1
|
Oles RE, Carrillo Terrazas M, Loomis LR, Hsu CY, Tribelhorn C, Belda-Ferre P, Ea AC, Bryant M, Young JA, Carrow HC, Sandborn WJ, Dulai PS, Sivagnanam M, Pride D, Knight R, Chu H. Pangenome comparison of Bacteroides fragilis genomospecies unveils genetic diversity and ecological insights. mSystems 2024; 9:e0051624. [PMID: 38934546 PMCID: PMC11265264 DOI: 10.1128/msystems.00516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon, which differentiates into two genomospecies termed divisions I and II. Through a comprehensive collection of 694 B. fragilis whole genome sequences, we identify novel features distinguishing these divisions. Our study reveals a distinct geographic distribution with division I strains predominantly found in North America and division II strains in Asia. Additionally, division II strains are more frequently associated with bloodstream infections, suggesting a distinct pathogenic potential. We report differences between the two divisions in gene abundance related to metabolism, virulence, stress response, and colonization strategies. Notably, division II strains harbor more antimicrobial resistance (AMR) genes than division I strains. These findings offer new insights into the functional roles of division I and II strains, indicating specialized niches within the intestine and potential pathogenic roles in extraintestinal sites. IMPORTANCE Understanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their impact on human health. Classifying division II strains as Bacteroides fragilis can lead to erroneous associations, as researchers may mistakenly attribute characteristics observed in division II strains to the more extensively studied division I B. fragilis. Our findings underscore the necessity of recognizing these divisions as separate species with distinct functions. We unveil new findings of differential gene prevalence between division I and II strains in genes associated with intestinal colonization and survival strategies, potentially influencing their role as gut commensals and their pathogenicity in extraintestinal sites. Despite the significant niche overlap and colonization patterns between these groups, our study highlights the complex dynamics that govern strain distribution and behavior, emphasizing the need for a nuanced understanding of these microorganisms.
Collapse
Affiliation(s)
- Renee E. Oles
- Department of Pathology, University of California, San Diego, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | | | - Luke R. Loomis
- Department of Pathology, University of California, San Diego, California, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, California, USA
| | - Caitlin Tribelhorn
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | - Allison C. Ea
- Department of Pathology, University of California, San Diego, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | - Jocelyn A. Young
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hannah C. Carrow
- Department of Pathology, University of California, San Diego, California, USA
| | - William J. Sandborn
- Division of Gastroenterology, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
| | - Parambir S. Dulai
- Division of Gastroenterology, University of California, San Diego, California, USA
- Division of Gastroenterology, Northwestern University, Chicago, Illinois, USA
| | - Mamata Sivagnanam
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - David Pride
- Department of Pathology, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Center for Innovative Phage Applications and Therapeutics (IPATH), University of California, San Diego, California, USA
- Center of Advanced Laboratory Medicine (CALM), University of California, San Diego, California, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, California, USA
- Department of Computer Science & Engineering, University of California, San Diego, California, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, California, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, California, USA
| |
Collapse
|
2
|
Norimatsu Y, Takemura N, Yoshikawa K, Ito K, Inagaki F, Mihara F, Yamada K, Kokudo N. A case of multidrug-resistant intractable pylephlebitis and intra-abdominal abscess due to perforated appendicitis successfully treated with open abdominal management. Surg Case Rep 2024; 10:84. [PMID: 38607465 PMCID: PMC11014825 DOI: 10.1186/s40792-024-01882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Pylephlebitis, a rare and lethal form of portal venous septic thrombophlebitis, often arises from infections in regions drained by the portal vein. Herein, we report a case of peritonitis with portal vein thrombosis due to acute severe appendicitis, managed with intensive intraperitoneal drainage via open abdominal management (OAM). CASE PRESENTATION A 19-year-old male with severe appendicitis, liver abscesses, and portal vein thrombosis developed septic shock and multi-organ failure. After emergency interventions, the patient was admitted to the intensive care unit. Antibiotic treatment based on cultures revealing multidrug-resistant Escherichia coli and Bacteroides fragilis and anticoagulation therapy (using heparin and edoxaban) was initiated. Despite continuous antibiotic therapy, the laboratory results consistently showed elevated levels of inflammatory markers. On the 13th day, open abdominal irrigation was performed for infection control. Extensive intestinal edema precluded wound closure, necessitating open-abdominal management in the intensive care unit. Anticoagulation therapy was continued, and intra-abdominal washouts were performed every 5 days. On the 34th day, wound closure was achieved using the anterior rectus abdominis sheath turnover method. The patient recovered successfully and was discharged on the 81st day. CONCLUSIONS Alongside appropriate antibiotic selection, early surgical drainage and OAM are invaluable. This case underscores the potential of anticoagulation therapy in facilitating safe surgical procedures.
Collapse
Affiliation(s)
- Yu Norimatsu
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Nobuyuki Takemura
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Kaoru Yoshikawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kyoji Ito
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Fuyuki Inagaki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Fuminori Mihara
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazuhiko Yamada
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
3
|
Oles RE, Terrazas MC, Loomis LR, Hsu CY, Tribelhorn C, Ferre PB, Ea A, Bryant M, Young J, Carrow HC, Sandborn WJ, Dulai P, Sivagnanam M, Pride D, Knight R, Chu H. Pangenome comparison of Bacteroides fragilis genomospecies unveil genetic diversity and ecological insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572674. [PMID: 38187556 PMCID: PMC10769428 DOI: 10.1101/2023.12.20.572674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon that differentiates into two genomospecies termed division I and II. We leverage a comprehensive collection of 694 B. fragilis whole genome sequences and report differential gene abundance to further support the recent proposal that divisions I and II represent separate species. In division I strains, we identify an increased abundance of genes related to complex carbohydrate degradation, colonization, and host niche occupancy, confirming the role of division I strains as gut commensals. In contrast, division II strains display an increased prevalence of plant cell wall degradation genes and exhibit a distinct geographic distribution, primarily originating from Asian countries, suggesting dietary influences. Notably, division II strains have an increased abundance of genes linked to virulence, survival in toxic conditions, and antimicrobial resistance, consistent with a higher incidence of these strains in bloodstream infections. This study provides new evidence supporting a recent proposal for classifying divisions I and II B. fragilis strains as distinct species, and our comparative genomic analysis reveals their niche-specific roles.
Collapse
Affiliation(s)
- Renee E Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | | | - Luke R Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Caitlin Tribelhorn
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | - Pedro Belda Ferre
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | - Allison Ea
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | - Jocelyn Young
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
- Rady Children's Hospital, San Diego, CA, United States
| | - Hannah C Carrow
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - William J Sandborn
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| | - Parambir Dulai
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
- Division of Gastroenterology, Northwestern University, Chicago, Illinois
| | - Mamata Sivagnanam
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
- Rady Children's Hospital, San Diego, CA, United States
| | - David Pride
- Department of Pathology, University of California, San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
- Center for Innovative Phage Applications and Therapeutics (IPATH), University of California, San Diego, La Jolla, CA
- Center of Advanced Laboratory Medicine (CALM), University of California, San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, La Jolla, CA
| |
Collapse
|
4
|
Oelschlaeger P, Kaadan H, Dhungana R. Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues. Antibiotics (Basel) 2023; 12:1746. [PMID: 38136780 PMCID: PMC10740994 DOI: 10.3390/antibiotics12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Metallo-β-lactamases (MBLs), also known as class B β-lactamases (BBLs), are Zn(II)-containing enzymes able to inactivate a broad range of β-lactams, the most commonly used antibiotics, including life-saving carbapenems. They have been known for about six decades, yet they have only gained much attention as a clinical problem for about three decades. The naming conventions of these enzymes have changed over time and followed various strategies, sometimes leading to confusion. We are summarizing the naming strategies of the currently known MBLs. These enzymes are quite diverse on the amino acid sequence level but structurally similar. Problems trying to describe conserved residues, such as Zn(II) ligands and other catalytically important residues, which have different numbers in different sequences, have led to the establishment of a standard numbering scheme for BBLs. While well intended, the standard numbering scheme is not trivial and has not been applied consistently. We revisit this standard numbering scheme and suggest some strategies for how its implementation could be made more accessible to researchers. Standard numbering facilitates the comparison of different enzymes as well as their interaction with novel antibiotics and BBL inhibitors.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Heba Kaadan
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Rinku Dhungana
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Yang Y, Yan YH, Schofield CJ, McNally A, Zong Z, Li GB. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol 2023; 31:735-748. [PMID: 36858862 DOI: 10.1016/j.tim.2023.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Resistance to β-lactam antibiotics is rapidly growing, substantially due to the spread of serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which efficiently catalyse β-lactam hydrolysis. Combinations of a β-lactam antibiotic with an SBL inhibitor have been clinically successful; however, no MBL inhibitors have been developed for clinical use. MBLs are a worrying resistance vector because they catalyse hydrolysis of all β-lactam antibiotic classes, except the monobactams, and they are being disseminated across many bacterial species worldwide. Here we review the classification, structures, substrate profiles, and inhibition mechanisms of MBLs, highlighting current clinical problems due to MBL-mediated resistance and progress in understanding and combating MBL-mediated resistance.
Collapse
Affiliation(s)
- Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Sood A, Ray P, Angrup A. Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12050942. [PMID: 37237845 DOI: 10.3390/antibiotics12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Anaerobic Gram-negative bacteria (AGNB) play a significant role as both pathogens and essential members of the human microbiota. Despite their clinical importance, there remains limited understanding regarding their antimicrobial resistance (AMR) patterns. This knowledge gap poses challenges in effectively managing AGNB-associated infections, as empirical treatment approaches may not adequately address the evolving resistance landscape. To bridge this research gap, we conducted a comprehensive study aimed at exploring the role of human AGNB as a reservoir of AMR. This can provide valuable insights for the prevention and management of anaerobic infections. METHODS We studied the prevalence of AMR and AMR determinants conferring resistance to metronidazole (nimE), imipenem (cfiA), piperacillin-tazobactam (cepA), cefoxitin (cfxA), clindamycin (ermF), chloramphenicol (cat) and mobile genetic elements (MGEs) such as cfiAIS and IS1186 associated with the cfiA and nim gene expression. These parameters were studied in Bacteroides spp., Fusobacterium spp., Prevotella spp., Veillonella spp., Sutterella spp., and other clinical AGNB. RESULTS Resistance to metronidazole, clindamycin, imipenem, piperacillin-tazobactam, cefoxitin and chloramphenicol was 29%, 33.5%, 0.5%, 27.5%, 26.5% and 0%, respectively. The presence of resistance genes, viz., nim, ermF, cfiA, cepA, cfxA, was detected in 24%, 33.5%, 10%, 9.5%, 21.5% isolates, respectively. None of the tested isolates showed the presence of a cat gene and MGEs, viz., cfiAIS and IS1186. The highest resistance to all antimicrobial agents was exhibited by Bacteroides spp. The association between resistant phenotypes and genotypes was complete in clindamycin, as all clindamycin-resistant isolates showed the presence of ermF gene, and none of the susceptible strains harbored this gene; similarly, all isolates were chloramphenicol-susceptible and also lacked the cat gene, whereas the association was low among imipenem and piperacillin-tazobactam. Metronidazole and imipenem resistance was seen to be dependent on insertion sequences for the expression of AMR genes. A constrained co-existence of cepA and cfiA gene in B. fragilis species was seen. Based on the absence and presence of the cfiA gene, we divided B. fragilis into two categories, Division I (72.6%) and Division II (27.3%), respectively. CONCLUSION AGNB acts as a reservoir of specific AMR genes, which may pose a threat to other anaerobes due to functional compatibility and acquisition of these genes. Thus, AST-complying standard guidelines must be performed periodically to monitor the local and institutional susceptibility trends, and rational therapeutic strategies must be adopted to direct empirical management.
Collapse
Affiliation(s)
- Anshul Sood
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Archana Angrup
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
7
|
Baaity Z, von Loewenich FD, Nagy E, Orosz L, Burián K, Somogyvári F, Sóki J. Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics (Basel) 2022; 11:antibiotics11050590. [PMID: 35625234 PMCID: PMC9138018 DOI: 10.3390/antibiotics11050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Carbapenem-resistant Bacteroides fragilis strains usually emerge by an insertion sequence (IS) jump into the upstream region of the cfiA carbapenemase gene. However, intermediate or fully resistant cfiA-positive strains also exist. These do not have such IS element activations, but usually have heterogeneous resistance (HR) phenotypes, as detected by a disc diffusion or gradient tests. Heteroresistance is a serious antibiotic resistance problem, whose molecular mechanisms are not fully understood. We aim to characterize HR and investigate diagnostic issues in the set of cfiA-positive B. fragilis strains using phenotypic and molecular methods. Of the phenotypic methods used, the population analysis profile (PAP) and area under curve (AUC) measurements were the best prognostic markers for HR. PAP AUC, imipenem agar dilution and imipenemase production corresponded well with each other. We also identified a saturation curve parameter (quasi-PAP curves), which correlated well with these phenotypic traits, implying that HR is a stochastic process. The genes, on a previously defined ‘cfiA element’, act in a complex manner to produce the HR phenotype, including a lysine-acetylating toxin and a lysine-rich peptide. Furthermore, imipenem HR is triggered by imipenem. The two parameters that most correlate with the others are imipenemase production and ‘GNAT’ expression, which prompted us to suspect that carbapenem heteroresistance of the B. fragilis strains is stochastically regulated and is mediated by the altered imipenemase production.
Collapse
Affiliation(s)
- Zain Baaity
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | | | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - László Orosz
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - Ferenc Somogyvári
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
- Correspondence: author:
| |
Collapse
|
8
|
Yeh TK, Li ZH, Huang YT, Liu PY. COVID-19 Associated Bacteremia with Chryseobacterium indologenes Co-Harboring blaIND-2, blaCIA and blaCcrA. Infect Drug Resist 2022; 15:167-170. [PMID: 35082504 PMCID: PMC8786363 DOI: 10.2147/idr.s347066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
We report a COVID-19 case with carbapenem resistant Chryseobacterium indologenes bacteremia. Whole genome sequencing identified the presence of blaIND-2, blaCIA and blaCcrA. To our knowledge, this is the first report of Chryseobacterium indologenes complicating COVID-19 and the detection of blaCcrA in C. indologenes. The presence of blaCcrA in Chryseobacterium was overlooked previously may related to substantial sequence divergence with the original allele in Bacteroides fragilis. Antimicrobial resistance (AMR) is a challenge to global health in the age of COVID-19 pandemic. Further study and surveillance of underlying mechanisms is needed.
Collapse
Affiliation(s)
- Ting-Kuang Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Zong-Hao Li
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Correspondence: Po-Yu Liu, Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, 40705, Taiwan, Tel +886-4-23592525-3329, Fax +886-4-23592525-83588, Email
| |
Collapse
|
9
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
10
|
Andersson H, Jarvoll P, Yang SK, Yang KW, Erdélyi M. Binding of 2-(Triazolylthio)acetamides to Metallo-β-lactamase CcrA Determined with NMR. ACS OMEGA 2020; 5:21570-21578. [PMID: 32905426 PMCID: PMC7469393 DOI: 10.1021/acsomega.0c02187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 05/06/2023]
Abstract
Metallo-β-lactamase (MBL)-producing bacteria resistant to β-lactam antibiotics are a serious threat to human health. Despite great efforts and important progress in the discovery of MBL inhibitors (MBLIs), there is none in clinical use. Herein, inhibitor complexes of the MBL CcrA were investigated by NMR spectroscopy to provide perspectives on the further development of 2-(triazolylthio)acetamide-type MBLIs. By using the NMR-based chemical shift perturbation (CSP) and direction of CSP methodologies together with molecular docking, the spatial orientation of three compounds in the CcrA active site was investigated (4-6). Inhibitor 6 showed the best binding affinity (K d ≈ 2.3 ± 0.3 μM), followed by 4 (K d = 11 ± 11 μM) and 5 (K d = 34 ± 43 μM), as determined from the experimental NMR data. Based on the acquired knowledge, analogues of other MBLIs (1-3) were designed and evaluated in silico with the purpose of examining a strategy for promoting their interactions with the catalytic zinc ions.
Collapse
Affiliation(s)
- Hanna Andersson
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Patrik Jarvoll
- Centre
for Antibiotic Resistance Research (CARe) at the University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Shao-Kang Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, P. R. China
| | - Ke-Wu Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, P. R. China
| | - Máté Erdélyi
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
- Centre
for Antibiotic Resistance Research (CARe) at the University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
11
|
Abstract
β-Lactam antibiotics have been widely used as therapeutic agents for the past 70 years, resulting in emergence of an abundance of β-lactam-inactivating β-lactamases. Although penicillinases in Staphylococcus aureus challenged the initial uses of penicillin, β-lactamases are most important in Gram-negative bacteria, particularly in enteric and nonfermentative pathogens, where collectively they confer resistance to all β-lactam-containing antibiotics. Critical β-lactamases are those enzymes whose genes are encoded on mobile elements that are transferable among species. Major β-lactamase families include plasmid-mediated extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases now appearing globally, with geographic preferences for specific variants. CTX-M enzymes include the most common ESBLs that are prevalent in all areas of the world. In contrast, KPC serine carbapenemases are present more frequently in the Americas, the Mediterranean countries, and China, whereas NDM metallo-β-lactamases are more prevalent in the Indian subcontinent and Eastern Europe. As selective pressure from β-lactam use continues, multiple β-lactamases per organism are increasingly common, including pathogens carrying three different carbapenemase genes. These organisms may be spread throughout health care facilities as well as in the community, warranting close attention to increased infection control measures and stewardship of the β-lactam-containing drugs in an effort to control selection of even more deleterious pathogens.
Collapse
|
12
|
Sydenham TV, Overballe-Petersen S, Hasman H, Wexler H, Kemp M, Justesen US. Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microb Genom 2019; 5:e000312. [PMID: 31697231 PMCID: PMC6927303 DOI: 10.1099/mgen.0.000312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Bacteroides fragilis constitutes a significant part of the normal human gut microbiota and can also act as an opportunistic pathogen. Antimicrobial resistance (AMR) and the prevalence of AMR genes are increasing, and prediction of antimicrobial susceptibility based on sequence information could support targeted antimicrobial therapy in a clinical setting. Complete identification of insertion sequence (IS) elements carrying promoter sequences upstream of resistance genes is necessary for prediction of AMR. However, de novo assemblies from short reads alone are often fractured due to repeat regions and the presence of multiple copies of identical IS elements. Identification of plasmids in clinical isolates can aid in the surveillance of the dissemination of AMR, and comprehensive sequence databases support microbiome and metagenomic studies. We tested several short-read, hybrid and long-lead assembly pipelines by assembling the type strain B. fragilis CCUG4856T (=ATCC25285=NCTC9343) with Illumina short reads and long reads generated by Oxford Nanopore Technologies (ONT) MinION sequencing. Hybrid assembly with Unicycler, using quality filtered Illumina reads and Filtlong filtered and Canu-corrected ONT reads, produced the assembly of highest quality. This approach was then applied to six clinical multidrug-resistant B. fragilis isolates and, with minimal manual finishing of chromosomal assemblies of three isolates, complete, circular assemblies of all isolates were produced. Eleven circular, putative plasmids were identified in the six assemblies, of which only three corresponded to a known cultured Bacteroides plasmid. Complete IS elements could be identified upstream of AMR genes; however, there was not complete correlation between the absence of IS elements and antimicrobial susceptibility. As our knowledge on factors that increase expression of resistance genes in the absence of IS elements is limited, further research is needed prior to implementing AMR prediction for B. fragilis from whole-genome sequencing.
Collapse
Affiliation(s)
- Thomas V. Sydenham
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
- Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark
| | | | - Henrik Hasman
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hannah Wexler
- GLAVA Health Care System and David Geffen School of Medicine, UCLA (University of California, Los Angeles), Los Angeles, CA, USA
| | - Michael Kemp
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Ulrik S. Justesen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
13
|
Jeverica S, Sóki J, Premru MM, Nagy E, Papst L. High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe 2019; 58:30-34. [PMID: 30716401 DOI: 10.1016/j.anaerobe.2019.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
Bacteroides fragilis can be classified into division I (cfiA negative) and division II (cfiA positive) isolates. Division II isolates have a silent chromosomal carbapenemase gene (cfiA) that can become overexpressed by an insertion of a mobile genetic element and thus develop a phenotypic resistance to carbapenems. Aims of our study were (i) to determine the prevalence of B. fragilis division II (cfiA positive) isolates among blood stream and non-blood stream isolates from two major Slovenian tertiary-care hospitals and (ii) to assess its influence on phenotypic resistance to imipenem. Consecutive non-duplicate B. fragilis isolates from blood stream and non-blood stream specimens were included in the analysis from 2015 to 2017 period. Data from laboratory information system were matched with mass spectra obtained with Microflex LT instrument and MALDI Biotyper 3.1 software (Bruker Daltonik, Bremen, Germany). All mass spectra were reanalyzed using Bruker taxonomy library. Spectra with a log(score) > 2.0 were further analyzed with cfiA library that separates B. fragilis division I and II isolates based on a log(score) value difference of >0.3. Minimal inhibitory concentrations (MICs) for imipenem were determined with Etest (bioMérieux, Marcy l'Étoile, France), using supplemented Brucella agar and EUCAST breakpoints (S ≤ 2 mg/L, R > 8 mg/L). Altogether 623 consecutive B. fragilis isolates were included in the analysis; 47 (7.5%) were isolated from blood stream and 576 (92.5%) from non-blood stream specimens. Among all study isolates, 51 (8.2%) proved to belong to division II (cfiA positive). The proportions of division II isolates among blood stream and non-blood stream isolates were 14.9% and 7.6%, respectively (p = 0.081, ns). In total, 1.3% (n = 8) were non-susceptible to imipenem (MIC >2 mg/L); 4.3% (n = 2) among blood stream and 1% (n = 6) among non-blood stream isolates. All imipenem resistant isolates belonged to division II. Modal MICs (MIC range) were 0.064 mg/L (0.016 mg/L-2 mg/L) and 0.125 mg/L (0.064 mg/L-≥32 mg/L) for division I and II isolates, respectively.
Collapse
Affiliation(s)
- Samo Jeverica
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - József Sóki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Manica Mueller Premru
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Elizabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Lea Papst
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Di Pisa F, Pozzi C, Benvenuti M, Docquier JD, De Luca F, Mangani S. Boric acid and acetate anion binding to subclass B3 metallo-β-lactamase BJP-1 provides clues for mechanism of action and inhibitor design. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Park C, Lee HJ, Seo MY. The Characteristics of Imipenem-Resistant Bacteria Isolated from One Patient. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.4.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chul Park
- Department of Clinical Laboratory Science, Gwangyang Health Science University, Gwangyang, Korea
| | - Hyeok-Jae Lee
- Department of Biomedical Laboratory Science, Gwangju Health Science University, Gwangju, Korea
| | - Min-Young Seo
- Department of Biomedical Laboratory Science, Gwangju Health Science University, Gwangju, Korea
| |
Collapse
|
16
|
Gajdács M, Spengler G, Urbán E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology? Antibiotics (Basel) 2017; 6:E25. [PMID: 29112122 PMCID: PMC5745468 DOI: 10.3390/antibiotics6040025] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022] Open
Abstract
Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Edit Urbán
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary.
| |
Collapse
|
17
|
Litterio MR, Cejas D, Gutkind G, Radice M. Identification of CfiA coding genes in Bacteroides fragilis isolates recovered in Argentina. Inconsistencies in CfiA organization and nomenclature. Anaerobe 2017; 48:257-261. [PMID: 29017951 DOI: 10.1016/j.anaerobe.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/26/2023]
Abstract
CfiA (CcrA) metallo-β-lactamase is the main carbapenem resistance mechanism in B. fragilis. From cfiA positive isolates detected in a previous surveillance study, 3 displayed resistance to imipenem while the remaining were susceptible. The aim of this study was to identify the cfiA alleles and to analyze the presence of IS elements in their upstream regions. CfiA-1, CfiA-4, CfiA-13, CfiA-19 and CfiA-22 were detected. IS elements belonging to IS21 family and IS942 group were identified upstream to cfiA in the 3 imipenem resistant isolates. We present an exhaustive analysis of cfiA/CfiA registers in databases, illustrating the inconsistencies in both organization and nomenclature. According to this analysis CfiA family comprises nowadays 15 different CfiA variants coded by 24 cfiA sequences. Curation of CfiA database is mandatory, if not new cfiA admission at GenBank will contribute to make this classification more complex.
Collapse
Affiliation(s)
- Mirta R Litterio
- Hospital de Pediatría S.A.M.I.C "Prof. Dr. Juan P. Garrahan", Combate de los Pozos 1881, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcela Radice
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
18
|
Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr Drug Targets 2017; 17:1029-50. [PMID: 26424398 DOI: 10.2174/1389450116666151001105622] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 12/31/1969] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Metallo-β-Lactamases (MBLs) are class Bβ-lactamases that hydrolyze almost all clinically-availableβ-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase/oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat.
Collapse
Affiliation(s)
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin TX, 78712, USA.
| |
Collapse
|
19
|
González MM, Vila AJ. An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Meini MR, Llarrull LI, Vila AJ. Overcoming differences: The catalytic mechanism of metallo-β-lactamases. FEBS Lett 2015; 589:3419-32. [PMID: 26297824 DOI: 10.1016/j.febslet.2015.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/27/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Metallo-β-lactamases are the latest resistance mechanism of pathogenic and opportunistic bacteria against carbapenems, considered as last resort drugs. The worldwide spread of genes coding for these enzymes, together with the lack of a clinically useful inhibitor, have raised a sign of alarm. Inhibitor design has been mostly impeded by the structural diversity of these enzymes. Here we provide a critical review of mechanistic studies of the three known subclasses of metallo-β-lactamases, analyzed at the light of structural and mutagenesis investigations. We propose that these enzymes present a modular structure in their active sites that can be dissected into two halves: one providing the attacking nucleophile, and the second one stabilizing a negatively charged reaction intermediate. These are common mechanistic elements in all metallo-β-lactamases. Nucleophile activation does not necessarily requires a Zn(II) ion, but a Zn(II) center is essential for stabilization of the anionic intermediate. Design of a common inhibitor could be therefore approached based in these convergent mechanistic features despite the structural differences.
Collapse
Affiliation(s)
- María-Rocío Meini
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina
| | - Leticia I Llarrull
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 2000 Rosario, Argentina.
| | - Alejandro J Vila
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
21
|
Zhao WH, Hu ZQ. Acquired metallo-β-lactamases and their genetic association with class 1 integrons and ISCR elements in Gram-negative bacteria. Future Microbiol 2015; 10:873-87. [DOI: 10.2217/fmb.15.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Metallo-β-lactamases (MBLs) can hydrolyze almost all β-lactam antibiotics and are resistant to clinically available β-lactamase inhibitors. Numerous types of acquired MBLs have been identified, including IMP, VIM, NDM, SPM, GIM, SIM, DIM, KHM, TMB, FIM and AIM. IMPs and VIMs are the most frequent MBLs and disseminate in members of the family Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. Acquired MBL genes are often embedded in integrons, and some are associated with insertion sequence (IS) elements. The class 1 integrons and IS common region (ISCR) elements are usually harbored in transposons and/or plasmids, forming so-called mobile vesicles for horizontal transfer of captured genes between bacteria. Here, we review the MBL superfamily identified in Gram-negative bacteria, with an emphasis on the phylogeny of acquired MBLs and their genetic association with class 1 integrons and IS common region elements.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| |
Collapse
|
22
|
Aitha M, Moritz L, Sahu ID, Sanyurah O, Roche Z, McCarrick R, Lorigan GA, Bennett B, Crowder MW. Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy. J Biol Inorg Chem 2015; 20:585-94. [PMID: 25827593 PMCID: PMC4733638 DOI: 10.1007/s00775-015-1244-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Previous crystallographic and mutagenesis studies have implicated the role of a position-conserved hairpin loop in the metallo-β-lactamases in substrate binding and catalysis. In an effort to probe the motion of that loop during catalysis, rapid-freeze-quench double electron-electron resonance (RFQ-DEER) spectroscopy was used to interrogate metallo-β-lactamase CcrA, which had a spin label at position 49 on the loop and spin labels (at positions 82, 126, or 233) 20-35 Å away from residue 49, during catalysis. At 10 ms after mixing, the DEER spectra show distance increases of 7, 10, and 13 Å between the spin label at position 49 and the spin labels at positions 82, 126, and 233, respectively. In contrast to previous hypotheses, these data suggest that the loop moves nearly 10 Å away from the metal center during catalysis and that the loop does not clamp down on the substrate during catalysis. This study demonstrates that loop motion during catalysis can be interrogated on the millisecond time scale.
Collapse
Affiliation(s)
- Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Lindsay Moritz
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Omar Sanyurah
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Zahilyn Roche
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Robert McCarrick
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Brian Bennett
- Physics Department, Marquette University, 540 N. 15th Street, Milwaukee, Wisconsin 53233, USA, and Department of Biophysics, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| |
Collapse
|
23
|
Johansson Å, Nagy E, Sóki J. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Med Microbiol 2014; 63:1105-1110. [DOI: 10.1099/jmm.0.075465-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Clinical Microbiology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
McGeary RP, Schenk G, Guddat LW. The applications of binuclear metallohydrolases in medicine: Recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. Eur J Med Chem 2014; 76:132-44. [DOI: 10.1016/j.ejmech.2014.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
25
|
Johansson Å, Nagy E, Sóki J. Detection of carbapenemase activities of Bacteroides fragilis strains with matrix-assisted laser desorption ionization – Time of flight mass spectrometry (MALDI-TOF MS). Anaerobe 2014; 26:49-52. [DOI: 10.1016/j.anaerobe.2014.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/01/2022]
|
26
|
Abstract
The β-lactam antibiotics are essential for the treatment of a wide range of human bacterial diseases. However, a class of zinc-dependent hydrolases known as the metallo-β-lactamase (MBL) can confer bacteria with extended spectrum β-lactam resistance. To date, there are no clinically approved MBL inhibitors, making these enzymes a serious threat to human health. In this review, a structural approach is taken to outline some of the more promising MBL inhibitors and shed light on how the resistance conferred by this emerging class of enzymes may be circumvented in the future.
Collapse
|
27
|
Sóki J. Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World J Clin Infect Dis 2013; 3:1-12. [DOI: 10.5495/wjcid.v3.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/04/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023] Open
Abstract
The Bacteroides species are important micro-organisms, both in the normal physiology of the intestines and as frequent opportunistic anaerobic pathogens, with a deeply-rooted phylogenetic origin endowing them with some interesting biological features. Their prevalence in anaerobic clinical specimens is around 60%-80%, and they display the most numerous and highest rates of antibiotic resistance among all pathogenic anaerobes. In these antibiotic resistance mechanisms there is a noteworthy role for the insertion sequence (IS) elements, which are usually regarded as representatives of ‘selfish’ genes; the IS elements of Bacteroides are usually capable of up-regulating the antibiotic resistance genes. These include the cepA (penicillin and cephalosporin), cfxA (cephamycin), cfiA (carbapenem), nim (metronidazole) and ermF (clindamycin) resistance genes. This is achieved by outward-oriented promoter sequences on the ISs. Although some representatives are well characterized, e.g., the resistance gene-IS element pairs in certain resistant strains, open questions remain in this field concerning a better understanding of the molecular biology of the antibiotic resistance mechanisms of Bacteroides, which will have clinical implications.
Collapse
|
28
|
Complete sequence of pBFUK1, a carbapenemase-harboring mobilizable plasmid from Bacteroides fragilis, and distribution of pBFUK1-like plasmids among carbapenem-resistant B. fragilis clinical isolates. J Antibiot (Tokyo) 2012; 66:239-42. [PMID: 23232931 DOI: 10.1038/ja.2012.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate. Antimicrob Agents Chemother 2012; 57:101-9. [PMID: 23070156 DOI: 10.1128/aac.01264-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel subclass B3 metallo-β-lactamase (MBL), SMB-1, recently identified from a Serratia marcescens clinical isolate, showed a higher hydrolytic activity against a wide range of β-lactams than did the other subclass B3 MBLs, i.e., BJP-1 and FEZ-1, from environmental bacteria. To identify the mechanism underlying the differences in substrate specificity among the subclass B3 MBLs, we determined the structure of SMB-1, using 1.6-Å diffraction data. Consequently, we found that SMB-1 reserves a space in the active site to accommodate β-lactam, even with a bulky R1 side chain, due to a loss of amino acid residues corresponding to F31 and L226 of BJP-1, which protrude into the active site to prevent β-lactam from binding. The protein also possesses a unique amino acid residue, Q157, which probably plays a role in recognition of β-lactams via the hydrogen bond interaction, which is missing in BJP-1 and FEZ-1, whose K(m) values for β-lactams are particularly high. In addition, we determined the mercaptoacetate (MCR)-complexed SMB-1 structure and revealed the mode of its inhibition by MCR: the thiolate group bridges to two zinc ions (Zn1 and Zn2). One of the carboxylate oxygen atoms of MCR makes contact with Zn2 and Ser221, and the other makes contact with T223 and a water molecule. Our results demonstrate the possibility that MCR could be a potent inhibitor for subclass B3 MBLs and that the screening technique using MCR as an inhibitor would be effective for detecting subclass B3 MBL producers.
Collapse
|
30
|
Dubreuil L, Mahieux S, Neut C, Miossec C, Pace J. Anti-anaerobic activity of a new β-lactamase inhibitor NXL104 in combination with β-lactams and metronidazole. Int J Antimicrob Agents 2012; 39:500-4. [DOI: 10.1016/j.ijantimicag.2012.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
|
31
|
First national survey of antibiotic susceptibility of the Bacteroides fragilis group: emerging resistance to carbapenems in Argentina. Antimicrob Agents Chemother 2012; 56:1309-14. [PMID: 22232282 DOI: 10.1128/aac.05622-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The antibiotic susceptibility rates of 363 clinical Bacteroides fragilis group isolates collected from 17 centers in Argentina during the period from 2006 to 2009 were as follows: piperacillin-tazobactam, 99%; ampicillin-sulbactam, 92%; cefoxitin, 72%; tigecycline, 100%; moxifloxacin, 91%; and clindamycin, 52%. No metronidazole resistance was detected in these isolates during this time period. Resistance to imipenem, doripenem, and ertapenem was observed in 1.1%, 1.6%, and 2.3% of B. fragilis group strains, respectively. B. fragilis species showed a resistance profile of 1.5% to imipenem, 1.9% to doripenem, and 2.4% to ertapenem. This is the first report of carbapenem resistance in Argentina. The cfiA gene was present in 8 out of 23 isolates, all of them belonging to the B. fragilis species and displaying reduced susceptibility or resistance to carbapenems (MICs ≥ 4 μg/ml). Three out of eight cfiA-positive isolates were fully resistant to carbapenems, while 5 out of 8 isolates showed low-level resistance (MICs, 4 to 8 μg/ml). The inhibition by EDTA was a good predictor of the presence of metallo-β-lactamases in the fully resistant B. fragilis strains, but discrepant results were observed for low-level resistant isolates. B. fragilis was more susceptible to antimicrobial agents than other Bacteroides species. Bacteroides vulgatus species was the most resistant to ampicillin-sulbactam and piperacillin-tazobactam, and B. thetaiotaomicron/ovatus strains showed the highest level of resistance to carbapenems, with an unknown resistance mechanism. B. vulgatus and the uncommon non-Bacteroides fragilis species were the most resistant to moxifloxacin, showing an overall resistance rate of 15.1%.
Collapse
|
32
|
Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 2011; 60:1584-1590. [PMID: 21680764 DOI: 10.1099/jmm.0.031336-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used in clinical microbiological laboratories to identify bacteria and fungi at a species level and to subtype them. The cfiA gene encoding the unique carbapenemases found in Bacteroides is restricted to division II Bacteroides fragilis strains. The aim of this study was to evaluate whether MALDI-TOF MS is suitable for differentiating B. fragilis strains which harbour the cfiA gene from those that do not. A well-defined collection of 40 B. fragilis isolates with known imipenem MICs (0.062->32 mg l(-1)) were selected for this study. Twelve B. fragilis strains with known cfiA status, including NCTC 9343 (division I) and TAL3636 (division II), were measured by means of microflex LT MALDI-TOF MS and well-defined differences in mass spectra between the cfiA-positive and cfiA-negative strains were found in the interval 4000-5500 Da. A further 28 strains were selected for the blind measurements: 9 cfiA-positive clinical isolates with different imipenem MICs ranging between 0.06 and >32 mg l(-1) (different expressions of the metallo-β-lactamase gene) were clearly separated from the 19 cfiA-negative isolates. The presence or absence of the selected peaks in all tested strains clearly differentiated the strains belonging to B. fragilis division I (cfiA-negative) or division II (cfiA-positive). These results suggest a realistic method for differentiating division II B. fragilis strains (harbouring the cfiA gene) and to determine them at a species level at the same time. Although not all cfiA-positive B. fragilis strains are resistant to carbapenems, they all have the possibility of becoming resistant to this group of antibiotics by acquisition of an appropriate IS element for full expression of the cfiA gene, leading to possible treatment failure.
Collapse
Affiliation(s)
- Elisabeth Nagy
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | | | - József Sóki
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | - Edit Urbán
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | | |
Collapse
|
33
|
Zhang H, Hao Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J 2011; 25:2574-82. [PMID: 21507902 DOI: 10.1096/fj.11-184036] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metallo-β-lactamases (MBLs) hydrolyze most β-lactam antibiotics, and bacteria containing this kind of enzyme pose a serious threat to the public health. The newly identified New Delhi MBL (NDM-1) is a new member of this family that shows tight binding to penicillin and cephalosporins. The rapid dissemination of NDM-1 in clinically relevant bacteria has become a global concern. However, no clinically useful inhibitors against MBLs exist, partly due to the lack of knowledge about the catalysis mechanism of this kind of enzyme. Here we report the crystal structure of this novel enzyme in complex with a hydrolyzed ampicillin at its active site at 1.3-Å resolution. Structural comparison with other MBLs revealed a new hydrolysis mechanism applicable to all three subclasses of MBLs, which might help the design of mechanism based inhibitors.
Collapse
Affiliation(s)
- HongMin Zhang
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
34
|
Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Drugs 2010; 70:651-79. [PMID: 20394454 DOI: 10.2165/11318430-000000000-00000] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of the three classical beta-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with beta-lactam antibacterials is currently the most successful strategy to combat beta-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A beta-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the beta-lactam ring such as 6-beta-halogenopenicillanates, beta-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-beta-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-beta-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that beta-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential beta-lactamase inhibitors and thus constitutes an update of the current status in beta-lactamase inhibitor discovery.
Collapse
Affiliation(s)
- Carine Bebrone
- Biological Macromolecules, Centre for Protein Engineering, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
35
|
Inhibition of metallo-β-lactamases by pyridine monothiocarboxylic acid analogs. J Antibiot (Tokyo) 2010; 63:255-7. [DOI: 10.1038/ja.2010.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Establishment of in vitro susceptibility testing methodologies and comparative activities of piperacillin in combination with the penem {beta}-lactamase inhibitor BLI-489. Antimicrob Agents Chemother 2008; 53:370-84. [PMID: 19001109 DOI: 10.1128/aac.01047-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The novel bicyclic penem inhibitor BLI-489 has demonstrated activity as an inhibitor of class A, C, and D beta-lactamases. To determine the combination of piperacillin and BLI-489 to be used in susceptibility testing that would most accurately identify susceptible and resistant isolates, a predictor panel of beta-lactamase-producing bacteria was utilized to determine the reliability of the combination of piperacillin-BLI-489 at a constant inhibitor concentration of 2 or 4 microg/ml and at ratios of 1:1, 2:1, 4:1, and 8:1. There were a number of strains that would be falsely reported as susceptible or intermediate if tested with the ratios of 1:1 and 2:1, whereas the constant concentration of 2 microg/ml of BLI-489 and the ratio of 8:1 had a tendency to overpredict resistance. Similar MICs were obtained with piperacillin-BLI-489 in a 4:1 ratio and when BLI-489 was held constant at 4 microg/ml. Based on these results, an in vitro testing methodology employing a constant concentration of 4 microg/ml BLI-489 was used to evaluate the combination of piperacillin-BLI-489 against a larger panel of recently identified clinical isolates. Approximately 55% of all of the enteric bacilli tested were nonsusceptible to piperacillin alone (MIC > or = 32 microg/ml). However, 92% of these piperacillin nonsusceptible strains were inhibited by < or =16 microg/ml piperacillin-BLI-489; in contrast, only 66% were inhibited by < or =16 microg/ml piperacillin-tazobactam. The combination of piperacillin-BLI-489 also demonstrated improved activity compared to that of piperacillin-tazobactam against the problematic extended-spectrum beta-lactamase- and AmpC-expressing strains.
Collapse
|
37
|
Mutational analysis of the zinc- and substrate-binding sites in the CphA metallo-beta-lactamase from Aeromonas hydrophila. Biochem J 2008; 414:151-9. [PMID: 18498253 DOI: 10.1042/bj20080375] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) beta-lactamase from Aeromonas hydrophila is a Zn(2+)-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate residues potentially involved in metal binding and/or catalysis (His(118), Asp(120), His(196) and His(263)) and in substrate specificity (Val(67), Thr(157), Lys(224) and Lys(226)), site-directed mutants of CphA were generated and characterized. Our results confirm that the first zinc ion is in interaction with Asp(120) and His(263), and thus is located in the 'cysteine' zinc-binding site. His(118) and His(196) residues seem to be interacting with the second zinc ion, as their replacement by alanine residues has a negative effect on the affinity for this second metal ion. Val(67) plays a significant role in the binding of biapenem and benzylpenicillin. The properties of a mutant with a five residue (LFKHV) insertion just after Val(67) also reveals the importance of this region for substrate binding. This latter mutant has a higher affinity for the second zinc ion than wild-type CphA. The T157A mutant exhibits a significantly modified activity spectrum. Analysis of the K224Q and N116H/N220G/K224Q mutants suggests a significant role for Lys(224) in the binding of substrate. Lys(226) is not essential for the binding and hydrolysis of substrates. Thus the present paper helps to elucidate the position of the second zinc ion, which was controversial, and to identify residues important for substrate binding.
Collapse
|
38
|
Singer E, Calvet L, Mory F, Muller C, Chomarat M, Bézian MC, Bland S, Juvenin ME, Drugeon H, Fosse T, Goldstein F, Jaulhac B, Monteil H, Marchandin H, Jean-Pierre H, Dubreuil L. Surveillance de la résistance aux antibiotiques des anaérobies stricts à Gram négatif. Med Mal Infect 2008; 38:256-63. [DOI: 10.1016/j.medmal.2008.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Accepted: 03/10/2008] [Indexed: 11/16/2022]
|
39
|
Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Investig Drugs 2008; 17:131-43. [PMID: 18230049 DOI: 10.1517/13543784.17.2.131] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The multi drug resistant gram negative bacteria especially Pseudomonas aeruginosa and Acinetobacter species are on the rise. The major defense in these bacteria against beta-lactam antibiotics is production of metallo beta lactamases (MBLs) which degrade this group of antibiotics including carbapenems. Till now five main types of MBLs have been described throughout the World--IMP, VIM, SPM, GIM and SIM. A new MBL has been recently reported in P. aeruginosa from Australia--bla AIM-1. There are no standard guidelines by CLSI for detection of these enzymes in various bacteria. A number of phenotypic tests based on different beta lactam-inhibitor combinations are being evaluated and used for routine testing. Regarding the treatment options--colistin, various antibiotic combinations and a few novel antibiotics are being tried and evaluated. Prevention is based on age old practices of strict infection control and judicious use of antibiotics.
Collapse
Affiliation(s)
- Varsha Gupta
- Government Medical College and Hospital, Department of Microbiology, Sector 32, Chandigarh-160030, India.
| |
Collapse
|
40
|
Yamaguchi Y, Jin W, Matsunaga K, Ikemizu S, Yamagata Y, Wachino JI, Shibata N, Arakawa Y, Kurosaki H. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 2007; 50:6647-53. [PMID: 18052313 DOI: 10.1021/jm701031n] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The VIM-2 metallo-beta-lactamase enzyme from Pseudomonas aeruginosa catalyzes the hydrolysis of most beta-lactam antibiotics including carbapenems, and there are currently no potent inhibitors of such enzymes. We found rac-2-omega-phenylpropyl-3-mercaptopropionic acid, phenylC3SH, to be a potent inhibitor of VIM-2. The structure of the VIM-2-phenylC3SH complex was determined by X-ray crystallography to 2.3 A. The structure revealed that the thiol group of phenylC3SH bridged to the two zinc(II) ions and the phenyl group interacted with Tyr67(47) on loop1 near the active site, by pi-pi stacking interactions. The methylene group interacted with Phe61(42) located at the bottom of loop1 through CH-pi interactions. Dynamic movements were observed in Arg228(185) and Asn233(190) on loop2, compared with the native structure (PDB code: 1KO3 ). These results suggest that the above-mentioned four residues play important roles in the binding and recognition of inhibitors or substrates and in stabilizing a loop in the VIM-2 enzyme.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Environmental Safety Center, Kumamoto University, Department of Structure-Function Physical Chemistry, Graduate School of Pharmaceutical Sciences, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007; 74:1686-701. [PMID: 17597585 DOI: 10.1016/j.bcp.2007.05.021] [Citation(s) in RCA: 385] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 11/27/2022]
Abstract
One strategy employed by bacterial strains to resist beta-lactam antibiotics is the expression of metallo-beta-lactamases requiring Zn(2+) for activity. In the last few years, many new zinc beta-lactamases have been described and several pathogens are now known to synthesize members of this class. Metallo-beta-lactamases are especially worrisome due to: (1) their broad activity profiles that encompass most beta-lactam antibiotics, including the carbapenems; (2) potential for horizontal transference; and (3) the absence of clinically useful inhibitors. On the basis of the known sequences, three different lineages, identified as subclasses B1, B2, and B3 have been characterized. The three-dimensional structure of at least one metallo-beta-lactamase of each subclass has been solved. These very similar 3D structures are characterized by the presence of an alphabetabetaalpha-fold. In addition to metallo-beta-lactamases which cleave the amide bond of the beta-lactam ring, the metallo-beta-lactamase superfamily includes enzymes which hydrolyze thiol-ester, phosphodiester and sulfuric ester bonds as well as oxydoreductases. Most of the 6000 members of this superfamily share five conserved motifs, the most characteristic being the His116-X-His118-X-Asp120-His121 signature. They all exhibit an alphabetabetaalpha-fold, similar to that found in the structure of zinc beta-lactamases. Many members of this superfamily are involved in mRNA maturation and DNA reparation. This fact suggests the hypothesis that metallo-beta-lactamases may be the result of divergent evolution starting from an ancestral protein which did not have a beta-lactamase activity.
Collapse
Affiliation(s)
- Carine Bebrone
- Center for Protein Engineering/Biological Macromolecules, University of Liège, Allée du 6 Août B6, Sart-Tilman 4000 Liège, Belgium.
| |
Collapse
|
42
|
Fang H, Hedberg M, Edlund C, Jarstrand C, Fodor E, Nord CE. Characterization of beta-lactam-resistant Bacteroides fragilis isolates by use of PCR fingerprinting. Anaerobe 2007; 5:11-8. [PMID: 16887657 DOI: 10.1006/anae.1999.0183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 02/08/1999] [Indexed: 11/22/2022]
Abstract
PCR fingerprinting was used for characterization of 35 beta-lactam-resistant Bacteroides fragilis strains isolated in Sweden and Hungary. Ten B. fragilis strains showed unique PCR fingerprints by use of the M13 core primer. Their main product was a DNA fragment with a length of 2000-bp which was absent in the other 25 strains and the reference strain B. fragilis ATCC 25285. The 2000-bp fragment from four imipenem-resistant strains gave rise to positive reactions in a specific PCR for detection of ccrA. Printed by the T3B primer, five B. fragilis strains, including the imipenem-resistant strains showed unique PCR fingerprints. The investigated imipenem-resistant strains produced carbapenem-hydrolysing metallo-beta-lactamases. The study indicates that the unique PCR fingerprinting profiles shown in highly beta-lactam resistant B. fragilis strains are correlated to antimicrobial resistance. The PCR fingerprinting technique is a useful tool for differentiation of Bacteroides fragilis strains with high-level beta-lactam resistance.
Collapse
Affiliation(s)
- H Fang
- Department of Immunology, Microbiology, Pathology and Infectious Diseases, Karolinska Institute, Huddinge University Hospital, S-141 86, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Voha C, Docquier JD, Rossolini GM, Fosse T. Genetic and biochemical characterization of FUS-1 (OXA-85), a narrow-spectrum class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum. Antimicrob Agents Chemother 2006; 50:2673-9. [PMID: 16870757 PMCID: PMC1538689 DOI: 10.1128/aac.00058-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Previous studies have reported beta-lactamase-mediated penicillin resistance in Fusobacterium nucleatum, but no beta-lactamase gene has yet been identified in this species. An F. nucleatum subsp. polymorphum strain resistant to penicillin and amoxicillin was isolated from a human periodontitis sample. DNA cloning and sequencing revealed a 765-bp open reading frame encoding a new class D beta-lactamase named FUS-1 (OXA-85). A recombinant Escherichia coli strain carrying the bla(FUS-1) gene exhibited resistance to amoxicillin with a moderate decrease in the MICs with clavulanic acid. The bla(FUS-1) gene was found in two additional clonally unrelated F. nucleatum subsp. polymorphum isolates. It was located on the chromosome in a peculiar genetic environment where a gene encoding a putative transposase-like protein is found, suggesting a possible acquisition of this class D beta-lactamase gene. The FUS-1 enzyme showed the closest ancestral relationship with OXA-63 from Brachyspira pilosicoli (53% identity) and with putative chromosomal beta-lactamases of Campylobacter spp. (40 to 42% identity). FUS-1 presents all of the conserved structural motifs of class D beta-lactamases. Kinetic analysis revealed that FUS-1 exhibits a narrow substrate profile, efficiently hydrolyzing benzylpenicillin and oxacillin. FUS-1 was poorly inactivated by clavulanate and NaCl. FUS-1 is the first example of a class D beta-lactamase produced by a gram-negative, anaerobic, rod-shaped bacterium to be characterized.
Collapse
Affiliation(s)
- Christine Voha
- Laboratoire de Bactériologie et Epidémiologie Moléculaire, Université de Nice, Centre Hospitalier Universitaire de Nice, France
| | | | | | | |
Collapse
|
44
|
|
45
|
Hecht DW. Anaerobes: Antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe 2006; 12:115-21. [PMID: 16765857 DOI: 10.1016/j.anaerobe.2005.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 10/27/2005] [Indexed: 11/29/2022]
Affiliation(s)
- David W Hecht
- Hines VA Hospital, Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
46
|
Walsh TR, Onken A, Haldorsen B, Toleman MA, Sundsfjord A. Characterization of a carbapenemase-producing clinical isolate of Bacteroides fragilis in Scandinavia: genetic analysis of a unique insertion sequence. ACTA ACUST UNITED AC 2005; 37:676-9. [PMID: 16126569 DOI: 10.1080/00365540510034482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In 2003 a Bacteroides fragilis blood culture isolate (K2-28) was recovered from a 61-y-old male with severe general atherosclerosis during treatment with meropenem. K2-28 was shown to possess a functional metallo-beta-lactamase with a reduction in imipenem MIC from 256 to 3 mg/l in the presence of EDTA using the MBL E-test strip. PCR results were for positive for the cfiA gene. Analysis of the cfiA from K2-28 revealed it was 100% identical to previously described cfiA-1 genes. Analysis of the upstream region of cfiA revealed a novel insertion sequence (IS) element, being most similar (94% identity) to IS612 recently described from Japan designating the element within the IS4 family. The element possessed a perfect terminal inverted repeat sequence at the distal ends of the IS element and provided a putative promoter for transcription of the cfiA gene. The distance between the hybrid promoter and the cfiA start codon was 158 base pairs and inserted into a different DNA sequence upstream of cfiA to that previously reported. The -10 promoter region was most similar to that of IS613 (100%) and the -35 promoter region to IS612 (100%), demonstrating the plasticity of these genetic regions.
Collapse
Affiliation(s)
- T R Walsh
- Department of Pathology and Microbiology, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
47
|
Furushita M, Okamoto A, Maeda T, Ohta M, Shiba T. Isolation of multidrug-resistant Stenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Appl Environ Microbiol 2005; 71:5598-600. [PMID: 16151156 PMCID: PMC1214673 DOI: 10.1128/aem.71.9.5598-5600.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six strains of multidrug-resistant Stenotrophomonas maltophilia were isolated from cultured yellowtail. The strains were divided into two clusters based on the 16S rRNA genes, and all of them contained L1 metallo-beta-lactamase and L2 beta-lactamase genes. Differences in the intercluster divergence between the lactamase genes suggest that horizontal transfer of the genes occurred.
Collapse
Affiliation(s)
- Manabu Furushita
- Department of Food Science and Technology, National Fisheries University, Nagata-honmachi, Shimonoseki, Yamaguchi 759-6595, Japan.
| | | | | | | | | |
Collapse
|
48
|
Yamaguchi Y, Kuroki T, Yasuzawa H, Higashi T, Jin W, Kawanami A, Yamagata Y, Arakawa Y, Goto M, Kurosaki H. Probing the role of Asp-120(81) of metallo-beta-lactamase (IMP-1) by site-directed mutagenesis, kinetic studies, and X-ray crystallography. J Biol Chem 2005; 280:20824-32. [PMID: 15788415 DOI: 10.1074/jbc.m414314200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamase IMP-1 is a di-Zn(II) metalloenzyme that efficiently hydrolyzes beta-lactam antibiotics. Wild-type (WT) IMP-1 has a conserved Asp-120(81) in the active site, which plays an important role in catalysis. To probe the catalytic role of Asp-120(81) in IMP-1, the IMP-1 mutants, D120(81)A and D120(81)E, were prepared by site-directed mutagenesis, and various kinetics studies were conducted. The IMP-1 mutants exhibited 10(2)-10(4)-fold drops in k(cat) values compared with WT despite the fact that they contained two Zn(II) ions in the active site. To evaluate the acid-base characteristics of Asp-120(81), the pH dependence for hydrolysis was examined by stopped-flow studies. No observable pK(a) values between pH 5 and 9 were found for WT and D120(81)A. The rapid mixing of equimolar amounts of nitrocefin and all enzymes failed to result in the detection of an anion intermediate of nitrocefin at 650 nm. These results suggest that Asp-120(81) of IMP-1 is not a factor in decreasing the pK(a) for the water bridging two Zn(II) ions and is not a proton donor to the anionic intermediate. In the case of D120(81)E, the nitrocefin hydrolysis product, which shows a maximum absorption at 460 nm, was bound to D120(81)E in the protonated form. The three-dimensional structures of D120(81)A and D120(81)E were also determined at 2.0 and 3.0 A resolutions, respectively. In the case of D120(81)E, the Zn-Zn distance was increased by 0.3 A compared with WT, due to the change in the coordination mode of Glu-120(81)OE1 and the positional shift in the conserved His-263(197) at the active site.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Structure-Function Physical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jin W, Arakawa Y, Yasuzawa H, Taki T, Hashiguchi R, Mitsutani K, Shoga A, Yamaguchi Y, Kurosaki H, Shibata N, Ohta M, Goto M. Comparative study of the inhibition of metallo-beta-lactamases (IMP-1 and VIM-2) by thiol compounds that contain a hydrophobic group. Biol Pharm Bull 2005; 27:851-6. [PMID: 15187432 DOI: 10.1248/bpb.27.851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the purpose of screening of inhibitors that are effective for wide range of metallo-beta-lactamases, the inhibitory effect of two series of compounds, 2-omega-phenylalkyl-3-mercaptopropionic acid (PhenylCnSH (n=1-4)) and N-[(7-chloro-quinolin-4-ylamino)-alkyl]-3-mercapto-propionamide (QuinolineCnSH (n=2-6)), where n denotes the alkyl chain length, on metallo-beta-lactamases IMP-1 and VIM-2 was examined. These inhibitors contain a thiol group and a hydrophobic group linked by variable-length methylene chain. PhenylCnSH (n=1-4) was found to be a potent inhibitor of both IMP-1 and VIM-2. PhenylC4SH was the potent inhibitor of both IMP-1 (IC(50)=1.2 microM) and VIM-2 (IC(50)=1.1 microM) among this study. When the number of methylene units was varied, QuinolineC4SH showed the maximum inhibitory activity against IMP-1 and VIM-2 (IC(50)=2.5 microM and IC(50)=2.4 microM). The relationship between the inhibitory effect of the alkyl chain length was different for both series of inhibitors, suggesting that IMP-1 has a tighter binding site than VIM-2. QuinolineCnSH did not serve as a fluorescence reagent for metallo-beta-lactamases.
Collapse
Affiliation(s)
- Wanchun Jin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe Honmachi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P, Galleni M, Frère JM, Dideberg O. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2004; 48:2347-9. [PMID: 15215079 PMCID: PMC434215 DOI: 10.1128/aac.48.7.2347-2349.2004] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gianpiero Garau
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, Laboratoire de Cristallographie Macromoléculaire, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|