1
|
Brosse A, Coullon H, Janoir C, Péchiné S. The state of play of rodent models for the study of Clostridioides difficile infection. J Med Microbiol 2024; 73:001857. [PMID: 39028257 PMCID: PMC11316558 DOI: 10.1099/jmm.0.001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhoea and is responsible for a spectrum of diseases characterized by high levels of recurrence and morbidity. In some cases, complications can lead to death. Currently, several types of animal models have been developed to study various aspects of C. difficile infection (CDI), such as colonization, virulence, transmission and recurrence. These models have also been used to test the role of environmental conditions, such as diet, age and microbiome that modulate infection outcome, and to evaluate several therapeutic strategies. Different rodent models have been used successfully, such as the hamster model and the gnotobiotic and conventional mouse models. These models can be applied to study either the initial CDI infectious process or recurrences. The applications of existing rodent models and their advantages and disadvantages are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Héloïse Coullon
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Séverine Péchiné
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
2
|
Rodriguez C, Mith H, Taminiau B, Bouchafa L, Van Broeck J, Soumillion K, Ngyuvula E, García-Fuentes E, Korsak N, Delmée M, Daube G. First isolation of Clostridioides difficile from smoked and dried freshwater fish in Cambodia. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Otter J, Yezli S, Barbut F, Perl T. An overview of automated room disinfection systems: When to use them and how to choose them. DECONTAMINATION IN HOSPITALS AND HEALTHCARE 2020. [PMCID: PMC7153347 DOI: 10.1016/b978-0-08-102565-9.00015-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional disinfection methods are limited by reliance on the operator to ensure appropriate selection, formulation, distribution, and contact time of the agent. Automated room disinfection (ARD) systems remove or reduce reliance on operators and so they have the potential to improve the efficacy of terminal disinfection. The most commonly used systems are hydrogen peroxide vapor (H2O2 vapor), aerosolized hydrogen peroxide (aHP), and ultraviolet (UV) light. These systems have important differences in their active agent, delivery mechanism, efficacy, process time, and ease of use. The choice of ARD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation, and cost considerations.
Collapse
Affiliation(s)
- J.A. Otter
- NIHR Health Protection Research Unit (HPRU) in HCAIs and AMR at Imperial College London, and Imperial College Healthcare NHS Trust, Infection Prevention and Control, London, United Kingdom
| | - S. Yezli
- Global Centre for Mass Gatherings Medicine, WHO Collaborating Centre for Mass Gatherings Medicine, Ministry of Health-Public Health Directorate, Riyadh, Kingdom of Saudi Arabia
| | - F. Barbut
- National Reference Laboratory for C. difficile, Infection Control Unit, Hôpital Saint Antoine, Paris, France,INSERM S-1139, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - T.M. Perl
- Infectious Diseases and Geographic Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Rodriguez C, Bouchafa L, Soumillion K, Ngyuvula E, Taminiau B, Van Broeck J, Delmée M, Daube G. Seasonality of Clostridium difficile in the natural environment. Transbound Emerg Dis 2019; 66:2440-2449. [PMID: 31338965 DOI: 10.1111/tbed.13301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is considered the leading cause of antibiotic-associated disease worldwide. In the past decade, a large number of studies have focused on identifying the main sources of contamination in order to elucidate the complete life cycle of the infection. Hospitals, animals and retail foods have been considered as potential vectors. However, the prevalence of C. difficile in these types of samples was found to be rather low, suggesting that other contamination routes must exist. This study explores the presence of C. difficile in the natural environment and the seasonal dynamics of the bacterium. C. difficile was isolated from a total of 45 samples out of 112 collected (40.2%) on 56 sampling points. A total of 17 points were positive only during the winter sampling (30.4%), 10 were positive only during the summer sampling (17.9%) and 9 sampling points (16.1%) were positive in both summer sampling and winter sampling. Spore counts in soil samples ranged between 50 and 250 cfu/g for 24.4% of the positive samples, with the highest concentrations detected in samples collected in the forest during winter campaign (200-250 cfu/g). A total of 17 different PCR ribotypes were identified, and 15 of them had the genes coding for toxins A and B. Most of those ribotypes had not previously been found or had been isolated only sporadically (<1% of samples) from hospitals in Belgium. Regarding antimicrobial susceptibility, most of the resistant strains were found during the summer campaign. These findings bear out that C. difficile is present in the natural environment, where the bacterium undergoes seasonal variations.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Lamia Bouchafa
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Kate Soumillion
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Eleonore Ngyuvula
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Johan Van Broeck
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Michel Delmée
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Kuehne SA, Dempster AW, Collery MM, Joshi N, Jowett J, Kelly ML, Cave R, Longshaw CM, Minton NP. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. J Antimicrob Chemother 2019; 73:973-980. [PMID: 29253242 PMCID: PMC5890677 DOI: 10.1093/jac/dkx486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/25/2017] [Indexed: 01/05/2023] Open
Abstract
Objectives To establish the role of specific, non-synonymous SNPs in the RNA polymerase β subunit (rpoB) gene in reducing the susceptibility of Clostridium difficile to fidaxomicin and to explore the potential in vivo significance of rpoB mutant strains. Methods Allelic exchange was used to introduce three different SNPs into the rpoB gene of an erythromycin-resistant derivative (CRG20291) of C. difficile R20291. The genome sequences of the created mutants were determined and each mutant analysed with respect to growth and sporulation rates, toxin A/B production and cytotoxicity against Vero cells, and in competition assays. Their comparative virulence and colonization ability was also assessed in a hamster infection model. Results The MIC of fidaxomicin displayed by three mutants CRG20291-TA, CRG20291-TG and CRG20291-GT was substantially increased (>32, 8 and 2 mg/L, respectively) relative to that of the parent strain (0.25 mg/L). Genome sequencing established that the intended mutagenic substitutions in rpoB were the only changes present. Relative to CRG20291, all mutants had attenuated growth, were outcompeted by the parental strain, had lower sporulation and toxin A/B production capacities, and displayed diminished cytotoxicity. In a hamster model, virulence of all three mutants was significantly reduced compared with the progenitor strain, whereas the degree of caecum colonization was unaltered. Conclusions Our study demonstrates that particular SNPs in rpoB lead to reduced fidaxomicin susceptibility. These mutations were associated with a fitness cost in vitro and reduced virulence in vivo.
Collapse
Affiliation(s)
- Sarah A Kuehne
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK.,Gastrointestinal and Liver Disorders Theme of the NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Mark M Collery
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nimitray Joshi
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jamie Jowett
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Michelle L Kelly
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rory Cave
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK.,Gastrointestinal and Liver Disorders Theme of the NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Antibiotic-Induced Dysbiosis Predicts Mortality in an Animal Model of Clostridium difficile Infection. Antimicrob Agents Chemother 2018; 62:AAC.00925-18. [PMID: 30061286 DOI: 10.1128/aac.00925-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Antibiotic disruption of the intestinal microbiota favors colonization by Clostridium difficile Using a charcoal-based adsorbent to decrease intestinal antibiotic concentrations, we studied the relationship between antibiotic concentrations in feces and the intensity of dysbiosis and quantified the link between this intensity and mortality. We administered either moxifloxacin (n = 70) or clindamycin (n = 60) to hamsters by subcutaneous injection from day 1 (D1) to D5 and challenged them with a C. difficile toxigenic strain at D3 Hamsters received various doses of a charcoal-based adsorbent, DAV131A, to modulate intestinal antibiotic concentrations. Gut dysbiosis was evaluated at D0 and D3 using diversity indices determined from 16S rRNA gene profiling. Survival was monitored until D16 We analyzed the relationship between fecal antibiotic concentrations and dysbiosis at the time of C. difficile challenge and studied their capacity to predict subsequent death of the animals. Increasing doses of DAV131A reduced fecal concentrations of both antibiotics, lowered dysbiosis, and increased survival from 0% to 100%. Mortality was related to the level of dysbiosis (P < 10-5 for the change of Shannon index in moxifloxacin-treated animals and P < 10-9 in clindamycin-treated animals). The Shannon diversity index and unweighted UniFrac distance best predicted death, with areas under the receiver operating curve (ROC) of 0.89 (95% confidence interval [CI], 0.82, 0.95) and 0.95 (0.90, 0.98), respectively. Altogether, moxifloxacin and clindamycin disrupted the diversity of the intestinal microbiota with a dependency on the DAV131A dose; mortality after C. difficile challenge was related to the intensity of dysbiosis in similar manners with the two antibiotics.
Collapse
|
7
|
Brown AWW, Wilson RB. Clostridium difficile colitis and zoonotic origins-a narrative review. Gastroenterol Rep (Oxf) 2018; 6:157-166. [PMID: 30151199 PMCID: PMC6101521 DOI: 10.1093/gastro/goy016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a major cause of hospital-associated diarrhoea, and in severe cases leads to pseudomembranous colitis and toxic megacolon. The frequency of C. difficile infection (CDI) has increased in recent decades, with 453 000 cases identified in 2011 in the USA. This is related to antibiotic-selection pressure, disruption of normal host intestinal microbiota and emergence of antibiotic-resistant C. difficile strains. The burden of community-acquired CDI has been increasingly appreciated, with disease identified in patients previously considered low-risk, such as young women or patients with no prior antibiotic exposure. C. difficile has been identified in livestock animals, meat products, seafood and salads. It has been postulated that the pool of C. difficile in the agricultural industry may contribute to human CDI. There is widespread environmental dispersal of C. difficile spores. Domestic households, turf lawns and public spaces are extensively contaminated, providing a potential reservoir for community-acquired CDI. In Australia, this is particularly associated with porcine-derived C. difficile UK PCR ribotype 014/020. In this article, the epidemiological differences between hospital- and community-acquired CDI are discussed, including some emerging evidence for community-acquired CDI being a possible zoonosis.
Collapse
Affiliation(s)
- Alexander W W Brown
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| | - Robert B Wilson
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| |
Collapse
|
8
|
The housefly Musca domestica as a mechanical vector of Clostridium difficile. J Hosp Infect 2016; 94:263-267. [DOI: 10.1016/j.jhin.2016.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
|
9
|
Improving the reproducibility of the NAP1/B1/027 epidemic strain R20291 in the hamster model of infection. Anaerobe 2016; 39:51-3. [PMID: 26946361 PMCID: PMC4879870 DOI: 10.1016/j.anaerobe.2016.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
Comparative analysis of the Clostridium difficile BI/NAP1/027 strain R20291 and ClosTron-derived ermB mutants in the hamster infection model are compromised by the clindamycin susceptibility of the parent. Mutants can appear more virulent. We have rectified this anomaly by genome engineering. The variant created (CRG20291) represents an ideal control strain for virulence assays of ClosTron mutants.
Collapse
|
10
|
Marculescu CE, Mabry T, Berbari EF. Prevention of Surgical Site Infections in Joint Replacement Surgery. Surg Infect (Larchmt) 2016; 17:152-7. [PMID: 26855288 DOI: 10.1089/sur.2015.258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prosthetic joint infections (PJI), although rare, represent a serious complication of total joint arthroplasty as they pose not only a direct financial burden to the patient but also an indirect burden related to psychosocial impact that PJI incur on the patient. Treatment of PJI is complex and requires a combined surgical and medical approach. Patients are often subjected to multiple surgical procedures and prolonged courses of antimicrobial therapy. Therefore, all efforts should be directed toward maximizing the prophylactic measures in the peri-operative and post-operative phases in order to prevent the occurrence of surgical site infections. This article explores primarily the prophylactic measures that target the host and the operative theater environment. Implementation of such preventive measures requires a multi-disciplinary approach and is crucial for a successful outcome of the total joint arthroplasty.
Collapse
Affiliation(s)
- Camelia E Marculescu
- 1 Department of Infectious Diseases, Medical University of South Carolina , Charleston, South Carolina
| | - Tad Mabry
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Elie F Berbari
- 3 Department of Infectious Diseases, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
11
|
Epidemiology and Antimicrobial Resistance in Clostridium difficile With Special Reference to the Horse. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Baines SD, Wilcox MH. Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection. Antibiotics (Basel) 2015; 4:267-98. [PMID: 27025625 PMCID: PMC4790285 DOI: 10.3390/antibiotics4030267] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infection (CDI) remains a substantial burden on healthcare systems and is likely to remain so given our reliance on antimicrobial therapies to treat bacterial infections, especially in an aging population in whom multiple co-morbidities are common. Antimicrobial agents are a key component in the aetiology of CDI, both in the establishment of the infection and also in its treatment. The purpose of this review is to summarise the role of antimicrobial agents in primary and recurrent CDI; assessing why certain antimicrobial classes may predispose to the induction of CDI according to a balance between antimicrobial activity against the gut microflora and C. difficile. Considering these aspects of CDI is important in both the prevention of the infection and in the development of new antimicrobial treatments.
Collapse
Affiliation(s)
- Simon D Baines
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Mark H Wilcox
- Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK.
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds LS1 3EX, UK.
| |
Collapse
|
13
|
Chilton CH, Freeman J. Predictive values of models of Clostridium difficile infection. Infect Dis Clin North Am 2015; 29:163-77. [PMID: 25582644 DOI: 10.1016/j.idc.2014.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vivo and in vitro models are widely used to simulate Clostridium difficile infection (CDI). They have made considerable contributions in the study of C difficile pathogenesis, antibiotic predisposition to CDI, and population dynamics as well as the evaluation of new antimicrobial and immunologic therapeutics. Although CDI models have greatly increased understanding of this complicated pathogen, all have limitations in reproducing human disease, notably their inability to generate a truly reflective immune response. This review summarizes the most commonly used models of CDI and discusses their pros and cons and their predictive values in terms of clinical outcomes.
Collapse
Affiliation(s)
- Caroline H Chilton
- Section of Molecular Gastroenterology, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Old Medical School, Thoresby Place, Leeds LS1 3EX, UK.
| | - Jane Freeman
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Old Medical School, Thoresby Place, Leeds LS1 3EX, UK
| |
Collapse
|
14
|
Fraise A, Wilkinson M, Bradley C, Paton S, Walker J, Maillard JY, Wesgate R, Hoffman P, Coia J, Woodall C, Fry C, Wilcox M. Development of a sporicidal test method for Clostridium difficile. J Hosp Infect 2015; 89:2-15. [DOI: 10.1016/j.jhin.2014.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/19/2023]
|
15
|
Vassallo A, Tran MCN, Goldstein EJC. Clostridium difficile: improving the prevention paradigm in healthcare settings. Expert Rev Anti Infect Ther 2014; 12:1087-102. [DOI: 10.1586/14787210.2014.942284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Angela Vassallo
- Department of Infection Prevention, Providence Saint John’s Health Center,
2121 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Mai-Chi N Tran
- Department of Pharmacy, Providence Saint John’s Health Center,
2121 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Ellie JC Goldstein
- Department of Infectious Diseases, Providence Saint John’s Health Center,
2121 Santa Monica Blvd, Santa Monica, CA 90404, USA
- The UCLA School of Medicine,
Los Angeles, CA 90073, USA
- The R M Alden Research Laboratory,
Santa Monica CA, 90404, USA
| |
Collapse
|
16
|
Lee KW, Lillehoj HS, Lee SH, Jang SI, Park MS, Bautista DA, Ritter GD, Hong YH, Siragusa GR, Lillehoj EP. Effect of dietary antimicrobials on immune status in broiler chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:382-92. [PMID: 25049577 PMCID: PMC4092964 DOI: 10.5713/ajas.2011.11259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/02/2011] [Indexed: 12/16/2022]
Abstract
This study evaluated the effects of dietary anticoccidial drugs plus antibiotic growth promoters (AGPs) on parameters of immunity in commercial broiler chickens. Day-old chicks were raised on used litter from a farm with endemic gangrenous dermatitis to simulate natural pathogen exposure and provided with diets containing decoquinate (DECX) or monensin (COBN) as anticoccidials plus bacitracin methylene disalicylate and roxarsone as AGPs. As a negative control, the chickens were fed with a non-supplemented diet. Immune parameters examined were concanavalin A (ConA)-stimulated spleen cell proliferation, intestine intraepithelial lymphocyte (IEL) and spleen cell subpopulations, and cytokine/chemokine mRNA levels in IELs and spleen cells. ConA-induced proliferation was decreased at 14 d post-hatch in DECX-treated chickens, and increased at 25 and 43 d in COBN-treated animals, compared with untreated controls. In DECX-treated birds, increased percentages of MHC2(+) and CD4(+) IELS were detected at 14 d, but decreased percentages of these cells were seen at 43 d, compared with untreated controls, while increased TCR2(+) IELs were evident at the latter time. Dietary COBN was associated with decreased fractions of MHC2(+) and CD4(+) IELs and reduced percentages of MHC2(+), BU1(+), and TCR1(+) spleen cells compared with controls. The levels of transcripts for interleukin-4 (IL-4), IL-6, IL-17F, IL-13, CXCLi2, interferon-γ (IFN-γ), and transforming growth factorβ4 were elevated in IELs, and those for IL-13, IL-17D, CXCLi2, and IFN-γ were increased in spleen cells, of DECX- and/or COBN-treated chickens compared with untreated controls. By contrast, IL-2 and IL-12 mRNAs in IELs, and IL-4, IL-12, and IL-17F transcripts in spleen cells, were decreased in DECX- and/or COBN-treated chickens compared with controls. These results suggest that DECX or COBN, in combination with bacitracin and roxarsone, modulate the development of the chicken post-hatch immune system.
Collapse
Affiliation(s)
- K W Lee
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - H S Lillehoj
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - S H Lee
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - S I Jang
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - M S Park
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - D A Bautista
- Lasher Poultry Diagnostic Laboratory, University of Delaware, Georgetown, DE 16483, USA
| | - G D Ritter
- Mountaire Farms Inc., Millsboro, DE 19966, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea
| | - G R Siragusa
- Danisco, W227 N752 Westmound Drive, Waukesha, WI 53186, USA
| | - E P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Hutton ML, Mackin KE, Chakravorty A, Lyras D. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett 2014; 352:140-9. [PMID: 24372713 DOI: 10.1111/1574-6968.12367] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the leading cause of bacterial antibiotic-associated diarrhoea in hospitals in the developed world. Despite this notoriety, the complex mechanisms employed by this pathogen to overcome innate host defences and induce fulminant disease are poorly understood. Various animal models have been used extensively for C. difficile research to study disease pathogenesis. Until recently, the most commonly used C. difficile disease model has utilised hamsters; however, mouse and pig models have now been developed that unravel different aspects of C. difficile pathology. This review summarises key aspects of the small animal models currently used in C. difficile studies with a specific focus on major differences between them. Furthermore, this review highlights the advantages and disadvantages of each model and illustrates that careful consideration is required when selecting models for use in C. difficile research.
Collapse
Affiliation(s)
- Melanie L Hutton
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
Abstract
Conventional disinfection methods are limited by reliance on the operator to ensure appropriate selection, formulation, distribution and contact time of the agent. ‘No-touch’ automated room disinfection (NTD) systems remove or reduce reliance on operators and so they have the potential to improve the efficacy of terminal disinfection. The most commonly used systems are hydrogen peroxide vapour (H2O2 vapour), aerosolised hydrogen peroxide (aHP) and ultraviolet (UV) radiation. These systems have important differences in their active agent, delivery mechanism, efficacy, process time and ease of use. The choice of NTD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation and cost constraints.
Collapse
|
19
|
Muricholic acids inhibit Clostridium difficile spore germination and growth. PLoS One 2013; 8:e73653. [PMID: 24040011 PMCID: PMC3767737 DOI: 10.1371/journal.pone.0073653] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/21/2013] [Indexed: 12/18/2022] Open
Abstract
Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid) inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.
Collapse
|
20
|
Yang XQ, Zhao YG, Chen XQ, Jiang B, Sun DY. The protective effect of recombinant Lactococcus lactis oral vaccine on a Clostridium difficile-infected animal model. BMC Gastroenterol 2013; 13:117. [PMID: 23865596 PMCID: PMC3750240 DOI: 10.1186/1471-230x-13-117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 07/10/2013] [Indexed: 01/05/2023] Open
Abstract
Background Oral immunization with vaccines may be an effective strategy for prevention of Clostridium difficile infection (CDI). However, application of previously developed vaccines for preventing CDI has been limited due to various reasons. Here, we developed a recombinant Lactococcus lactis oral vaccine and evaluated its effect on a C. difficile-infected animal model established in golden hamsters in attempt to provide an alternative strategy for CDI prevention. Methods Recombinant L. lactis vaccine was developed using the pTRKH2 plasmid, a high-copy-number Escherichia coli-L. shuttle vector: 1) L. lactis expressing secreted proteins was constructed with recombinant pTRKH2 (secreted-protein plasmid) carrying the Usp45 signal peptide (SPUsp45), nontoxic adjuvanted tetanus toxin fragment C (TETC), and 14 of the 38 C-terminal repeats (14CDTA) of nontoxic C. difficile toxin A (TcdA); and 2) L. lactis expressing secreted and membrane proteins was constructed with recombinant pTRKH2 (membrane-anchored plasmid) carrying SPUsp45, TETC, 14CDTA, and the cell wall-anchored sequence of protein M6 (cwaM6). Then, 32 male Syrian golden hamsters were randomly divided into 4 groups (n = 8 each) for gavage of normal saline (blank control) and L. lactis carrying the empty shuttle vector, secreted-protein plasmid, and membrane-anchored plasmid, respectively. After 1-week gavage of clindamycin, the animals were administered with C. difficile spore suspension. General symptoms and intestinal pathological changes of the animals were examined by naked eye and microscopy, respectively. Protein levels of anti-TcdA IgG/IgA antibodies in intestinal tissue and fluid were analyzed by enzyme-linked immunosorbent assay (ELISA). A cell culture cytotoxicity neutralization assay was done by TcdA treatment with or without anti-TcdA serum pre-incubation or treatment. Apoptosis of intestinal epithelial cells was examined by flow cytometry (FL) assay. Expression of mucosal inflammatory cytokines in the animals was detected by polymer chain reaction (PCR) assay. Results After the C. difficile challenge, the animals of control group had severe diarrhea symptoms on day 1 and all died on day 4, indicating that the CDI animal model was established in hamster. Of the 3 immunization groups, secreted-protein and membrane-anchored plasmid groups had significantly lower mortalities, body weight decreases, and pathological scores, with higher survival rate/time than the empty plasmid group (P < 0.05). The tilter of IgG antibody directed against TcdA was significantly higher in serum and intestinal fluid of secreted-protein and membrane-anchored plasmid groups than in the empty plasmid group (P < 0.05) while the corresponding titer of IgA antibody directed against TcdA had no substantial differences (P > 0.05). The anti-TcdA serum of membrane-anchored plasmid group neutralized the cytotoxicity of 200 ng/ml TcdA with the best protective effect achieved by anti-TcdA serum pre-incubation. The incidences of TcdA-induced death and apoptosis of intestinal epithelial cells were significantly reduced by cell pre-incubation or treatment with anti-TcdA serum of membrane-anchored plasmid group (P < 0.05). MCP-1, ICAM-1, IL-6, and Gro-1 mRNA expression levels were the lowest in cecum tissue of the membrane-anchored groups compared to the other groups. Conclusion Recombinant L. lactis live vaccine is effective for preventing CDI in the hamster model, thus providing an alternative for immunization of C. difficile-associated diseases.
Collapse
Affiliation(s)
- Xiao-qiang Yang
- Department of Gastroenterology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangzhou 510010, Guangdong, China
| | | | | | | | | |
Collapse
|
21
|
Otter JA, Yezli S, Salkeld JA, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control 2013; 41:S6-11. [PMID: 23622751 DOI: 10.1016/j.ajic.2012.12.004] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
Evidence that contaminated surfaces contribute to the transmission of hospital pathogens comes from studies modeling transmission routes, microbiologic studies, observational epidemiologic studies, intervention studies, and outbreak reports. This review presents evidence that contaminated surfaces contribute to transmission and discusses the various strategies currently available to address environmental contamination in hospitals.
Collapse
|
22
|
Protective effect of bifidobacteria in an experimental model ofClostridium difficileassociated colitis. J DAIRY RES 2013; 80:263-9. [DOI: 10.1017/s0022029913000216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to evaluate the ability ofBifidobacteriumstrains to prevent the effects associated withClostridium difficileinfection in a hamster model of enterocolitis. After clindamycin treatment (30 mg/kg), animals were infected intragastrically withC. difficile(5×108CFU per animal). Seven days prior to antibiotic administration, probiotic treatment was started by administering bacterial suspensions of bifidobacteria in drinking water. Strains CIDCA 531, CIDCA 5310, CIDCA 5316, CIDCA 5320, CIDCA 5323 and CIDCA 5325 were used. Treatment was continued during all the experimental period. Development of diarrhoea, enterocolitis and mortality were evaluated. All the infected animals belonging to the placebo group developed enterocolitis (5/5) and only two dead (2/5) whereas in the group administered withBifidobacterium bifidumstrain CIDCA 5310 the ratio of animals with enterocolitis or dead decreased significantly (1/5 and 0/5 respectively). Biological activity of caecum contents was evaluated in vitro on Vero cells. Animals treated with strain CIDCA 5310 presented lower biological activity than those belonging to the placebo group. The present study shows the potential of selected strains of bifidobacteria to antagonise, in vivo, the virulence ofC. difficile.
Collapse
|
23
|
Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of 'no-touch' automated room disinfection systems in infection prevention and control. J Hosp Infect 2012. [PMID: 23195691 DOI: 10.1016/j.jhin.2012.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surface contamination in hospitals is involved in the transmission of pathogens in a proportion of healthcare-associated infections. Admission to a room previously occupied by a patient colonized or infected with certain nosocomial pathogens increases the risk of acquisition by subsequent occupants; thus, there is a need to improve terminal disinfection of these patient rooms. Conventional disinfection methods may be limited by reliance on the operator to ensure appropriate selection, formulation, distribution and contact time of the agent. These problems can be reduced by the use of 'no-touch' automated room disinfection (NTD) systems. AIM To summarize published data related to NTD systems. METHODS Pubmed searches for relevant articles. FINDINGS A number of NTD systems have emerged, which remove or reduce reliance on the operator to ensure distribution, contact time and process repeatability, and aim to improve the level of disinfection and thus mitigate the increased risk from the prior room occupant. Available NTD systems include hydrogen peroxide (H(2)O(2)) vapour systems, aerosolized hydrogen peroxide (aHP) and ultraviolet radiation. These systems have important differences in their active agent, delivery mechanism, efficacy, process time and ease of use. Typically, there is a trade-off between time and effectiveness among NTD systems. The choice of NTD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation and cost constraints. CONCLUSION NTD systems are gaining acceptance as a useful tool for infection prevention and control.
Collapse
Affiliation(s)
- J A Otter
- Centre for Clinical Infection and Diagnostics Research, CIDR, Department of Infectious Diseases, King's College London, School of Medicine and Guy's and St Thomas' NHS Foundation Trust, UK.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Models of Clostridium difficile infection (C. difficile) have been used extensively for Clostridium difficile (C. difficile) research. The hamster model of C. difficile infection has been most extensively employed for the study of C. difficile and this has been used in many different areas of research, including the induction of C. difficile, the testing of new treatments, population dynamics and characterization of virulence. Investigations using in vitro models for C. difficile introduced the concept of colonization resistance, evaluated the role of antibiotics in C. difficile development, explored population dynamics and have been useful in the evaluation of C. difficile treatments. Experiments using models have major advantages over clinical studies and have been indispensible in furthering C. difficile research. It is important for future study programs to carefully consider the approach to use and therefore be better placed to inform the design and interpretation of clinical studies.
Collapse
Affiliation(s)
- Emma L. Best
- Leeds Teaching Hospitals NHS Trust; Microbiology Department; Old Medical School; Leeds General Infirmary; Leeds, UK,Correspondence to: Emma L. Best,
| | - Jane Freeman
- Leeds Teaching Hospitals NHS Trust; Microbiology Department; Old Medical School; Leeds General Infirmary; Leeds, UK
| | - Mark H. Wilcox
- Leeds Teaching Hospitals NHS Trust; Microbiology Department; Old Medical School; Leeds General Infirmary; Leeds, UK,University of Leeds; Leeds, UK
| |
Collapse
|
25
|
Speight S, Moy A, Macken S, Chitnis R, Hoffman PN, Davies A, Bennett A, Walker JT. Evaluation of the sporicidal activity of different chemical disinfectants used in hospitals against Clostridium difficile. J Hosp Infect 2011; 79:18-22. [PMID: 21802172 DOI: 10.1016/j.jhin.2011.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/14/2011] [Indexed: 11/29/2022]
Abstract
Decontamination of surfaces and medical equipment is integral to the control of Clostridium difficile transmission, and many products claim to inactivate this bacterium effectively. Thirty-two disinfectants were tested against spores of C. difficile in a suspension test based on European Standard BS EN 13704:2002, with contact times of 1 and 60 min in simulations of clean (0.3% albumin) and dirty (3% albumin) conditions. The addition of a 1-min contact time was chosen as a more realistic simulation of probable real-life exposures in the situation being modelled than the 60 min specified by the Standard. The manufacturer's lowest recommended concentrations for use were tested. Sixteen products achieved >10(3) reduction in viability after 60 min (the pass criterion for the Standard) under both clean and dirty conditions. However, only eight products achieved >10(3) reduction in viability within 1 min under dirty conditions. Three products failed to reduce the viability of the C. difficile spores by a factor of 10(3) in any of the test conditions. This study highlights that the application of disinfectants claiming to be sporicidal is not, in itself, a panacea in the environmental control of C. difficile, but that carefully chosen environmental disinfectants could form part of a wider raft of control measures that include a range of selected cleaning strategies.
Collapse
Affiliation(s)
- S Speight
- HPA Microbiological Services Division, Porton Down, Salisbury, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Anderson R, Young V, Stewart M, Robertson C, Dancer S. Cleanliness audit of clinical surfaces and equipment: who cleans what? J Hosp Infect 2011; 78:178-81. [DOI: 10.1016/j.jhin.2011.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 01/21/2011] [Indexed: 11/26/2022]
|
27
|
Buckley AM, Spencer J, Candlish D, Irvine JJ, Douce GR. Infection of hamsters with the UK Clostridium difficile ribotype 027 outbreak strain R20291. J Med Microbiol 2011; 60:1174-1180. [PMID: 21330415 PMCID: PMC3167879 DOI: 10.1099/jmm.0.028514-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is the main cause of antibiotic-associated disease, a disease of high socio-economical importance that has recently been compounded by the global spread of the 027 (BI/NAP1/027) ribotype. C. difficile cases attributed to ribotype 027 strains have high recurrence rates (up to 36 %) and increased disease severity. The hamster model of infection is widely accepted as an appropriate model for studying aspects of C. difficile host–pathogen interactions. Using this model we characterized the infection kinetics of the UK 2006 outbreak strain, R20291. Hamsters were orally given a dose of clindamycin, followed 5 days later with 10 000 C. difficile spores. All 100 % of the hamsters succumbed to infection with a mean time to the clinical end point of 46.7 h. Colonization of the caecum and colon were observed 12 h post-infection reaching a maximum of approximately 3×104 c.f.u. per organ, but spores were not detected until 24 h post-infection. At 36 h post-infection C. difficile numbers increased significantly to approximately 6×107 c.f.u. per organ where numbers remained high until the clinical end point. Increasing levels of in vivo toxin production coincided with increases in C. difficile numbers in organs reaching a maximum at 36 h post-infection in the caecum. Epithelial destruction and polymorphonuclear leukocyte (PMN) recruitment occurred early on during infection (24 h) accumulating as gross microvilli damage, luminal PMN influx, and blood associated with mucosal muscle and microvilli. These data describe the fatal infection kinetics of the clinical UK epidemic C. difficile strain R20291 in the hamster infection model.
Collapse
Affiliation(s)
- Anthony M Buckley
- Institute of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Janice Spencer
- Institute of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Denise Candlish
- Institute of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - June J Irvine
- Institute of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gillian R Douce
- Institute of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
28
|
Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ. Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 2010; 1213:5-19. [PMID: 21058956 DOI: 10.1111/j.1749-6632.2010.05828.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The discovery of novel antibiotic classes has not kept pace with the growing threat of bacterial resistance. Antibiotic candidates that act at new targets or via distinct mechanisms have the greatest potential to overcome resistance; however, novel approaches are also associated with higher attrition and longer timelines. This uncertainty has contributed to the withdrawal from antibiotic programs by many pharmaceutical companies. Genomic approaches have not yielded satisfactory results, in part due to nascent knowledge about unprecedented molecular targets, the challenge of achieving antibacterial activity by lead optimization of enzyme inhibitors, and the limitations of compound screening libraries for antibacterial discovery. Enhanced diversity of compound screening banks, entry into new chemical space, and new screening technologies are currently being exploited to improve hit rates for antibacterial discovery. Antibacterial compound lead optimization faces hurdles associated with the high plasma exposures required for efficacy. Lead optimization would be enhanced by the identification of new antibiotic classes with improved tractability and by expanding the predictability of in vitro safety assays. Implementing multiple screening and target identification strategies is recommended for improving the likelihood of discovering new antibacterial compounds that address unmet needs.
Collapse
Affiliation(s)
- Michael N Gwynn
- Antibacterial Discovery Performance Unit, Infectious Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | | |
Collapse
|
29
|
Recognition and prevention of hospital-associated enteric infections in the intensive care unit. Crit Care Med 2010; 38:S324-34. [PMID: 20647790 DOI: 10.1097/ccm.0b013e3181e69f05] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objectives of this article were to review the causes and extent of hospital-associated infectious diarrhea and associated risks in the general hospital ward and intensive care unit (ICU), to compare microorganisms with similar symptoms to aid in recognition that will lead to timely and appropriate treatment and control measures, and to propose infection prevention protocols that could decrease human process errors in the ICU. This literature review describes epidemiology, comparison of microbial characteristics for potential hospital-associated enteric pathogens, diagnosis, and prevention, especially if important in the ICU, and particularly in regard to Clostridium difficile. Enteric organisms that most commonly cause hospital-associated infectious diarrhea in acute care settings and the ICU are C. difficile, rotavirus, and norovirus, although others may also be important, particularly in developing countries. To recognize and control infectious diarrhea successfully in the ICU, intensivists should be aware that epidemiology, risks, and prevention measures may differ between these microorganisms. In addition, intensivists should be ready to implement systems changes related to notification, isolation precautions and prevention, and environmental cleaning in the ICU.
Collapse
|
30
|
Abstract
Mouse models have been developed to study the pathogenic process of Clostridium difficile infections, first the intestinal colonization and second the toxin production. These models have also been used to test the role of environmental conditions that modulate infection. Different mouse models have been used successfully to study C. difficile infections such as conventional mice, gnotobiotic mouse models including the monoxenic C. difficile mouse model, and the human microbiota-associated mouse model. The advantages and disadvantages of these models are discussed.
Collapse
Affiliation(s)
- Anne Collignon
- Faculté de Pharmacie, Université Paris Sud, Châtenay Malabry, France
| |
Collapse
|
31
|
Bauer MP, Veenendaal D, Verhoef L, Bloembergen P, van Dissel JT, Kuijper EJ. Clinical and microbiological characteristics of community-onset Clostridium difficile infection in The Netherlands. Clin Microbiol Infect 2009; 15:1087-92. [PMID: 19624512 DOI: 10.1111/j.1469-0691.2009.02853.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the prevalence, characteristics and risk factors of community-onset Clostridium difficile infection (CO-CDI), an uncontrolled prospective study was performed. For 3 months in 2007-2008, three laboratories in The Netherlands tested all unformed stool samples submitted by general practitioners (GPs) for C. difficile by enzyme immunoassay for toxins A and B, irrespective of whether GPs specifically requested this. Patients with positive results were asked to complete a questionnaire. Positive stool samples were cultured for C. difficile, and isolates were characterized. In all, 2443 stool samples from 2423 patients were tested, and 37 patients (1.5%) with positive toxin test results were identified. Mixed infections were not found. Age varied from 1 to 92 years, and 18% were under the age of 20 years. Diarrhoea was typically frequent and watery, sometimes with admixture of blood or fever. Eight of 28 patients (29%) suffered recurrences. Among 31 patients with toxin-positive stool samples for whom information was available, 20 (65%) had not been admitted to a healthcare institution in the year before, 13 (42%) had not used antibiotics during the 6 months before, and eight (26%) had neither risk factor. A separate analysis for patients whose samples were both toxin-positive and culture-positive produced similar results. Cultured C. difficile isolates belonged to 13 different PCR ribotypes, and 24% of the isolates were non-typeable (rare or new) PCR ribotypes. In conclusion, CO-CDI can affect all age groups, and many patients do not have known risk factors. Several PCR ribotypes not encountered in hospital-associated outbreaks were found, suggesting the absence of a direct link between outbreaks and community-onset cases.
Collapse
Affiliation(s)
- M P Bauer
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
McFarland LV. Normal flora: diversity and functions. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600050216183] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lynne V. McFarland
- From the Department of Medicinal Chemistry, University of Washington, and Biocodex, Inc. Seattle, WA, USA
| |
Collapse
|
33
|
Elmer GW. Variable time of onset ofClostridium difficiledisease initiated by antimicrobial treatment in hamsters. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106099435745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Gary W. Elmer
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle
| |
Collapse
|
34
|
Boureau, L. Hartmann, T. Karjalaine H. Models to Study Colonisation and Colonisation Resistance. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600050216246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- H. Boureau, L. Hartmann, T. Karjalaine
- Microbiologie, Faculté de Pharmacie, Université Paris-Sud, Châtenay Malabry, France
- Gastrointestinal Microbiology, German Institute of Human Nutrition, Potsdam Rehbrücke, Germany
- Northern Ireland Centre for Diet and Health, University of Ulster, Coleraine, Northern Ireland
- Instituut voor Wiskunde en Informatica, Faculteit des Wiskunde en Natuurwetenschappen, Groningen, The Netherlands
| |
Collapse
|
35
|
O'Connor JR, Johnson S, Gerding DN. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 2009; 136:1913-24. [PMID: 19457419 DOI: 10.1053/j.gastro.2009.02.073] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/09/2009] [Accepted: 02/17/2009] [Indexed: 12/30/2022]
Abstract
Rates and severity of Clostridium difficile infection (CDI) in hospitals in North America and Europe have increased since 2000 and correlate with dissemination of an epidemic strain characterized by higher than usual toxin A and B production, the presence of a third toxin, binary toxin, and high-level resistance to fluoroquinolone antibiotics. The strain, which is restriction endonuclease analysis group BI, pulse-field gel electrophoresis type NAP1, and polymerase chain reaction ribotype 027, is designated BI/NAP1/027. How this strain has become so widely distributed geographically and produces such severe CDI is the subject of active investigation. The deletion at position 117 of the tcdC gene, a repressor of toxin A and B production, is one possible contributor to increased levels of the toxins. The role of binary toxin is unknown. Recent isolates of BI/NAP1/027 were found to be resistant to fluoroquinolones, which is likely to contribute to the dissemination of this strain. Other virulence factors such as increased sporulation and surface layer protein adherence are also under investigation. Infections caused by this organism are particularly frequent among elderly hospitalized patients, in whom the attributable 30-day mortality is greater than 5%. Major risk factors for BI/NAP1/027 infection include advanced age, hospitalization, and exposure to specific antimicrobials, especially fluoroquinolones and cephalosporins. When CDI is severe, vancomycin treatment is more effective than metronidazole; for mild disease either agent can be used. Control of hospital outbreaks caused by BI/NAP1/027 is difficult but possible through a combination of barrier precautions, environmental cleaning, and antimicrobial stewardship.
Collapse
|
36
|
Kaur S, Vaishnavi C, Prasad KK, Ray P, Kochhar R. Comparative role of antibiotic and proton pump inhibitor in experimental Clostridium difficile infection in mice. Microbiol Immunol 2008; 51:1209-14. [PMID: 18094539 DOI: 10.1111/j.1348-0421.2007.tb04016.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clostridium difficile inoculated BALB/c mice were investigated to assess the comparative role of antibiotic and proton pump inhibitor. They were examined for colonization and toxin production by C. difficile as well as myeloperoxidase activity and histopathological changes in the intestinal tract. The C. difficile count, toxin A and B titres and myeloperoxidase activity were significantly higher (P>0.05) in ampicillin and lansoprazole receiving groups as compared to the control and the C. difficile receiving groups. Similarly they showed significant difference (P >0.05) for epithelial damage, oedema and neutrophilic infiltrate in colons. In addition to antibiotic, PPI also acts as an independent risk factor for C. difficile infection in experimental studies.
Collapse
Affiliation(s)
- Sukhminderjit Kaur
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
37
|
Gerber M, Ackermann G. OPT-80, a macrocyclic antimicrobial agent for the treatment ofClostridium difficileinfections: a review. Expert Opin Investig Drugs 2008; 17:547-53. [DOI: 10.1517/13543784.17.4.547] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Owens RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 2008; 46 Suppl 1:S19-31. [PMID: 18177218 DOI: 10.1086/521859] [Citation(s) in RCA: 455] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial therapy plays a central role in the pathogenesis of Clostridium difficile infection (CDI), presumably through disruption of indigenous intestinal microflora, thereby allowing C. difficile to grow and produce toxin. Investigations involving animal models and studies performed in vitro suggest that inhibitory activity against C. difficile and differences in the propensity to stimulate toxin production may also influence the likelihood that particular drugs may cause CDI. Although nearly all antimicrobial classes have been associated with CDI, clindamycin, third-generation cephalosporins, and penicillins have traditionally been considered to harbor the greatest risk. Recent studies have also implicated fluoroquinolones as high-risk agents, a finding that is most likely to be related in part to increasing fluoroquinolone resistance among epidemic strains (i.e., restriction-endonuclease analysis group BI/North American PFGE type 1 strains) and some nonepidemic strains of C. difficile. Restrictions in the use of clindamycin and third-generation cephalosporins have been associated with reductions in CDI. Because use of any antimicrobial has the potential to induce the onset of CDI and disease caused by other health care-associated pathogens, antimicrobial stewardship programs that promote judicious use of antimicrobials are encouraged in concert with environmental and infection control-related efforts.
Collapse
|
39
|
Cookson B. Hypervirulent strains of Clostridium difficile. Postgrad Med J 2007; 83:291-5. [PMID: 17488855 PMCID: PMC2600085 DOI: 10.1136/pgmj.2006.056143] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 01/16/2007] [Indexed: 12/18/2022]
Abstract
North America has seen increasing numbers of hospitalised patients and others in nursing homes and the community, with more severe Clostridium difficile associated diarrhoea. This is also described in Northern Europe and surveillance systems are being developed or improved to monitor the situation. One strain (ribotype O27) is described in detail and, like other emerging strains, is demonstrating increasing antimicrobial resistance, notably to quinolone antibiotics. However, its association with increased virulence is not straightforward, probably reflecting the interactions with differing patient case mix. There are many subtypes of the strain and more sophisticated typing and virulence assessment systems need to be developed using isolates carefully collected to test different epidemiological hypotheses. There are also environmental factors relating to treatment such as antimicrobials, cytotoxics and proton pump inhibitors. An emerging theme is the importance of aspects of healthcare delivery in contributing to the problem; this includes poorly maintained and cleaned healthcare premises, overcrowded hospitals and increased staffing workloads leading to poor compliance with infection control.
Collapse
Affiliation(s)
- Barry Cookson
- Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London, NW9 5HT, UK.
| |
Collapse
|
40
|
Freeman J, Baines SD, Jabes D, Wilcox MH. Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. J Antimicrob Chemother 2005; 56:717-25. [PMID: 16143709 DOI: 10.1093/jac/dki321] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Treatment of Clostridium difficile infection (CDI) is limited primarily to either metronidazole or vancomycin. We compared vancomycin and a novel glycolipodepsipeptide, ramoplanin, in both hamster and in vitro gut models of clindamycin-induced CDI. METHODS We used an in vitro triple-stage chemostat model that simulates the human gut, and an in vivo hamster model, both primed with clindamycin. RESULTS Clindamycin exposure elicited symptomatic disease in the hamster model, and promoted C. difficile germination and toxin production in the gut model. C. difficile germination and toxin production were not associated with depletion of gut microflora in the gut model, but were temporarily associated with subinhibitory concentrations of clindamycin. Both ramoplanin and vancomycin were associated with rapid symptom resolution in the hamster model, and rapid toxin titre decrease in the in vitro gut model. In both models of CDI, vancomycin was associated with greater persistence of C. difficile spores. C. difficile spores were recovered significantly more often from the caecal contents of vancomycin-treated (n = 19/23) compared with ramoplanin-treated (n = 6/23) hamsters (P < 0.05). CONCLUSIONS Results from the in vitro gut and hamster models were concordant. Ramoplanin and vancomycin were similarly effective at reducing cytotoxin production in the gut CDI model and in resolving symptoms in the hamster model. Ramoplanin may be more effective than vancomycin at killing spores and preventing spore recrudescence. These findings suggest a potential therapeutic role for ramoplanin in CDI that requires further clinical investigation.
Collapse
Affiliation(s)
- Jane Freeman
- Department of Microbiology, University of Leeds and The General Infirmary, Old Medical School, Leeds, LS1 3EX, UK
| | | | | | | |
Collapse
|
41
|
Lewis S, Burmeister S, Brazier J. Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: a randomized, controlled study. Clin Gastroenterol Hepatol 2005; 3:442-8. [PMID: 15880313 DOI: 10.1016/s1542-3565(04)00677-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Ten percent to 20% of patients relapse after successful treatment of their Clostridium difficile -associated diarrhea. We set out to determine if the prebiotic oligofructose could alter the fecal bacterial flora and, in addition to antibiotic treatment, reduce the rate of relapse from C difficile infection. METHODS Consecutive inpatients with C difficile -associated diarrhea were randomly allocated to receive oligofructose or placebo for 30 days in addition to specific antibiotic treatment. Patients were followed up for an additional 30 days. The main end point was the development of further diarrhea. Stools were collected for bacterial culture and C difficile toxin measurement. RESULTS One hundred forty-two patients were recruited. Stool culture confirmed the probiotic effect of oligofructose with an increase in fecal bifidobacteria from baseline 8.68 log(10) colony-forming units (cfu)/g to 9.37 log(10) cfu/g at discharge (P < .0001; 95% confidence interval [CI], 0.45-0.94), 9.64 log(10) cfu/g at 30 days (P < .0001; 95% CI, 0.74-1.18), and 9.42 log(10) cfu/g at 60 days (P < .0001; 95% CI, 0.56-0.93). Thirty patients experienced a relapse of diarrhea after a median of 18 days (range, 8-34 days). Relapse of diarrhea was more common in those taking placebo (8.3% oligofructose vs 34.3% placebo, P < .001, chi(2) = 14.35). Patients who relapsed stayed in the hospital longer than those who did not (53 vs 26 days, P = .021; 95% CI, 2-28), and there was a longer period of time from commencing metronidazole or vancomycin and their diarrhea settling (6 vs 3 days; P = .007; 95% CI, 1.0-5.0). CONCLUSIONS Fecal cultures confirmed the prebiotic effect of oligofructose. Patients taking oligofructose were less likely to develop further diarrhea than those taking the placebo.
Collapse
Affiliation(s)
- Stephen Lewis
- Department of Medicine, Derriford Hospital, Plymouth, UK
| | | | | |
Collapse
|
42
|
Baines SD, Freeman J, Wilcox MH. Effects of piperacillin/tazobactam on Clostridium difficile growth and toxin production in a human gut model. J Antimicrob Chemother 2005; 55:974-82. [PMID: 15860551 DOI: 10.1093/jac/dki120] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Clostridium difficile infection (CDI) is a major cause of morbidity in the nosocomial environment. Antimicrobial agents such as the third-generation cephalosporins, lincosamides and aminopenicillins are well known for their propensity to induce CDI, but the definitive reasons why remain to be elucidated. Despite their broad spectrum of activity against both aerobic and anaerobic bacteria, the ureidopenicillins remain a class of antimicrobials infrequently associated with the development of CDI. METHODS We used a triple-stage chemostat model that simulates the human gut to study the effects of the ureidopenicillin/beta-lactamase inhibitor combination piperacillin/tazobactam on gut bacterial populations and C. difficile. RESULTS Piperacillin/tazobactam rapidly reduced all enumerated gut bacterial populations (including bacteroides, bifidobacteria and lactobacilli) below the limits of detection by the end of the piperacillin/tazobactam instillation period. Despite such widespread disruption of gut bacterial populations, C. difficile populations remained principally as spores, with no sustained proliferation or high-level cytotoxin production observed. CONCLUSIONS Factors other than reduced colonization resistance must be responsible for determining whether CDI develops following antimicrobial administration. We believe the gut model is a promising approach for the study of C. difficile pathogenesis reflecting in vivo events likely to occur in CDI.
Collapse
Affiliation(s)
- Simon D Baines
- Department of Microbiology, University of Leeds and The General Infirmary, Old Medical School, Leeds LS1 3EX, UK
| | | | | |
Collapse
|
43
|
Naaber P, Mikelsaar M. Interactions between Lactobacilli and Antibiotic-Associated Diarrhea. ADVANCES IN APPLIED MICROBIOLOGY 2004; 54:231-60. [PMID: 15251283 DOI: 10.1016/s0065-2164(04)54009-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul Naaber
- Department of Microbiology, University of Tartu, Tartu 50411, Estonia
| | | |
Collapse
|
44
|
Böttcher MF, Nordin EK, Sandin A, Midtvedt T, Björkstén B. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy 2000; 30:1590-6. [PMID: 11069568 DOI: 10.1046/j.1365-2222.2000.00982.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The prevalence of allergic diseases has increased particularly over the past 30-40 years. A reduced microbial stimulation during infancy may result in a development of a disturbed balance between Th1- and Th2-like immunity. The gut flora is, quantitatively, the most important source for such stimulation. OBJECTIVE The aim of the study was to compare the gut microbial flora in 25 allergic and 47 nonallergic 13-month-old infants (range 11-18), through analysing microflora-associated biochemical markers in faeces. METHODS Microflora associated characteristics (MACs) were assessed by determining the concentrations of eight different short chain fatty acids and the conversion of cholesterol to coprostanol by gas chromatography. Faecal tryptic activity was analysed spectrophotometrically. RESULTS The allergic infants had lower levels of propionic, i-butyric, butyric, i-valeric and valeric acid. In contrast, they had higher levels of the rarely detected i-caproic acid, which has been associated with the presence of Clostridium difficile. Furthermore, the allergic infants had higher relative distribution of acetic and i-caproic acid. None of the other parameters differed between the groups. CONCLUSION The results demonstrate differences in the MACs between allergic and nonallergic infants, indicating differences in the composition of the gut flora that may disturb the development of a normal Th1-/Th2-balance in allergic children.
Collapse
Affiliation(s)
- M F Böttcher
- Department of Health and Environment, Division of Paediatrics, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
45
|
Ward SJ, Douce G, Dougan G, Wren BW. Local and systemic neutralizing antibody responses induced by intranasal immunization with the nontoxic binding domain of toxin A from Clostridium difficile. Infect Immun 1999; 67:5124-32. [PMID: 10496886 PMCID: PMC96861 DOI: 10.1128/iai.67.10.5124-5132.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fourteen of the 38 C-terminal repeats from Clostridium difficile toxin A (14CDTA) were cloned and expressed either with an N-terminal polyhistidine tag (14CDTA-HIS) or fused to the nontoxic binding domain from tetanus toxin (14CDTA-TETC). The recombinant proteins were successfully purified by bovine thyroglobulin affinity chromatography. Both C. difficile toxin A fusion proteins bound to known toxin A ligands present on the surface of rabbit erythrocytes. Intranasal immunization of BALB/c mice with three separate 10-microg doses of 14CDTA-HIS or -TETC generated significant levels of anti-toxin A serum antibodies compared to control animals. The coadministration of the mucosal adjuvant heat labile toxin (LT) from Escherichia coli (1 microg) significantly increased the anti-toxin A response in the serum and at the mucosal surface. Importantly, the local and systemic antibodies generated neutralized toxin A cytotoxicity. Impressive systemic and mucosal anti-toxin A responses were also seen following coadministration of 14CDTA-TETC with LTR72, an LT derivative with reduced toxicity which shows potential as a mucosal adjuvant for humans.
Collapse
Affiliation(s)
- S J Ward
- Microbial Pathogenicity Research Group, Department of Microbiology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, West Smithfield, London ECIA 7BE, United Kingdom
| | | | | | | |
Collapse
|
46
|
Ward SJ, Douce G, Figueiredo D, Dougan G, Wren BW. Immunogenicity of a Salmonella typhimurium aroA aroD vaccine expressing a nontoxic domain of Clostridium difficile toxin A. Infect Immun 1999; 67:2145-52. [PMID: 10225867 PMCID: PMC115950 DOI: 10.1128/iai.67.5.2145-2152.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal repeat domain of Clostridium difficile toxin A harbors toxin-neutralizing epitopes and is considered to be a candidate component of a vaccine against C. difficile-associated disease (CDAD). Fourteen of the 38 C-terminal toxin A repeats (14CDTA) were cloned into pTECH-1 in frame with the immunogenic fragment C of tetanus toxin (TETC) to generate plasmid p56TETC. Expression of the TETC-14CDTA fusion protein was driven from the anaerobically inducible nirB promoter within attenuated Salmonella typhimurium BRD509 (aroA aroD). The TETC-14CDTA fusion protein was purified and shown to bind to known toxin A receptors found on the surface of rabbit erythrocytes. Intranasal (i.n.) and intragastric (i.g.) immunization with 10(7) and 10(10) CFU, respectively, of BRD509(p56TETC) generated significant (P < 0.05) anti-toxin A serum responses after a single dose. Antibody titers were elevated following a boosting dose with either live vaccine or a subcutaneous injection of 0.5 microgram of purified 14CDTA protein. Importantly, serum from mice immunized with BRD509(p56TETC) neutralized toxin A cytotoxicity. Both i.n. and i.g. immunizations also generated toxin A-specific immunoglobulin A on the pulmonary and intestinal mucosa, respectively. Intranasal vaccination induced consistently higher serum and mucosal anti-toxin A antibody responses. Significant anti-tetanus toxoid serum and mucosal antibodies were also generated by both immunization routes. The availability of live attenuated Salmonella typhi for human use may allow the development of a multivalent mucosal vaccine against CDAD, tetanus, and typhoid.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/blood
- Bacterial Toxins
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Base Sequence
- Clostridioides difficile/genetics
- Clostridioides difficile/immunology
- DNA Primers/genetics
- Enterocolitis, Pseudomembranous/immunology
- Enterocolitis, Pseudomembranous/prevention & control
- Enterotoxins/genetics
- Enterotoxins/immunology
- Female
- Humans
- Hydro-Lyases/genetics
- Hydro-Lyases/immunology
- Immunity, Mucosal
- Immunization
- Immunoglobulin A/biosynthesis
- Mice
- Mice, Inbred BALB C
- Rabbits
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Salmonella Vaccines
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Typhoid-Paratyphoid Vaccines
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- S J Ward
- Microbial Pathogenicity Research Group, Department of Microbiology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London EC1A 7BE, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
McFarland LV, Surawicz CM, Rubin M, Fekety R, Elmer GW, Greenberg RN. Recurrent Clostridium difficile disease: epidemiology and clinical characteristics. Infect Control Hosp Epidemiol 1999; 20:43-50. [PMID: 9927265 DOI: 10.1086/501553] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To describe the epidemiology, diagnosis, risk factors, patient impact, and treatment strategies for recurrent Clostridium difficile-associated disease (CDAD). DESIGN Data were collected as part of a blinded, placebo-controlled clinical trial testing a new combination treatment for recurrent CDAD. Retrospective data regarding prior CDAD episodes were collected from interviews and medical-chart review. Prospective data on the current CDAD episode, risk factors, and recurrence rates were collected during a 2-month follow-up. SETTINGS National referral study. PARTICIPANTS Patients with recurrent CDAD. INTERVENTIONS Treatment with a 10-day course of low-dose (500 mg/d) or high-dose (2 g/d) vancomycin or metronidazole (1 g/d). RESULTS Recurrent CDAD was found to have a lengthy course involving multiple episodes of diarrhea, abdominal cramping, nausea, and fever. CDAD may recur over several years despite frequent treatment with antibiotics. Recurrence rates were similar regardless of the choice or dose of antibiotic. Recurrent CDAD is not a trivial disease: patients may have multiple episodes (as many as 14), may require hospitalization, and the mean lifetime cost of direct medical care was $10,970 per patient. Fortunately, the disease does not become progressively more severe as the number of episodes increase. Two risk factors predictive for recurrent CDAD were found: increasing age and a decreased quality-of-life score at enrollment. CONCLUSIONS Recurrent CDAD is a persistent disease that may result in prolonged hospital stays, additional medical costs, and rare serious complications.
Collapse
Affiliation(s)
- L V McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | | | | | | | | | | |
Collapse
|
48
|
Frankel WL, Choi DM, Zhang W, Roth JA, Don SH, Afonso JJ, Lee FH, Klurfeld DM, Rombeau JL. Soy fiber delays disease onset and prolongs survival in experimental Clostridium difficile ileocecitis. JPEN J Parenter Enteral Nutr 1994; 18:55-61. [PMID: 8164305 DOI: 10.1177/014860719401800155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clostridium difficile colitis is a disabling complication in critically ill patients who commonly receive broad-spectrum antibiotics and liquid diets. To date, there is no experimental model specifically designed to investigate the effects of liquid diets on this type of colitis. The addition of fiber to liquid diets normalizes gut structure and improves absorptive function in selected conditions of intestinal dysfunction. The purposes of this study were the following: (1) to develop a reproducible model to examine the interaction of acute C difficile-induced colitis and liquid diets, (2) to determine whether the addition of soy fiber to a liquid diet improves disease, and (3) to investigate possible mechanisms of fiber-mediated disease improvement. Syrian hamsters were pair-fed with either a polymeric liquid diet or the same diet with 1.4% soy fiber for 10 days. Animals were given either clindamycin and C difficile (to produce ileocecitis), or equivalent volumes of saline. Mean survival time and systematic stool examinations for C difficile toxin positivity, liquidity, and percent water were performed to determine the effect of soy fiber on disease. Survival time was prolonged by 34% (p < .05), and C difficile toxin positivity and stool liquidity were significantly reduced (p < .05) with fiber. Additional animals were studied to determine possible mechanisms for improved survival in fiber-supplemented animals. Cecal histology, colonic water absorption, cecal microflora, and gastric to anus transit time were measured in these animals. Colonic water absorption and gastric to anus transit time were significantly increased (p < .05) and decreased (p < .05) with fiber, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W L Frankel
- Harrison Department of Surgical Research, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- E Wilkins
- Regional Department of Infectious Diseases and Tropical Medicine, Monsall Hospital, Manchester, U.K
| |
Collapse
|