 72:6200-8. [PMID: 23090115 DOI: 10.1158/0008-5472.can-12-0313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy.
Collapse
Affiliation(s)
- Elizabeth A Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jin HE, Song B, Kim SB, Shim WS, Kim DD, Chong S, Chung SJ, Shim CK. Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug. Xenobiotica 2012; 43:355-67. [DOI: 10.3109/00498254.2012.720740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Parojčić J, Stojković A, Tajber L, Grbić S, Paluch KJ, Djurić Z, Corrigan OI. Biopharmaceutical Characterization of Ciprofloxacin HCl–Ferrous Sulfate Interaction. J Pharm Sci 2011; 100:5174-84. [DOI: 10.1002/jps.22707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/24/2011] [Indexed: 11/08/2022]
|
41
|
Thuo N, Ungphakorn W, Karisa J, Muchohi S, Muturi A, Kokwaro G, Thomson AH, Maitland K. Dosing regimens of oral ciprofloxacin for children with severe malnutrition: a population pharmacokinetic study with Monte Carlo simulation. J Antimicrob Chemother 2011; 66:2336-45. [PMID: 21831986 PMCID: PMC3172043 DOI: 10.1093/jac/dkr314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Severe malnutrition is frequently complicated by sepsis, leading to high case fatality. Oral ciprofloxacin is a potential alternative to the standard parenteral ampicillin/gentamicin combination, but its pharmacokinetics in malnourished children is unknown. Methods Ciprofloxacin (10 mg/kg, 12 hourly) was administered either 2 h before or up to 2 h after feeds to Kenyan children hospitalized with severe malnutrition. Four plasma ciprofloxacin concentrations were measured over 24 h. Population analysis with NONMEM investigated factors affecting the oral clearance (CL) and the oral volume of distribution (V). Monte Carlo simulations investigated dosage regimens to achieve a target AUC0–24/MIC ratio of ≥125. Results Data comprised 202 ciprofloxacin concentration measurements from 52 children aged 8–102 months. Absorption was generally rapid but variable; Cmax ranged from 0.6 to 4.5 mg/L. Data were fitted by a one-compartment model with first-order absorption and lag. The parameters were CL (L/h) = 42.7 (L/h/70 kg) × [weight (kg)/70]0.75 × [1 + 0.0368 (Na+ – 136)] × [1 – 0.283 (high risk)] and V (L) = 372 × (L/70 kg) × [1 + 0.0291 (Na+ – 136)]. Estimates of AUC0–24 ranged from 8 to 61 mg·h/L. The breakpoint for Gram-negative organisms was <0.06 mg/L with doses of 20 mg/kg/day and <0.125 mg/L with doses of 30 or 45 mg/kg/day. The cumulative fraction of response with 30 mg/kg/day was ≥80% for Escherichia coli, Klebsiella pneumoniae and Salmonella species, but <60% for Pseudomonas aeruginosa. Conclusions An oral ciprofloxacin dose of 10 mg/kg three times daily (30 mg/kg/day) may be a suitable alternative antibiotic for the management of sepsis in severely malnourished children. Absorption was unaffected by the simultaneous administration of feeds.
Collapse
Affiliation(s)
- Nahashon Thuo
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), PO Box 230, 80108 Kilifi, Kenya
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Olivera ME, Manzo RH, Junginger HE, Midha KK, Shah VP, Stavchansky S, Dressman JB, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: ciprofloxacin hydrochloride. J Pharm Sci 2011; 100:22-33. [PMID: 20602455 DOI: 10.1002/jps.22259] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of new multisource and reformulated immediate release (IR) solid oral dosage forms containing ciprofloxacin hydrochloride as the only active pharmaceutical ingredient (API) are reviewed. Ciprofloxacin hydrochloride's solubility and permeability, its therapeutic use and index, pharmacokinetics, excipient interactions and reported BE/bioavailability (BA) problems were taken into consideration. Solubility and BA data indicate that ciprofloxacin hydrochloride is a BCS Class IV drug. Therefore, a biowaiver based approval of ciprofloxacin hydrochloride containing IR solid oral dosage forms cannot be recommended for either new multisource drug products or for major scale-up and postapproval changes (variations) to existing drug products.
Collapse
Affiliation(s)
- M E Olivera
- Faculty of Chemical Sciences, Pharmacy Department, CONICET, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee LL, Rowland J, Ling CHY, Fiakos E. BRIEF COMMUNICATIONS: A quantity survey of intravenous administration of metronidazole in its different forms in a tertiary teaching hospital. Intern Med J 2010; 40:592-6. [DOI: 10.1111/j.1445-5994.2010.02267.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Gottlieb S, Wigney DI, Martin PA, Norris JM, Malik R, Govendir M. Susceptibility of canine and feline Escherichia coli and canine Staphylococcus intermedius isolates to fluoroquinolones. Aust Vet J 2008; 86:147-52. [DOI: 10.1111/j.1751-0813.2008.00270.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Macklin T, Panteleev J, Snieckus V. Carbamoyl Translocations by an Anionicortho-Fries and Cumulenolate α-Acylation Pathway: Regioselective Synthesis of Polysubstituted Chromone 3- and 8-Carboxamides. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Macklin T, Panteleev J, Snieckus V. Carbamoyl Translocations by an Anionicortho-Fries and Cumulenolate α-Acylation Pathway: Regioselective Synthesis of Polysubstituted Chromone 3- and 8-Carboxamides. Angew Chem Int Ed Engl 2008; 47:2097-101. [DOI: 10.1002/anie.200704360] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Boothe DM, Boeckh AI, Simpson RB, Dubose K. Comparison of Pharmacodynamic and Pharmacokinetic Indices of Efficacy for 5 Fluoroquinolones toward Pathogens of Dogs and Cats. J Vet Intern Med 2006. [DOI: 10.1111/j.1939-1676.2006.tb00742.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Di Marco MP, Chen J, Wainer IW, Ducharme MP. A Population Pharmacokinetic–Metabolism Model for Individualizing Ciprofloxacin Therapy in Ophthalmology. Ther Drug Monit 2004; 26:401-7. [PMID: 15257070 DOI: 10.1097/00007691-200408000-00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to construct a population pharmacokinetic (PK) metabolism (MB) model to describe ciprofloxacin (C) concentrations in plasma and vitreous and aqueous humors in 26 patients. Ciprofloxacin was given as a 3-day oral prophylactic treatment to 26 patients before vitrectomy. Plasma, vitreous, and aqueous humor samples were collected from patients at different times on the day of surgery. Patients were phenotyped for CYP 1A2 activity using caffeine. Ciprofloxacin and caffeine concentrations were determined using validated HPLC assays. All concentrations of ciprofloxacin were simultaneously modeled using a four-compartment PK-MB model. Creatinine clearance and CYP 1A2 activity were modeled as surrogate markers of renal and hepatic clearances, respectively. Population PK was performed with IT2S, and simulations were performed with ADAPT-II. No eye infections were observed in any of the patients enrolled in the study, and there were only minimal effects on vitreous and aqueous concentrations after ocular drops were added to the oral treatments. The model that best described the concentrations of ciprofloxacin in serum and in aqueous and vitreous humor was a four-compartment PK linear model. Simulated AUCs of ciprofloxacin mean concentrations in the aqueous and vitreous humors were 17 +/- 9 and 10 +/- 8% of the systemic AUC, respectively. The terminal elimination half-life of the compound was (mean +/- SD) 5.0 +/- 2.8 hours. The apparent volume of distribution (Vss/F) was calculated to be 122.1 +/- 39.7 L. This PK-MB model may be very useful in optimizing treatments of various eye infections with ciprofloxacin. The results of this study suggest that giving ciprofloxacin orally for 2 days preceding surgery may prevent endophthalmitis from occurring, consequently abrogating the need for administering antibiotics via intraocular injections.
Collapse
|
49
|
Albarellos GA, Kreil VE, Landoni MF. Pharmacokinetics of ciprofloxacin after single intravenous and repeat oral administration to cats. J Vet Pharmacol Ther 2004; 27:155-62. [PMID: 15189301 DOI: 10.1111/j.1365-2885.2004.00573.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pharmacokinetic properties of ciprofloxacin, a second-generation fluoroquinolone, were investigated in six cats after single intravenous and repeat oral administration at a dosage of 10 mg/kg b.i.d. Ciprofloxacin serum concentration was analyzed by microbiological assay using Klebsiella pneumoniae ATCC 10031 as microorganism test. Serum ciprofloxacin disposition was best fitted to a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and oral dosing respectively. After intravenous administration, distribution was rapid (t(1/2(d)), 0.22 +/- 0.23 h) and wide as reflected by the steady-state volume of distribution of 3.85 +/- 1.34 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.64 +/- 0.28 L/h.kg and a t(1/2(el)) of 4.53 +/- 0.74 h. After repeat oral administration, absorption was rapid with a half-life of 0.23 +/- 0.22 h and T(max) of 1.30 +/- 0.67 h. However bioavailability was low (33 +/- 12%), the peak plasma concentration at steady-state was 1.26 +/- 0.67 microg/mL. Drug accumulation was not significant after seven oral administrations. When efficacy predictors were estimated ciprofloxacin showed a good profile against gram-negative bacteria when administered either intravenously or orally, although its efficacy against gram-positive microorganisms is lower.
Collapse
Affiliation(s)
- G A Albarellos
- Area de Farmacología, Departamento de Fisiopatología y Etiopatogenia, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
50
|
Sanghvi T, Ni N, Mayersohn M, Yalkowsky S. Predicting Passive Intestinal Absorption Using A Single Parameter. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/qsar.200390019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|