1
|
Current and Novel Inhibitors of HIV Protease. Viruses 2009; 1:1209-39. [PMID: 21994591 PMCID: PMC3185513 DOI: 10.3390/v1031209] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/25/2022] Open
Abstract
The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed.
Collapse
|
2
|
Radhakrishnan ML, Tidor B. Optimal drug cocktail design: methods for targeting molecular ensembles and insights from theoretical model systems. J Chem Inf Model 2008; 48:1055-73. [PMID: 18505239 DOI: 10.1021/ci700452r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug resistance is a significant obstacle in the effective treatment of diseases with rapidly mutating targets, such as AIDS, malaria, and certain forms of cancer. Such targets are remarkably efficient at exploring the space of functional mutants and at evolving to evade drug binding while still maintaining their biological role. To overcome this challenge, drug regimens must be active against potential target variants. Such a goal may be accomplished by one drug molecule that recognizes multiple variants or by a drug "cocktail"--a small collection of drug molecules that collectively binds all desired variants. Ideally, one wants the smallest cocktail possible due to the potential for increased toxicity with each additional drug. Therefore, the task of designing a regimen for multiple target variants can be framed as an optimization problem--find the smallest collection of molecules that together "covers" the relevant target variants. In this work, we formulate and apply this optimization framework to theoretical model target ensembles. These results are analyzed to develop an understanding of how the physical properties of a target ensemble relate to the properties of the optimal cocktail. We focus on electrostatic variation within target ensembles, as it is one important mechanism by which drug resistance is achieved. Using integer programming, we systematically designed optimal cocktails to cover model target ensembles. We found that certain drug molecules covered much larger regions of target space than others, a phenomenon explained by theory grounded in continuum electrostatics. Molecules within optimal cocktails were often dissimilar, such that each drug was responsible for binding variants with a certain electrostatic property in common. On average, the number of molecules in the optimal cocktails correlated with the number of variants, the differences in the variants' electrostatic properties at the binding interface, and the level of binding affinity required. We also treated cases in which a subset of target variants was to be avoided, modeling the common challenge of closely related host molecules that may be implicated in drug toxicity. Such decoys generally increased the size of the required cocktail and more often resulted in infeasible optimizations. Taken together, this work provides practical optimization methods for the design of drug cocktails and a theoretical, physics-based framework through which useful insights can be achieved.
Collapse
Affiliation(s)
- Mala L Radhakrishnan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
3
|
Olivares I, Mulky A, Boross PI, Tözsér J, Kappes JC, López-Galíndez C, Menéndez-Arias L. HIV-1 protease dimer interface mutations that compensate for viral reverse transcriptase instability in infectious virions. J Mol Biol 2007; 372:369-81. [PMID: 17651754 PMCID: PMC2696282 DOI: 10.1016/j.jmb.2007.06.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/20/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022]
Abstract
Mature enzymes encoded within the human immunodeficiency virus type 1 (HIV-1) genome (protease (PR), reverse transcriptase (RT) and integrase (IN)) derive from proteolytic processing of a large polyprotein (Gag-Pol). Gag-Pol processing is catalyzed by the viral PR, which is active as a homodimer. The HIV-1 RT functions as a heterodimer (p66/p51) composed of subunits of 560 and 440 amino acid residues, respectively. Both subunits have identical amino acid sequence, but p51 lacks 120 residues that are removed by the HIV-1 PR during viral maturation. While p66 is the catalytic subunit, p51 has a primarily structural role. Amino acid substitutions affecting the stability of p66/p51 (i.e. F130W) have a deleterious effect on viral fitness. Previously, we showed that the effects of F130W are mediated by p51 and can be compensated by mutation T58S. While studying the dynamics of emergence of the compensatory mutation, we observed that mutations in the viral PR-coding region were selected in HIV clones containing the RT substitution F130W, before the imposition of T58S/F130W mutations. The PR mutations identified (G94S and T96S) improved the replication capacity of the F130W mutant virus. By using a trans-complementation assay, we demonstrate that the loss of p66/p51 heterodimer stability caused by Trp130 can be attributed to an increased susceptibility of RT to viral PR degradation. Recombinant HIV-1 PRs bearing mutations G94S or T96S showed decreased dimer stability and reduced catalytic efficiency. These results were consistent with crystallographic data showing the location of both residues in the PR dimerization interface.
Collapse
Affiliation(s)
- Isabel Olivares
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alok Mulky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Peter I. Boross
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, H-4012 Hungary
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, H-4012 Hungary
| | - John C. Kappes
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Research Service, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35233, USA
| | - Cecilio López-Galíndez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
- E-mail address of the corresponding author:
| |
Collapse
|
4
|
Synthesis of peptidomimetics based on iminosugar and β-d-glucopyranoside scaffolds and inhibiton of HIV-protease. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.05.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
|
6
|
Kaltenbach RF, Patel M, Waltermire RE, Harris GD, Stone BRP, Klabe RM, Garber S, Bacheler LT, Cordova BC, Logue K, Wright MR, Erickson-Viitanen S, Trainor GL. Synthesis, antiviral activity and pharmacokinetics of P1/P1' substituted 3-aminoindazole cyclic urea HIV protease inhibitors. Bioorg Med Chem Lett 2003; 13:605-8. [PMID: 12639540 DOI: 10.1016/s0960-894x(02)01064-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of P1/P1' substituted cyclic urea analogues were prepared in an attempt to increase the intra-cellular antiviral potency of the nonsymmetrical 3-aminoindazoles DMP 850 and DMP 851. The effect of alkyl substitution of the P1/P1' residues on cellular antiviral potency, protein binding, resistance profile and pharmacokinetics are described.
Collapse
Affiliation(s)
- Robert F Kaltenbach
- Bristol-Myers Squibb Company, Experimental Station, Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Marcinkeviciene J, Kopcho LM, Yang T, Copeland RA, Glass BM, Combs AP, Falahatpisheh N, Thompson L. Novel inhibition of porcine pepsin by a substituted piperidine. Preference for one of the enzyme conformers. J Biol Chem 2002; 277:28677-82. [PMID: 12029090 DOI: 10.1074/jbc.m203120200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pepsin inhibition by 3-alkoxy-4-arylpiperidine (substituted piperidine; (3R,4R)-3-(4-bromobenzyloxy)-4-[4-(2-naphthalen-1-yl-2-oxo-ethoxy)phenyl]piperidine) has been studied using steady-state kinetic and pre-equilibrium binding methods. Data were compared with pepstatin A, a well known competitive inhibitor of pepsin. Steady-state analysis reveals that the substituted piperidine likewise behaves as a competitive inhibitor. Pre-equilibrium binding studies indicate that the substituted piperidine can displace a fluorescently labeled statine inhibitor from the enzyme active site. Simulation of the stopped-flow fluorescence transients provided estimates of the K(d) values of 1.4 +/- 0.2 microm and 39 +/- 2 nm for the piperidine and the fluorescently labeled statine, respectively. The effects of combinations of these two inhibitors resulted in a series of parallel lines when plotted by the method of Yonetani and Theorell (Yonetani, T., and Theorell, H. (1964) Arch. Biochem. Biophys. 106, 234-251), suggesting that the two inhibitors bind in a mutually exclusive fashion to pepsin. Fitting of the entire data set to the appropriate equation yielded an alpha factor of 8 +/- 1. The magnitude of this factor ( infinity > alpha > 1) can be explained by a conformational distinction between the enzyme species that bind each inhibitor. The effects of pH on the inhibition constants for pepstatin A and the substituted piperidine also suggest that the inhibitors bind to distinct conformational forms of the enzyme. No inhibition by the piperidine was observed at acidic pH, while pepstatin A inhibition is maximal at low pH values. Inhibition by the piperidine was maximal when a group with pK 4.8 +/- 0.2 was deprotonated and another group with pK 5.9 +/- 0.2 was protonated. Most likely these two groups are the catalytic aspartates with perturbed ionization properties as a result of a significant and unique conformational change. Taken together, these data suggest that the enzyme can readily interconvert between two conformers, one capable of binding substrate and pepstatin A and the other capable of binding the substituted piperidine.
Collapse
Affiliation(s)
- Jovita Marcinkeviciene
- Department of Chemical Enzymology, Bristol-Myers Squibb Pharmaceutical Company, Wilmington, Delaware 19880-0400, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Murphy PV, O'Brien JL, Gorey-Feret LJ, Smith AB. Structure-based design and synthesis of HIV-1 protease inhibitors employing beta-D-mannopyranoside scaffolds. Bioorg Med Chem Lett 2002; 12:1763-6. [PMID: 12067556 DOI: 10.1016/s0960-894x(02)00220-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A preliminary account on the structure-based design, synthesis and evaluation of peptidomimetic inhibitors of HIV-1 protease containing beta-D-mannopyranoside scaffolds is given. The compounds prepared had IC(50) values in the micromolar range. The results provide a platform for the development of more potent carbohydrate-based inhibitors of HIV-1 and other aspartic proteases.
Collapse
Affiliation(s)
- Paul V Murphy
- Chemistry Department, Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
9
|
Chen CA, Sieburth SM, Glekas A, Hewitt GW, Trainor GL, Erickson-Viitanen S, Garber SS, Cordova B, Jeffry S, Klabe RM. Drug design with a new transition state analog of the hydrated carbonyl: silicon-based inhibitors of the HIV protease. CHEMISTRY & BIOLOGY 2001; 8:1161-6. [PMID: 11755395 DOI: 10.1016/s1074-5521(01)00079-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Silicon is the element most similar to carbon, and bioactive organosilanes have therefore been of longstanding interest. Design of bioactive organosilanes has often involved a systematic replacement of a bioactive molecule's stable carbon atoms with silicon. Silanediols, which are best known as unstable precursors of the robust and ubiquitous silicone polymers, have the potential to mimic an unstable carbon, the hydrated carbonyl. As a bioisostere of the tetrahedral intermediate of amide hydrolysis, a silanediol could act as a transition state analog inhibitor of protease enzymes. RESULTS Silanediol analogs of a carbinol-based inhibitor of the HIV protease were prepared as single enantiomers, with up to six stereogenic centers. As inhibitors of this aspartic protease, the silanediols were nearly equivalent to both their carbinol analogs and indinavir, a current treatment for AIDS, with low nanomolar K(i) values. IC(90) data from a cell culture assay mirrored the K(i) data, demonstrating that the silanediols can also cross cell membranes and deliver their antiviral effects. CONCLUSIONS In their first evaluation as inhibitors of an aspartic protease, silanediol peptidomimetics have been found to be nearly as potent as currently available pharmaceutical agents, in enzyme and cell protection assays. These neutral, cell-permeable transition state analogs therefore provide a novel foundation for the design of therapeutic agents.
Collapse
Affiliation(s)
- C A Chen
- Department of Chemistry, State University of New York, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kaltenbach RF, Trainor G, Getman D, Harris G, Garber S, Cordova B, Bacheler L, Jeffrey S, Logue K, Cawood P, Klabe R, Diamond S, Davies M, Saye J, Jona J, Erickson-Viitanen S. DPC 681 and DPC 684: potent, selective inhibitors of human immunodeficiency virus protease active against clinically relevant mutant variants. Antimicrob Agents Chemother 2001; 45:3021-8. [PMID: 11600351 PMCID: PMC90777 DOI: 10.1128/aac.45.11.3021-3028.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of many highly active antiretroviral therapy regimens. However, development of phenotypic and/or genotypic resistance can occur, including cross-resistance to other PIs. Development of resistance takes place because trough levels of free drug are inadequate to suppress preexisting resistant mutant variants and/or to inhibit de novo-generated resistant mutant variants. There is thus a need for new PIs, which are more potent against mutant variants of HIV and show higher levels of free drug at the trough. We have optimized a series of substituted sulfonamides and evaluated the inhibitors against laboratory strains and clinical isolates of HIV type 1 (HIV-1), including viruses with mutations in the protease gene. In addition, serum protein binding was determined to estimate total drug requirements for 90% suppression of virus replication (plasma IC(90)). Two compounds resulting from our studies, designated DPC 681 and DPC 684, are potent and selective inhibitors of HIV protease with IC(90)s for wild-type HIV-1 of 4 to 40 nM. DPC 681 and DPC 684 showed no loss in potency toward recombinant mutant HIVs with the D30N mutation and a fivefold or smaller loss in potency toward mutant variants with three to five amino acid substitutions. A panel of chimeric viruses constructed from clinical samples from patients who failed PI-containing regimens and containing 5 to 11 mutations, including positions 10, 32, 46, 47, 50, 54, 63, 71, 82, 84, and 90 had mean IC(50) values of <20 nM for DPC 681 and DPC 681, respectively. In contrast, marketed PIs had mean IC(50) values ranging from 200 nM (amprenavir) to >900 nM (nelfinavir).
Collapse
Affiliation(s)
- R F Kaltenbach
- Department of Chemistry and Physical Sciences, DuPont Pharmaceuticals Co., Wilmington, Delaware 19880-0336, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kuhelj R, Rizzo CJ, Chang CH, Jadhav PK, Towler EM, Korant BD. Inhibition of human endogenous retrovirus-K10 protease in cell-free and cell-based assays. J Biol Chem 2001; 276:16674-82. [PMID: 11278433 DOI: 10.1074/jbc.m008763200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A full-length and C-terminally truncated version of human endogenous retrovirus (HERV)-K10 protease were expressed in Escherichia coli and purified to homogeneity. Both versions of the protease efficiently processed HERV-K10 Gag polyprotein substrate. HERV-K10 Gag was also cleaved by human immunodeficiency virus, type 1 (HIV-1) protease, although at different sites. To identify compounds that could inhibit protein processing dependent on the HERV-K10 protease, a series of cyclic ureas that had previously been shown to inhibit HIV-1 protease was tested. Several symmetric bisamides acted as very potent inhibitors of both the truncated and full-length form of HERV-K10 protease, in subnanomolar or nanomolar range, respectively. One of the cyclic ureas, SD146, can inhibit the processing of in vitro translated HERV-K10 Gag polyprotein substrate by HERV-K10 protease. In addition, in virus-like particles isolated from the teratocarcinoma cell line NCCIT, there is significant accumulation of Gag and Gag-Pol precursors upon treatment with SD146, suggesting the compound efficiently blocks HERV-K Gag processing in cells. This is the first report of an inhibitor able to block cell-associated processing of Gag polypeptides of an endogenous retrovirus.
Collapse
Affiliation(s)
- R Kuhelj
- Department of Virology, Experimental Station, DuPont Pharmaceuticals, Wilmington, Delaware 19880, USA
| | | | | | | | | | | |
Collapse
|
12
|
Patel M, Rodgers JD, McHugh RJ, Johnson BL, Cordova BC, Klabe RM, Bacheler LT, Erickson-Viitanen S, Ko SS. Unsymmetrical cyclic ureas as HIV-1 protease inhibitors: novel biaryl indazoles as P2/P2' substituents. Bioorg Med Chem Lett 1999; 9:3217-20. [PMID: 10576691 DOI: 10.1016/s0960-894x(99)00564-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The preparation of unsymmetrical cyclic ureas bearing novel biaryl indazoles as P2/P2' substituents was undertaken, utilizing a Suzuki coupling reaction as the key step. Compound 6i was equipotent to the lead compound of the series SE063.
Collapse
Affiliation(s)
- M Patel
- DuPont Pharmaceuticals Company, Experimental Station, Wilmington, DE 19880-0500, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kaltenbach RF, Klabe RM, Cordova BC, Seitz SP. Increased antiviral activity of cyclic urea HIV protease inhibitors by modifying the P1/P1' substituents. Bioorg Med Chem Lett 1999; 9:2259-62. [PMID: 10465557 DOI: 10.1016/s0960-894x(99)00367-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of alkyl substituted P1/P1' analogs was prepared in an attempt to increase translation of the 3-aminoindazole class of HIV protease inhibitors. Increasing the lipophilicity of the P1/P1' residues dramatically improved translation of enzyme activity to antiviral activity in the whole cell assay.
Collapse
Affiliation(s)
- R F Kaltenbach
- DuPont Pharmaceuticals Company, Experimental Station, Wilmington, DE 19880-0500, USA
| | | | | | | |
Collapse
|
14
|
De Lucca GV, Liang J, De Lucca I. Stereospecific synthesis, structure-activity relationship, and oral bioavailability of tetrahydropyrimidin-2-one HIV protease inhibitors. J Med Chem 1999; 42:135-52. [PMID: 9888839 DOI: 10.1021/jm9803626] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of tetrahydropyrimidinones as an alternate scaffold for designing HIVPR inhibitors has advantages, over the previously disclosed hexahydro-1,3-diazepin-2-ones, of being more unsymmetrical (different P1/P1'), less crystalline, more soluble, and more lipophilic (mono-ol vs diol). They show a better translation of Ki to IC90 for the more polar P2 groups that in general give the more potent enzyme inhibitors. Structure-activity relationship (SAR) studies of the tetrahydropyrimidinones showed that the phenylethyl P1' substituent, the hydroxyl group, and the urea carbonyl are all critical for good activity. However, there was significant flexibility in the possible P2/P2' substituents that could be used. Many analogues that contained identical or different P2/P2' substituents, or only one P2 substituent, were found to have excellent enzyme potency and several had excellent antiviral potency. Several of these compounds were examined for oral bioavailability in the rat or the dog at 10 mg/kg. However, the oral bioavailability of the tetrahydropyrimidinones was, in general, less than the corresponding hexahydro-1,3-diazepin-2-ones. Unfortunately, when all factors are considered, including potency, protein binding, solubility, bioavailability, and resistance profile, the tetrahydropyrimidinones did not offer any advantage over the previously disclosed hexahydro-1,3-diazepin-2-ones series.
Collapse
Affiliation(s)
- G V De Lucca
- DuPont Pharmaceuticals Company, Wilmington, Delaware 19880-0500, USA.
| | | | | |
Collapse
|
15
|
Trylska J, Antosiewicz J, Geller M, Hodge CN, Klabe RM, Head MS, Gilson MK. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease. Protein Sci 1999; 8:180-95. [PMID: 10210196 PMCID: PMC2144115 DOI: 10.1110/ps.8.1.180] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aspartyl dyad of free HIV-1 protease has apparent pK(a)s of approximately 3 and approximately 6, but recent NMR studies indicate that the aspartyl dyad is fixed in the doubly protonated form over a wide pH range when cyclic urea inhibitors are bound, and in the monoprotonated form when the inhibitor KNI-272 is bound. We present computations and measurements related to these changes in protonation and to the thermodynamic linkage between protonation and inhibition. The Poisson-Boltzmann model of electrostatics is used to compute the apparent pK(a)s of the aspartyl dyad in the free enzyme and in complexes with four different inhibitors. The calculations are done with two parameter sets. One assigns epsilon = 4 to the solute interior and uses a detailed model of ionization; the other uses epsilon = 20 for the solute interior and a simplified representation of ionization. For the free enzyme, both parameter sets agree well with previously measured apparent pK(a)s of approximately 3 and approximately 6. However, the calculations with an internal dielectric constant of 4 reproduce the large pKa shifts upon binding of inhibitors, but the calculations with an internal dielectric constant of 20 do not. This observation has implications for the accurate calculation of pK(a)s in complex protein environments. Because binding of a cyclic urea inhibitor shifts the pK(a)s of the aspartyl dyad, changing the pH is expected to change its apparent binding affinity. However, we find experimentally that the affinity is independent of pH from 5.5 to 7.0. Possible explanations for this discrepancy are discussed.
Collapse
Affiliation(s)
- J Trylska
- Department of Biophysics, University of Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A new class of tricyclic ureas containing a conformationally constrained proline was designed with the aid of molecular modeling. Efficient stereoselective intermolecular pinacol coupling represented the highlight of the synthesis. These rigid cyclic ureas are active towards HIV-1 protease, with 9 being the most potent compound (Ki = 9 nM) despite interacting with only three side chain binding pockets of HIV protease.
Collapse
Affiliation(s)
- W Han
- Department of Chemical and Physical Sciences, DuPont Pharmaceuticals Company, Wilmington, Delaware 19880-0500, USA
| | | | | |
Collapse
|
17
|
Kaltenbach RF, Nugiel DA, Lam PY, Klabe RM, Seitz SP. Stereoisomers of cyclic urea HIV-1 protease inhibitors: synthesis and binding affinities. J Med Chem 1998; 41:5113-7. [PMID: 9836627 DOI: 10.1021/jm980255b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have synthesized stereoisomers of cyclic urea HIV-1 protease inhibitors to study the effect of varying configurations on binding affinities. Four different synthetic approaches were used to prepare the desired cyclic urea stereoisomers. The original cyclic urea synthesis using amino acid starting materials was used to prepare three isomers. Three additional isomers were prepared by synthetic routes utilizing L-tartaric acid and D-sorbitol as chiral starting materials. A stereoselective hydroxyl inversion of the cyclic urea trans-diol was used to prepare three additional isomers. In all 9 of the 10 possible cyclic urea stereoisomers were prepared, and their binding affinities are described.
Collapse
Affiliation(s)
- R F Kaltenbach
- DuPont Merck Pharmaceutical Company, P.O. Box 80500, Wilmington, Delaware 19880-0500, USA
| | | | | | | | | |
Collapse
|
18
|
Rodgers JD, Lam PY, Johnson BL, Wang H, Li R, Ru Y, Ko SS, Seitz SP, Trainor GL, Anderson PS, Klabe RM, Bacheler LT, Cordova B, Garber S, Reid C, Wright MR, Chang CH, Erickson-Viitanen S. Design and selection of DMP 850 and DMP 851: the next generation of cyclic urea HIV protease inhibitors. CHEMISTRY & BIOLOGY 1998; 5:597-608. [PMID: 9818151 DOI: 10.1016/s1074-5521(98)90117-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recent clinical trials have demonstrated that HIV protease inhibitors are useful in the treatment of AIDS. It is necessary, however, to use HIV protease inhibitors in combination with other antiviral agents to inhibit the development of resistance. The daunting ability of the virus to rapidly generate resistant mutants suggests that there is an ongoing need for new HIV protease inhibitors with superior pharmacokinetic and efficacy profiles. In our attempts to design and select improved cyclic urea HIV protease inhibitors, we have simultaneously optimized potency, resistance profile, protein binding and oral bioavailability. RESULTS We have discovered that nonsymmetrical cyclic ureas containing a 3-aminoindazole P2 group are potent inhibitors of HIV protease with excellent oral bioavailability. Furthermore, the 3-aminoindazole group forms four hydrogen bonds with the enzyme and imparts a good resistance profile. The nonsymmetrical 3-aminoindazoles DMP 850 and DMP 851 were selected as our next generation of cyclic urea HIV protease inhibitors because they achieve 8 h trough blood levels in dog, with a 10 mg/kg dose, at or above the protein-binding-adjusted IC90 value for the worst single mutant--that containing the Ile84-->Val mutation. CONCLUSIONS In selecting our next generation of cyclic urea HIV protease inhibitors, we established a rigorous set of criteria designed to maximize chances for a sustained antiviral effect in HIV-infected individuals. As DMP 850 and DMP 851 provide plasma levels of free drug that are sufficient to inhibit wild-type HIV and several mutant forms of HIV, they could show improved ability to decrease viral load for clinically significant time periods. The ultimate success of DMP 850 and DMP 851 in clinical trials might depend on achieving or exceeding the oral bioavailability seen in dog.
Collapse
Affiliation(s)
- J D Rodgers
- DuPont Merck Pharmaceutical Company, Wilmington, DE 19880-0500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
De Lucca GV, Kim UT, Liang J, Cordova B, Klabe RM, Garber S, Bacheler LT, Lam GN, Wright MR, Logue KA, Erickson-Viitanen S, Ko SS, Trainor GL. Nonsymmetric P2/P2' cyclic urea HIV protease inhibitors. Structure-activity relationship, bioavailability, and resistance profile of monoindazole-substituted P2 analogues. J Med Chem 1998; 41:2411-23. [PMID: 9632373 DOI: 10.1021/jm980103g] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using the structural information gathered from the X-ray structures of various cyclic urea/HIVPR complexes, we designed and synthesized many nonsymmetrical P2/P2'-substituted cyclic urea analogues. Our efforts concentrated on using an indazole as one of the P2 substituents since this group imparted enzyme (Ki) potency as well as translation into excellent antiviral (IC90) potency. The second P2 substituent was used to adjust the physical and chemical properties in order to maximize oral bioavailability. Using this approach several very potent (IC90 11 nM) and orally bioavailable (F% 93-100%) compounds were discovered (21, 22). However, the resistance profiles of these compounds were inadequate, especially against the double (I84V/V82F) and ritonavir-selected mutant viruses. Further modification of the second P2 substituent in order to increase H-bonding interactions with the backbone atoms of residues Asp 29, Asp 30, and Gly 48 led to analogues with much better resistance profiles. However, these larger analogues were incompatible with the apparent molecular weight requirements for good oral bioavailability of the cyclic urea class of HIVPR inhibitors (MW < 610).
Collapse
Affiliation(s)
- G V De Lucca
- Dupont Merck Pharmaceutical Company, Experimental Station, P.O. Box 80500, Wilmington, Delaware 19880-0500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Han Q, Chang CH, Li R, Ru Y, Jadhav PK, Lam PY. Cyclic HIV protease inhibitors: design and synthesis of orally bioavailable, pyrazole P2/P2' cyclic ureas with improved potency. J Med Chem 1998; 41:2019-28. [PMID: 9622543 DOI: 10.1021/jm9704199] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly potent HIV-1 protease (HIVPR) inhibitors have been designed and synthesized by introducing bidentate hydrogen-bonding oxime and pyrazole groups at the meta-position of the phenyl ring on the P2/P2' substituents of cyclic ureas. Nonsymmetrical cyclic ureas incorporating 3(1H)-pyrazolylbenzyl as P2 and hydrophilic functionalities as P2' show potent protease inhibition and antiviral activities against HIV and have good oral bioavailabilities. The X-ray structure of HIVPR.10A complex confirms that the two pyrazole rings of 10A form bidentate hydrogen bonds with the side-chain oxygen (C=O) and backbone nitrogen (N-H) of Asp30/30' of HIVPR.
Collapse
Affiliation(s)
- Q Han
- Chemical and Physical Sciences, The DuPont Merck Pharmaceutical Company, Experimental Station, P.O. Box 80500, Wilmington, Delaware 19880-0500, USA
| | | | | | | | | | | |
Collapse
|
21
|
Patel M, Kaltenbach RF, Nugiel DA, McHugh RJ, Jadhav PK, Bacheler LT, Cordova BC, Klabe RM, Erickson-Viitanen S, Garber S, Reid C, Seitz SP. The synthesis of symmetrical and unsymmetrical P1/P1' cyclic ureas as HIV protease inhibitors. Bioorg Med Chem Lett 1998; 8:1077-82. [PMID: 9871711 DOI: 10.1016/s0960-894x(98)00175-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclic urea SD146, a potent HIV protease inhibitor bearing a flat resistance profile, possessed poor solubility and bioavailability, which precluded further development of the compound. In an effort to improve upon the pharmacokinetic profile of the compound, several analogs modified at the P1/P1' residues were prepared and evaluated. Several of those compounds displayed significant improvement of physical properties.
Collapse
Affiliation(s)
- M Patel
- Department of Chemical & Physical Sciences, DuPont Merck Pharmaceutical Company, Wilmington, DE 19880-0500, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jadhav PK, Woerner FJ, Lam PY, Hodge CN, Eyermann CJ, Man HW, Daneker WF, Bacheler LT, Rayner MM, Meek JL, Erickson-Viitanen S, Jackson DA, Calabrese JC, Schadt M, Chang CH. Nonpeptide cyclic cyanoguanidines as HIV-1 protease inhibitors: synthesis, structure-activity relationships, and X-ray crystal structure studies. J Med Chem 1998; 41:1446-55. [PMID: 9554878 DOI: 10.1021/jm970524i] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comparison of the high-resolution X-ray structures of the native HIV-1 protease and its complexes with the inhibitors suggested that the enzyme flaps are flexible. The movement at the tip of the flaps could be as large as 7 A. On the basis of this observation, cyclic cyanoguanidines have been designed, synthesized, and evaluated as HIV-1 protease (PR) inhibitors. Cyclic cyanoguanidines were found to be very potent inhibitors of HIV-1 protease. The choice of cyclic cyanoguanidines over cyclic guanidines was based on the reduced basicity of the former. X-ray structure studies of the HIV PR complex with cyclic cyanoguanidine demonstrated that in analogy to cyclic urea, cyclic cyanoguanidines also displace the unique structural water molecule. The structure-activity relationship of the cyclic cyanoguanidines is compared with that of the corresponding cyclic urea analogues. The differences in binding constants of the two series of compounds have been rationalized using high-resolution X-ray structure information.
Collapse
Affiliation(s)
- P K Jadhav
- Chemical and Physical Sciences Department, The DuPont Merck Pharmaceutical Company, Experimental Station, P.O. Box 80500, Wilmington, Delaware 19880-0500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodgers JD, Johnson BL, Wang H, Erickson-Viitanen S, Klabe RM, Bacheler L, Cordova BC, Chang CH. Potent cyclic urea HIV protease inhibitors with 3-aminoindazole P2/P2' groups. Bioorg Med Chem Lett 1998; 8:715-20. [PMID: 9871528 DOI: 10.1016/s0960-894x(98)00118-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclic ureas containing 3-aminoindazole P2/P2' groups are extremely potent inhibitors of HIV protease. The parent 3-aminoindazole 6 showed a Ki < 0.01 nM but poor translation of enzyme activity to antiviral activity was observed. A series of 3-alkylaminoindazoles revealed that translation improved with increasing lipophilicity. An X-ray crystal structure of 6 bound to HIV protease was obtained.
Collapse
Affiliation(s)
- J D Rodgers
- DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0500, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Patel M, Bacheler LT, Rayner MM, Cordova BC, Klabe RM, Erickson-Viitanen S, Seitz SP. The synthesis and evaluation of cyclic ureas as HIV protease inhibitors: modifications of the P1/P1' residues. Bioorg Med Chem Lett 1998; 8:823-8. [PMID: 9871548 DOI: 10.1016/s0960-894x(98)00119-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two series of cyclic ureas modified at the P1/P1' residue were prepared and evaluated for HIV protease inhibition and whole cell antiviral activity. Compounds 8b, 10 (3- and 4-pyridylmethyl analogs) and 6b (4-methoxy analog) showed significant improvement in antiviral activity relative to lead compounds DMP323 and DMP 450.
Collapse
Affiliation(s)
- M Patel
- Department of Chemical & Physical Sciences, DuPont Merck Pharmaceutical Company, Experimental Station, Wilmington, DE 19880-0500, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Smallheer JM, McHugh RJ, Chang CH, Kaltenbach RF, Worley TV, Klabe RM, Bacheler LT, Rayner MM, Erickson-Viitanen S, Seitz SP. Functionalized aliphatic P2/P2′ analogs of HIV-1 protease inhibitor DMP323. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00165-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
De Lucca GV, Liang J, Aldrich PE, Calabrese J, Cordova B, Klabe RM, Rayner MM, Chang CH. Design, synthesis, and evaluation of tetrahydropyrimidinones as an example of a general approach to nonpeptide HIV protease inhibitors. J Med Chem 1997; 40:1707-9. [PMID: 9171880 DOI: 10.1021/jm970081i] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Re-examination of the design of the cyclic urea class of HIV protease (HIVPR) inhibitors suggests a general approach to designing novel nonpeptide cyclic HIVPR inhibitors. This process involves the inversion of the stereochemical centers of the core transition-state isostere of the linear HIVPR inhibitors and cyclization of the resulting core using an appropriate cyclizing reagent. As an example, this process is applied to the diamino alcohol class of HIVPR inhibitors to give tetrahydropyrimidinones. Conformational analysis of the tetrahydropyrimidinones and modeling of its interaction with the active site of HIVPR suggested modifications which led to very potent inhibitors of HIVPR (24 with a Ki = 0.018 nM). The X-ray crystallographic structure of the complex of 24 with HIVPR confirms the analysis and modeling predictions. The example reported in this study and other examples that are cited indicate that this process may be generally applicable to other linear inhibitors.
Collapse
Affiliation(s)
- G V De Lucca
- DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0500, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nugiel DA, Jacobs K, Cornelius L, Chang CH, Jadhav PK, Holler ER, Klabe RM, Bacheler LT, Cordova B, Garber S, Reid C, Logue KA, Gorey-Feret LJ, Lam GN, Erickson-Viitanen S, Seitz SP. Improved P1/P1' substituents for cyclic urea based HIV-1 protease inhibitors: synthesis, structure-activity relationship, and X-ray crystal structure analysis. J Med Chem 1997; 40:1465-74. [PMID: 9154969 DOI: 10.1021/jm960839i] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present several novel P1/P1' substituents that can replace the characteristic benzyl P1/P1' moiety of the cyclic urea based HIV protease inhibitor series. These substituents typically provide 5-10-fold improvements in binding affinity compared to the unsubstituted benzyl analogs. The best substituent was the 3,4-(ethylenedioxy)benzyl group. Proper balancing of the molecule's lipophilicity facilitated the transfer of this improved binding affinity into a superior cellular antiviral activity profile. Several analogs were evaluated further for protein binding and resistance liabilities. Compound 18 (IC90 = 8.7 nM) was chosen for oral bioavailability studies based on its log P and solubility profile. A 10 mg/kg dose in dogs provided modest bioavailability with Cmax = 0.22 microg/mL. X-ray crystallographic analysis of two analogs revealed several interesting features responsible for the 3,4-(ethylenedioxy)benzyl-substituted analog's potency: (1) Comparing the two complexes revealed two distinct binding modes for each P1/P1' substituent; (2) The ethylenedioxy moieties are within 3.6 A of Pro 81 providing additional van der Waals contacts missing from the parent structure; (3) The enzyme's Arg 8 side chain moves away from the P1 substituent to accommodate the increased steric volume while maintaining a favorable hydrogen bond distance between the para oxygen substituent and the guanidine NH.
Collapse
Affiliation(s)
- D A Nugiel
- The DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0500, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
De Lucca GV. Synthesis and evaluation of delta lactams as nonpeptide HIV-protease inhibitors. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00007-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Jadhav PK, Ala P, Woerner FJ, Chang CH, Garber SS, Anton ED, Bacheler LT. Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV. J Med Chem 1997; 40:181-91. [PMID: 9003516 DOI: 10.1021/jm960586t] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclic urea amides, a novel series of HIV-1 protease (HIV PR) inhibitors, have increased activity against drug-resistant mutants of the HIV PR. The design strategy for these inhibitors is based on the hypotheses that (i) the hydrogen-bonding interactions between the inhibitor and the protease backbone will remain constant for wild-type and mutant enzymes and (ii) inhibitors which are capable of forming many nonbonded interactions, distributed throughout the active site, will experience a lower percent change in binding energy as a result of mutation in the target enzyme than those that form fewer interactions by partial occupation of the active site. The cyclic urea amide, SD146, forms 14 hydrogen bonds and 191 van der Waals contacts to HIV PR. SD146 is a very potent antiviral agent (IC90 = 5.1 nM) against wild-type HIV and maintains the same or improved level of high potency against a range of mutant strains of HIV with resistance to a wide variety of HIV protease inhibitors.
Collapse
Affiliation(s)
- P K Jadhav
- DuPont Merck Research Laboratories, DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Eyermann CJ, Jadhav P, Nicholas Hodge C, Chang CH, Rodgers JD, Y.S.L P. The role of computer-aided and structure-based design techniques in the discovery and optimization of cyclic urea inhibitors of hiv protease. ADVANCES IN AMINO ACID MIMETICS AND PEPTIDOMIMETICS 1997. [DOI: 10.1016/s1874-5113(97)80003-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Rodgers JD, Johnson BL, Wang H, Greenberg RA, Erickson-Viitanen S, Klabe RM, Cordova BC, Rayner MM, Lam GN, Chang CH. Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2′ groups. Bioorg Med Chem Lett 1996. [DOI: 10.1016/s0960-894x(96)00531-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Lam PY, Ru Y, Jadhav PK, Aldrich PE, DeLucca GV, Eyermann CJ, Chang CH, Emmett G, Holler ER, Daneker WF, Li L, Confalone PN, McHugh RJ, Han Q, Li R, Markwalder JA, Seitz SP, Sharpe TR, Bacheler LT, Rayner MM, Klabe RM, Shum L, Winslow DL, Kornhauser DM, Hodge CN. Cyclic HIV protease inhibitors: synthesis, conformational analysis, P2/P2' structure-activity relationship, and molecular recognition of cyclic ureas. J Med Chem 1996; 39:3514-25. [PMID: 8784449 DOI: 10.1021/jm9602571] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High-resolution X-ray structures of the complexes of HIV-1 protease (HIV-1PR) with peptidomimetic inhibitors reveal the presence of a structural water molecule which is hydrogen bonded to both the mobile flaps of the enzyme and the two carbonyls flanking the transition-state mimic of the inhibitors. Using the structure-activity relationships of C2-symmetric diol inhibitors, computed-aided drug design tools, and first principles, we designed and synthesized a novel class of cyclic ureas that incorporates this structural water and preorganizes the side chain residues into optimum binding conformations. Conformational analysis suggested a preference for pseudodiaxial benzylic and pseudodiequatorial hydroxyl substituents and an enantiomeric preference for the RSSR stereochemistry. The X-ray and solution NMR structure of the complex of HIV-1PR and one such cyclic urea, DMP323, confirmed the displacement of the structural water. Additionally, the bound and "unbound" (small-molecule X-ray) ligands have similar conformations. The high degree of preorganization, the complementarity, and the entropic gain of water displacement are proposed to explain the high affinity of these small molecules for the enzyme. The small size probably contributes to the observed good oral bioavailability in animals. Extensive structure-based optimization of the side chains that fill the S2 and S2' pockets of the enzyme resulted in DMP323, which was studied in phase I clinical trials but found to suffer from variable pharmacokinetics in man. This report details the synthesis, conformational analysis, structure-activity relationships, and molecular recognition of this series of C2-symmetry HIV-1PR inhibitors. An initial series of cyclic ureas containing nonsymmetric P2/P2' is also discussed.
Collapse
Affiliation(s)
- P Y Lam
- DuPont Merck Pharmaceutical Company, DuPont Merck Experimental Station, Wilmington, Delaware 19880-0500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nakamura E, Tokuyama H, Yamago S, Shiraki T, Sugiura Y. Biological Activity of Water-Soluble Fullerenes. Structural Dependence of DNA Cleavage, Cytotoxicity, and Enzyme Inhibitory Activities Including HIV-Protease Inhibition. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1996. [DOI: 10.1246/bcsj.69.2143] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Nugiel DA, Jacobs K, Kaltenbach RF, Worley T, Patel M, Meyer DT, Jadhav PK, De Lucca GV, Smyser TE, Klabe RM, Bacheler LT, Rayner MM, Seitz SP. Preparation and structure-activity relationship of novel P1/P1'-substituted cyclic urea-based human immunodeficiency virus type-1 protease inhibitors. J Med Chem 1996; 39:2156-69. [PMID: 8667359 DOI: 10.1021/jm960083n] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of novel P1/P1'-substituted cyclic urea-based HIV-1 protease inhibitors was prepared. Three different synthetic schemes were used to assemble these compounds. The first approach uses amino acid-based starting materials and was originally used to prepare DMP 323. The other two approaches use L-tartaric acid or L-mannitol as the starting material. The required four contiguous R,S,S,R centers of the cyclic urea scaffold are introduced using substrate control methodology. Each approach has specific advantages based on the desired P1/P1' substituent. Designing analogs based on the enzyme's natural substrates provided compounds with reduced activity. Attempts at exploiting hydrogen bond sites in the S1/S1' pocket, suggested by molecular modeling studies, were not fruitful. Several analogs had better binding affinity compared to our initial leads. Modulating the compound's physical properties led to a 10-fold improvement in translation resulting in better overall antiviral activity.
Collapse
Affiliation(s)
- D A Nugiel
- Dupont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0500, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hodge CN, Aldrich PE, Bacheler LT, Chang CH, Eyermann CJ, Garber S, Grubb M, Jackson DA, Jadhav PK, Korant B, Lam PY, Maurin MB, Meek JL, Otto MJ, Rayner MM, Reid C, Sharpe TR, Shum L, Winslow DL, Erickson-Viitanen S. Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450. CHEMISTRY & BIOLOGY 1996; 3:301-14. [PMID: 8807858 DOI: 10.1016/s1074-5521(96)90110-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Effective HIV protease inhibitors must combine potency towards wild-type and mutant variants of HIV with oral bioavailability such that drug levels in relevant tissues continuously exceed that required for inhibition of virus replication. Computer-aided design led to the discovery of cyclic urea inhibitors of the HIV protease. We set out to improve the physical properties and oral bioavailability of these compounds. RESULTS We have synthesized DMP 450 (bis-methanesulfonic acid salt), a water-soluble cyclic urea compound and a potent inhibitor of HIV replication in cell culture that also inhibits variants of HIV with single amino acid substitutions in the protease. DMP 450 is highly selective for HIV protease, consistent with displacement of the retrovirus-specific structural water molecule. Single doses of 10 mg kg-1 DMP 450 result in plasma levels in man in excess of that required to inhibit wild-type and several mutant HIVs. A plasmid-based, in vivo assay model suggests that maintenance of plasma levels of DMP 450 near the antiviral IC90 suppresses HIV protease activity in the animal. We did identify mutants that are resistant to DMP 450, however; multiple mutations within the protease gene caused a significant reduction in the antiviral response. CONCLUSIONS DMP 450 is a significant advance within the cyclic urea class of HIV protease inhibitors due to its exceptional oral bioavailability. The data presented here suggest that an optimal cyclic urea will provide clinical benefit in treating AIDS if it combines favorable pharmacokinetics with potent activity against not only single mutants of HIV, but also multiply-mutant variants.
Collapse
Affiliation(s)
- C N Hodge
- Department of Chemical Sciences, DuPont Merck Pharmaceutical Co., Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Olson RE, Christ DD. Chapter 33. Plasma Protein Binding of Drugs. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60472-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
A bis-[N-3-(1-hydroxy-1-methyl-ethyl)-benzyl)-cyclic urea as a HIV protease inhibitor. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00520-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Tisdale M, Myers RE, Maschera B, Parry NR, Oliver NM, Blair ED. Cross-resistance analysis of human immunodeficiency virus type 1 variants individually selected for resistance to five different protease inhibitors. Antimicrob Agents Chemother 1995; 39:1704-10. [PMID: 7486905 PMCID: PMC162812 DOI: 10.1128/aac.39.8.1704] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease inhibitor-resistant variants, isolated on passage of HIV-1HXB2 in MT-4 cells with five different protease inhibitors, have been examined for cross-resistance to five inhibitors. The protease inhibitors studied were Ro 31-8959, A-77003, XM323, L-735,524, and VX-478. Resistant variants with two to four mutations within their protease sequence and 9- to 40-fold-decreased susceptibility were selected for all five inhibitors within six to eight passes in cell culture. Passage of a zidovudine-resistant mutant in Ro 31-8959 generated a dual reverse transcriptase- and protease-resistant virus. Variants were cloned directly into a modified pHXB2-D infectious clone for cross-resistance analysis. Although the resistant variants selected possessed different combinations of protease mutations for each inhibitor, many showed cross-resistance to the other inhibitors, and one showed cross-resistance to all five inhibitors. Interestingly, some mutants showed increased susceptibility to some inhibitors. Further HIV passage studies in the combined presence of two protease inhibitors demonstrated that in vitro it was possible to delay significantly selection of mutations producing resistance to one or both inhibitors. These studies indicate that there may be some rationale for combining different protease inhibitors as well as protease and reverse transcriptase inhibitors in HIV combination therapy.
Collapse
Affiliation(s)
- M Tisdale
- Wellcome Research Laboratories, Beckenham, Kent, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Rayner MM, Cordova BC, Meade RP, Aldrich PE, Jadhav PK, Ru Y, Lam PY. DMP 323, a nonpeptide cyclic urea inhibitor of human immunodeficiency virus (HIV) protease, specifically and persistently blocks intracellular processing of HIV gag polyprotein. Antimicrob Agents Chemother 1994; 38:1635-40. [PMID: 7979297 PMCID: PMC284604 DOI: 10.1128/aac.38.7.1635] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DMP 323, a C-2-symmetrical cyclic urea, is representative of a new class of inhibitors of human immunodeficiency virus protease. In this study, we correlate the potent antiviral activity of DMP 323 in acute infections with antiprotease activity assessed by monitoring the inhibition of the processing of viral gag precursor polyprotein from chronically infected lymphoid and monocytoid cell lines. Electron microscopic examination confirmed that the inhibition of gag processing was associated with the production of immature viral particles. Reduction of DMP 323 in the environment of unprocessed gag viral particles did not result in the resumption of gag processing for at least 72 h.
Collapse
Affiliation(s)
- M M Rayner
- DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880
| | | | | | | | | | | | | |
Collapse
|