1
|
Okabe K, Chikasue K, Murakami K, Matsuda N, Yamada S. Suppressed distribution of protein A on the surface of Staphylococcus aureus as a morphological characteristic of erythromycin-resistant strain. Med Mol Morphol 2024; 57:101-109. [PMID: 38386083 DOI: 10.1007/s00795-023-00379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
To identify a new morphological phenotype of erythromycin (EM)-resistant Staphylococcus aureus (S. aureus) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the spa gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant S. aureus is a phenotypical characteristic in these strains.
Collapse
Affiliation(s)
- Kanako Okabe
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan.
| | - Kumiko Chikasue
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Keiji Murakami
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Nobuaki Matsuda
- Electron Microscope Center, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan
| | - Sakuo Yamada
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| |
Collapse
|
2
|
Rosales-González NC, González-Martín M, Abdullahi IN, Tejedor-Junco MT, Latorre-Fernández J, Torres C. Prevalence, antimicrobial resistance, and genetic lineages of nasal Staphylococcus aureus among medical students at a Spanish University: detection of the MSSA-CC398-IEC-type-C subclade. Res Microbiol 2024; 175:104176. [PMID: 38141795 DOI: 10.1016/j.resmic.2023.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Medical students could be a potential source of Staphylococcus aureus transmission to patients. This cross-sectional study involved samples collected from both nasal nostrils. Samples were processed for S. aureus recovery; the antimicrobial resistance (AMR) phenotype was determined by disc diffusion assays and the spa types and AMR genotypes by PCR/sequencing. A structured questionnaire was administered to students to collate data related to potential risk factors of nasal colonization. Ninety-eight students were included, 50 % were colonized by S. aureus and 12.2 % by MRSA. The mecA gene was detected in all MRSA isolates. The MSSA-CC398-IEC-type C lineage was found among 16.3 % of nasal carriers, of which t571 was the predominant spa-type. MRSA isolates were ascribed to spa types t2226 (CC5, 12 isolates) and t3444 (new spa type, 1 isolate). All MRSA were multi-drug resistant and MSSA were predominantly resistant to erythromycin-clindamycin (inducible-type, mediated by ermT gene). High rates of S. aureus and MRSA nasal carriages were observed in this study. The predominance of the CC398 lineage among MSSA (emergent invasive lineage) represent a relevant finding of public health concern. The role of medical students as potential source of MRSA and MSSA-CC398 transmissions in hospital and community needs to be elucidated in detail.
Collapse
Affiliation(s)
| | - Margarita González-Martín
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| |
Collapse
|
3
|
Huang L, Bao Y, Yi Q, Yu D, Wang H, Wang H, Liu Z, Zhu C, Meng Q, Chen Y, Wang W, Deng J, Liu G, Zheng Y, Yang Y. Molecular characteristics and antimicrobial resistance of invasive pneumococcal isolates from children in the post-13-valent pneumococcal conjugate vaccine era in Shenzhen, China. J Glob Antimicrob Resist 2024; 36:399-406. [PMID: 38266961 DOI: 10.1016/j.jgar.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the molecular epidemiology and antimicrobial resistance of invasive pneumococcal isolates from children in Shenzhen, China, in the early stage of the pneumococcal 13-valent conjugated vaccine (PCV-13) era from 2018 to 2020. METHODS Invasive pneumococcal strains were isolated from hospitalized children with invasive pneumococcal diseases (IPDs) from January 2018 to December 2020. The serotype identification, multilocus sequence typing (MLST), and antibiotic susceptibility tests were performed on all culture-confirmed strains. RESULTS Sixty-four invasive strains were isolated mainly from blood (70.3%). Prevalent serotypes were 23F (28.1%), 14 (18.8%), 19F (15.6%), 6A/B (14.1%), and 19A (12.5%), with a serotype coverage rate of 96.9% for PCV13. The most common sequence types (STs) were ST876 (17.1%), ST271 (10.9%), and ST320 (7.8%). Half of the strains were grouped in clonal complexes (CCs): CC271 (21.9%), CC876 (20.3%), and CC90 (14.1%). Meningitis isolates showed a higher resistance rate (90.9% and 45.5%) to penicillin and ceftriaxone than the rate (3.8% and 9.4%) of non-meningitis isolates. The resistance rates for penicillin (oral), cefuroxime, and erythromycin were 53.13%, 73.4%, and 96.9%, respectively. The dual ermB and mefA genotype was found in 81.3% of erythromycin-resistant strains. The elevated minimum inhibitory concentration (MIC) of β-lactam antibiotics and dual-genotype macrolide resistance were related mainly to three major serotype-CC combinations: 19F-CC271, 19A-CC271, and 14-CC876. CONCLUSION Invasive pneumococcus with elevated MICs of β-lactams and increased dual ermB and mefA genotype macrolide resistance were alarming. Expanded PCV13 vaccination is expected to reduce the burden of paediatric IPD and to combat antibiotic-resistant pneumococcus in Shenzhen.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China; Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Qiuwei Yi
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Dingle Yu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Heping Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Hongmei Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Zihao Liu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Chunqing Zhu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Qing Meng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Yunsheng Chen
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Wenjian Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Jikui Deng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Gang Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China
| | - Yuejie Zheng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China.
| | - Yonghong Yang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China.
| |
Collapse
|
4
|
Haque MA, Hu H, Liu J, Islam MA, Hossen F, Rahman MA, Ahmed F, He C. Emergence of multidrug-resistant Bacillus spp. derived from animal feed, food and human diarrhea in South-Eastern Bangladesh. BMC Microbiol 2024; 24:61. [PMID: 38373893 PMCID: PMC10875756 DOI: 10.1186/s12866-024-03199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Antimicrobial resistance poses a huge risk to human health worldwide, while Bangladesh is confronting the most severe challenge between the food supply and the huge consumption of antibiotics annually. More importantly, probiotics containing Bacillus spp. are claimed to be an alternative to antimicrobial stewardship programs. However, their antibiotic resistance remains elusive. Thus, we employed the antimicrobial susceptibility test and PCR to assess the prevalence of resistance, including multidrug resistance (MDR) and resito-genotyping of isolated Bacillus spp. RESULTS The phenotypic profile showed that Bacillus spp. were 100% sensitive to gentamicin (2 µg/mL), whereas lowered sensitivity to levofloxacin (67.8%, 0.5-1 µg/mL), ciprofloxacin (62.3%, 0.5-1 µg/mL), clindamycin (52.2%, 0.25-0.5 µg/mL), amoxicillin-clavulanic acid (37.6%, 0.06 µg/mL), azithromycin (33.4%, 1-2 µg/mL), tetracycline (25.6%, 2-4 µg/mL), nitrofurantoin (21.1%, 16-32 µg/mL), co-trimoxazole (19.2%, 2 µg/mL), and erythromycin (18.8%, 0.25-0.5 µg/mL). The strains were completely resistant to penicillin, amoxicillin-clavulanic acid, cefixime, ceftriaxone, vancomycin, and co-trimoxazole, and a species-specific trend was seen in both phenotypic and genotypic resistance patterns. Genotypic resistance indicated prevalence of the bla1 (71.5%), tetA (33%), erm1 (27%), blaTEM (13.1%), blaCTX-M-1/blaCTX-M-2 /sul1 (10.1%), blaSHV (9.6%), and qnrS (4.1%) genes. The β-lactamase resistance gene bla1 was found in all penicillin-resistant (MIC ≥ 32 µg/mL) Bacillus spp. One hundred ninety-one isolates (89.6%) were MDR, with 100% from diarrhea, 90.3% from food, and 88.7% from animal feed. CONCLUSION Based on the MIC value and profile analysis of antibiotic resistance genes, this is the first study that Bacillus spp. antimicrobial susceptibilities have been identified in Bangladesh, and our study will shed light on the adverse effects of feed-borne Bacillus spp. emerging from animal feed to the food chain. A comprehensive investigation is urgently needed by policymakers on tolerance limits and harmful effects in the animal industry.
Collapse
Affiliation(s)
- Md Atiqul Haque
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Huilong Hu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China
| | - Jiaqi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China
| | - Md Aminul Islam
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Arifur Rahman
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Firoz Ahmed
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Cheng He
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China.
| |
Collapse
|
5
|
Dung TTN, Phat VV, Vinh C, Lan NPH, Phuong NLN, Ngan LTQ, Thwaites G, Thwaites L, Rabaa M, Nguyen ATK, Duy PT. Development and validation of multiplex real-time PCR for simultaneous detection of six bacterial pathogens causing lower respiratory tract infections and antimicrobial resistance genes. BMC Infect Dis 2024; 24:164. [PMID: 38326753 PMCID: PMC10848345 DOI: 10.1186/s12879-024-09028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pneumoniae and Staphylococcus aureus are major bacterial causes of lower respiratory tract infections (LRTIs) globally, leading to substantial morbidity and mortality. The rapid increase of antimicrobial resistance (AMR) in these pathogens poses significant challenges for their effective antibiotic therapy. In low-resourced settings, patients with LRTIs are prescribed antibiotics empirically while awaiting several days for culture results. Rapid pathogen and AMR gene detection could prompt optimal antibiotic use and improve outcomes. METHODS Here, we developed multiplex quantitative real-time PCR using EvaGreen dye and melting curve analysis to rapidly identify six major pathogens and fourteen AMR genes directly from respiratory samples. The reproducibility, linearity, limit of detection (LOD) of real-time PCR assays for pathogen detection were evaluated using DNA control mixes and spiked tracheal aspirate. The performance of RT-PCR assays was subsequently compared with the gold standard, conventional culture on 50 tracheal aspirate and sputum specimens of ICU patients. RESULTS The sensitivity of RT-PCR assays was 100% for K. pneumoniae, A. baumannii, P. aeruginosa, E. coli and 63.6% for S. aureus and the specificity ranged from 87.5% to 97.6%. The kappa correlation values of all pathogens between the two methods varied from 0.63 to 0.95. The limit of detection of target bacteria was 1600 CFU/ml. The quantitative results from the PCR assays demonstrated 100% concordance with quantitative culture of tracheal aspirates. Compared to culture, PCR assays exhibited higher sensitivity in detecting mixed infections and S. pneumoniae. There was a high level of concordance between the detection of AMR gene and AMR phenotype in single infections. CONCLUSIONS Our multiplex quantitative RT-PCR assays are fast and simple, but sensitive and specific in detecting six bacterial pathogens of LRTIs and their antimicrobial resistance genes and should be further evaluated for clinical utility.
Collapse
Affiliation(s)
- Tran Thi Ngoc Dung
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Voong Vinh Phat
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Chau Vinh
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | | | | | | | - Guy Thwaites
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Louise Thwaites
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Maia Rabaa
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Anh T K Nguyen
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Pham Thanh Duy
- Molecular Epidemiology Group, Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
6
|
Tran HM, Prathan R, Hein ST, Chuanchuen R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics (Basel) 2024; 13:148. [PMID: 38391534 PMCID: PMC10885956 DOI: 10.3390/antibiotics13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.
Collapse
Affiliation(s)
- Hoang My Tran
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Si Thu Hein
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Powell LM, Choi SJ, Haught BL, Demkowicz R, LaSala PR, Lukomski S. Prevalence of erythromycin-resistant emm92-type invasive group A streptococcal infections among injection drug users in West Virginia, United States, 2021-23. J Antimicrob Chemother 2023; 78:2554-2558. [PMID: 37638394 DOI: 10.1093/jac/dkad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Increasing incidence of invasive group A Streptococcus (iGAS) disease has been reported in Europe and the USA over the past several years. Coupled with this are observations of higher rates of resistance to erythromycin and clindamycin. OBJECTIVES To characterize iGAS and pharyngitis isolates from West Virginia (WV), a US state outside of the national Active Bacteria Core surveillance purview, where risk factors associated with iGAS infections are prevalent. METHODS Seventy-seven invasive group A Streptococcus isolates were collected from 67 unique patients at the J.W. Ruby Memorial Hospital Clinical Microbiology Laboratory in WV from 2021 to 2023. Invasive isolates and 20 unique pharyngitis isolates were tested for clindamycin and erythromycin susceptibility in the clinical laboratory. Patient demographic and clinical information was retrieved from patient electronic health records. Isolates were further characterized based on emm subtype and detection of MLSB resistance determinants. RESULTS Twenty-six (39%) isolates were of a single emm92 type. All emm92 isolates were uniformly erythromycin/clindamycin resistant with inducible or constitutive MLSB resistance imparted by the plasmid-borne erm(T) gene. The majority of emm92 infections were associated with adult patients who reported IV drug use, whereas no pharyngitis infections were caused by an emm92 strain. Overall, 51 (76%) of the 67 iGAS isolates were determined to carry MLSB resistance. CONCLUSIONS Isolates of emm92 type (clonal subtype emm92.0) were associated with iGAS infections in adult IV drug users, but not with paediatric pharyngitis, and were uniformly resistant to erythromycin and clindamycin.
Collapse
Affiliation(s)
- Lillie M Powell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Soo Jeon Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Breanna L Haught
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Ryan Demkowicz
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - P Rocco LaSala
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| |
Collapse
|
8
|
Abdullahi IN, Lozano C, Simón C, Zarazaga M, Torres C. Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR- S. borealis. Antibiotics (Basel) 2023; 12:1505. [PMID: 37887206 PMCID: PMC10604674 DOI: 10.3390/antibiotics12101505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The ecology and diversity of resistome in coagulase-negative staphylococci (CoNS) from healthy pigs and pig farmers are rarely available as most studies focused on the livestock-associated methicillin-resistant S. aureus. This study aims to characterize the antimicrobial resistance (AMR) mechanisms, intra-host species diversity (more than one species in a host), and intra-species AMR diversity (same species with more than one AMR profile) in CoNS recovered from the nasal cavities of healthy pigs and pig farmers. One-hundred-and-one CoNS strains previously recovered from 40 pigs and 10 pig farmers from four Spanish pig farms were tested to determine their AMR profiles. Non-repetitive strains were selected (n = 75) and their AMR genes, SCCmec types, and genetic lineages were analyzed by PCR/sequencing. Of the non-repetitive strains, 92% showed a multidrug resistance (MDR) phenotype, and 52% were mecA-positive, which were associated with SCCmec types V (46.2%), IVb (20.5%), and IVc (5.1%). A total of 28% of the pigs and pig farmers had intra-host species diversity, while 26% had intra-species AMR diversity. High repertoires of AMR genes were detected, including unusual ones such as tetO, ermT, erm43, and cfr. Most important was the detection of cfr (in S. saprophyticus and S. epidermidis-ST16) in pigs and pig farmers; whereas MDR-S. borealis strains were identified in pig farmers. Pig-to-pig transmission of CoNS with similar AMR genes and SCCmec types was detected in 42.5% of pigs. The high level of multidrug, within-host, and intra-species resistome diversity in the nasal CoNS highlights their ability to be AMR gene reservoirs in healthy pigs and pig farmers. The detection of MDR-S. borealis and linezolid-resistant strains underscore the need for comprehensive and continuous surveillance of MDR-CoNS at the pig farm level.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, 50001 Zaragoza, Spain;
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| |
Collapse
|
9
|
Cui L, Chen J, Fei Q, Ma Y. The migration regularity and removal mechanism of antibiotic resistance genes during in situ enzymatic hydrolysis and anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2023; 385:129388. [PMID: 37369318 DOI: 10.1016/j.biortech.2023.129388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
This study developed a high efficiency compound enzyme (fungal mash) produced in situ from food waste (FW) used for improving hydrolysis and anaerobic digestion (AD) efficiency of FW. Results showed that the soluble COD and methane yield were respectively increased by 67.80% and 16.58% after 24 h in situ enzymatic hydrolysis of food waste by fungal mash. Furthermore, most of target ARGs in FW were also reduced by 45-94% after 24 h in situ enzymatic hydrolysis, while the total tested ARGs and intI1 were respectively further removed by 44-55% and 21-73% in subsequent AD process. In-depth analysis showed that fungal mash could effectively reduce potential hosts and control the horizontal transfer of ARGs during the in situ enzymatic hydrolysis and AD process. Ultimately, correlation analysis and redundancy analysis indicated that the evolution of bacterial communities and changes in intI1 where the common driving forces for the fate of ARGs.
Collapse
Affiliation(s)
- Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
10
|
Szemraj M, Glajzner P, Sienkiewicz M. Decreased susceptibility to vancomycin and other mechanisms of resistance to antibiotics in Staphylococcus epidermidis as a therapeutic problem in hospital treatment. Sci Rep 2023; 13:13629. [PMID: 37604965 PMCID: PMC10442409 DOI: 10.1038/s41598-023-40866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Multidrug-resistant coagulase-negative staphylococci represent a real therapeutic challenge. The aim of the study was to emphasize the importance of heteroresistance to vancomycin presence in methicillin-resistant strains of S. epidermidis. The research comprised 65 strains of S. epidermidis. Heteroresistance to vancomycin was detected with the use of the agar screening method with Brain Heart Infusion and a population profile analysis (PAP test). In addition, types of cassettes and genes responsible for resistance to antibiotics for 22 multidrug resistant strains were determined. Our investigations showed that 56 of 65 S. epidermidis strains were phenotypically resistant to methicillin. The tested strains were mostly resistant to erythromycin, gentamicin, clindamycin, and ciprofloxacin. Six strains showed decreased susceptibility to vancomycin and their heterogeneous resistance profiles were confirmed with the PAP test. All tested multi-resistant strains exhibited the mecA gene. More than half of them possessed type IV cassettes. ant(4')-Ia and aac(6')/aph(2''), ermC and tetK genes were most commonly found. The described phenomenon of heteroresistance to vancomycin in multidrug resistant bacteria of the Staphylococcus genus effectively inhibits a therapeutic effect of treatment with this antibiotic. That is why it is so important to search for markers that will enable to identify heteroresistance to vancomycin strains under laboratory conditions.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland.
| | - Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Cunha S, Miranda C, Martins Â, Soares R, Maia M, Silva F, Igrejas G, Poeta P. Analysis of Antibiotic-Resistant and Virulence Genes of Enterococcus Detected in Calf Colostrum-One Health Perspective. Animals (Basel) 2023; 13:1900. [PMID: 37370411 DOI: 10.3390/ani13121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Enterococci are considered among the most prevalent global multidrug-resistant microorganisms globally. Their dissemination is a global concern, particularly by food-producing animals for both animals and humans. The aim of this study was to identify the species and investigate the antibiotic resistance and virulence profile of Enterococcus in bovine colostrum. Out of 88 presumptive Enterococcus isolates, species identification and susceptibility to 14 antimicrobials were tested using the disk diffusion method. An analysis of the antibiotic resistance and virulence genes was performed on the most prevalent species, using specific PCR assays. Enterococcus faecalis (54.5%), E. faecium (14.8%) and E. gallinarum (6.8%) were the identified species. To the best of our knowledge, this is the first report of E. gallinarum in bovine colostrum. The majority of the isolates showed resistance to quinupristin-dalfopristin (95.9%), erythromycin (80.7%), tetracycline (80.7%) and streptomycin (58%). Ninety-two percent of isolates were classified as multidrug-resistant. The most frequently detected resistance genes were tet(K) (61.1%), tet(M) (75.9%), tet(L) (90.7%), erm(B) (55.6%) and ant(6)-Ia (46.3%). The most prevalent virulence factors were cpd, esp, agg and cylLL. Enterococcus faecium showed a higher probability of carrying the erm(C), tet(M), ace and gel(E) genes (p < 0.05). These results demonstrated that colostrum can constitute an important reservoir and vehicle for the dissemination of antibiotic resistance and virulence genes to the three niches included in a One Health perspective (humans, animals and the environment), highlighting the importance of hygiene sanitary measures to mitigate colostrum microbial contamination.
Collapse
Affiliation(s)
- Sandra Cunha
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ângela Martins
- Department of Zootechnics, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rúben Soares
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuel Maia
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Filipe Silva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Ferri G, Lauteri C, Festino AR, Vergara A. ARGs Detection in Listeria Monocytogenes Strains Isolated from the Atlantic Salmon ( Salmo salar) Food Industry: A Retrospective Study. Microorganisms 2023; 11:1509. [PMID: 37375010 DOI: 10.3390/microorganisms11061509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Among bacterial foodborne pathogens, Listeria monocytogenes represents one of the most important public health concerns in seafood industries. This study was designed as a retrospective study which aimed to investigate the trend of antibiotic resistance genes (ARGs) circulation in L. monocytogenes isolates identified (in the last 15 years) from Atlantic salmon (Salmo salar) fresh and smoked fillets and environmental samples. For these purposes, biomolecular assays were performed on 120 L. monocytogenes strains collected in certain years and compared to the contemporary scientific literature. A total of 52.50% (95% CI: 43.57-61.43%) of these samples were resistant to at least one antibiotic class, and 20.83% (95% CI: 13.57-28.09%) were classified as multidrug resistant. Concerning ARGs circulation, tetracycline (tetC, tetD, tetK, tetL, tetS), aminoglycoside (aadA, strA, aacC2, aphA1, aphA2), macrolide (cmlA1, catI, catII), and oxazolidinone (cfr, optrA, poxtA) gene determinants were majorly amplified. This study highlights the consistent ARGs circulation from fresh and processed finfish products and environmental samples, discovering resistance to the so-called critical important antimicrobials (CIA) since 2007. The obtained ARGs circulation data highlight the consistent increase in their diffusion when compared to similar contemporary investigations. This scenario emerges as the result of decades of improper antimicrobial administration in human and veterinary medicine.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Carlotta Lauteri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Anna Rita Festino
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| |
Collapse
|
13
|
Soares R, Miranda C, Cunha S, Ferreira L, Martins Â, Igrejas G, Poeta P. Antibiotic Resistance of Enterococcus Species in Ornamental Animal Feed. Animals (Basel) 2023; 13:1761. [PMID: 37889631 PMCID: PMC10251925 DOI: 10.3390/ani13111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 10/29/2023] Open
Abstract
Enterococcus is a bacterial genus that is strongly associated with nosocomial infections and has a high capacity to transfer and acquire resistance genes. In this study, the main objective was to evaluate the presence of Enterococcus species in ornamental animal feed and characterize their antimicrobial resistance and virulence factors. Antimicrobial susceptibility was determined using 14 antimicrobial agents by the disk diffusion method, complemented by genotypic analysis to identify Enterococcus species and the presence of 14 antimicrobial resistance and 10 virulence genes. From 57 samples of ornamental animal feed, 103 Enterococcus isolates were recovered from 15 bird, 9 fish and 4 reptile feed samples. Enterococcus isolates were highly resistance to rifampicin (78%) and erythromycin (48%), and 48% of isolates were classified as multidrug-resistant. Enterococcus faecalis (36.7%) and E. faecium (31.7%) were the species most frequently identified. Most isolates carried the resistance genes ermB (57%) and tetL (52%) and the virulence genes, cylL (52%) and esp (40%). Enterococcus gallinarum was the species with the highest number of multidrug-resistant isolates (50%) and virulence genes (80%). These results highlight the high levels of antibiotic-resistant Enterococcus spp. present in ornamental animal feed and the growing interaction of these animals with humans as a public health concern.
Collapse
Affiliation(s)
- Rúben Soares
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (S.C.); (L.F.); (P.P.)
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (S.C.); (L.F.); (P.P.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal;
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Sandra Cunha
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (S.C.); (L.F.); (P.P.)
| | - Luís Ferreira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (S.C.); (L.F.); (P.P.)
| | - Ângela Martins
- Department of Zootechnics, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (S.C.); (L.F.); (P.P.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal;
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
14
|
Chang SC, Hidrosollo JH, Lin LC, Ou YH, Kao CY, Lu JJ. Characterization of oxacillin-resistant Staphylococcus lugdunensis isolated from sterile body fluids in a medical center in Taiwan: A 12-year longitudinal epidemiological study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:292-298. [PMID: 36130866 DOI: 10.1016/j.jmii.2022.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND In this study, our objective was to characterize Staphylococcus lugdunensis isolated from sterile body fluids (SBFs) in a medical center in Taiwan between 2009 and 2020. METHODS We used MALDI-TOF MS, disk diffusion testing, agar dilution assay, SCCmec typing, and antibiotic resistance gene screening to identify and investigate the characteristics of oxacillin-resistant S. lugdunensis (ORSL). RESULTS A total of 438 S. lugdunensis isolates were collected and 146 (33.3%) isolates were identified as ORSL. SCCmec type V was dominant (65.7%) in our ORSL isolates, followed by SCCmec type II (18.5%), and type IV (8.9%). After 2013, a slight increase in SCCmec types IV and V was revealed. Moreover, all ORSL isolates with type II and untypable SCCmec were highly resistant to oxacillin (MIC >32 μg/mL), compared to ORSL that had SCCmec types IV, V, and VT. All 146 ORSL isolates were resistant to penicillin and susceptible to teicoplanin and vancomycin. High resistance rates of ORSL to clindamycin (43.2%), erythromycin (43.2%), gentamicin (78.1%) and tetracycline (46.6%) was observed. Moreover, only two (1.4%) and six (4.1%) ORSL isolates were resistant to trimethoprim/sulfamethoxazole and ciprofloxacin, respectively. The erythromycin-resistant ORSL isolates mostly exhibited constitutive MLSB resistant phenotype (61/63, 96.8%) and contained either ermC alone (27/63, 42.9%) or a combination of ermC with ermA (28/63, 44.4%). CONCLUSION Our present study showed a stable rate of ORSL from SBFs during 2009-2020. Moreover, teicoplanin, vancomycin, trimethoprim/sulfamethoxazole, and ciprofloxacin were shown to be highly efficient for the treatment of ORSL in vitro.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Hsiang Ou
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Mwikuma G, Kainga H, Kallu SA, Nakajima C, Suzuki Y, Hang’ombe BM. Determination of the Prevalence and Antimicrobial Resistance of Enterococcus faecalis and Enterococcus faecium Associated with Poultry in Four Districts in Zambia. Antibiotics (Basel) 2023; 12:antibiotics12040657. [PMID: 37107019 PMCID: PMC10135028 DOI: 10.3390/antibiotics12040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The presence of antimicrobial-resistant Enterococci in poultry is a growing public health concern worldwide due to its potential for transmission to humans. The aim of this study was to determine the prevalence and patterns of antimicrobial resistance and to detect drug-resistant genes in Enterococcus faecalis and E. faecium in poultry from four districts in Zambia. Identification of Enterococci was conducted using phenotypic methods. Antimicrobial resistance was determined using the disc diffusion method and antimicrobial resistance genes were detected using polymerase chain reaction and gene-specific primers. The overall prevalence of Enterococci was 31.1% (153/492, 95% CI: 27.1–35.4). Enterococcus faecalis had a significantly higher prevalence at 37.9% (58/153, 95% CI: 30.3–46.1) compared with E. faecium, which had a prevalence of 10.5% (16/153, 95% CI: 6.3–16.7). Most of the E. faecalis and E. faecium isolates were resistant to tetracycline (66/74, 89.2%) and ampicillin and erythromycin (51/74, 68.9%). The majority of isolates were susceptible to vancomycin (72/74, 97.3%). The results show that poultry are a potential source of multidrug-resistant E. faecalis and E. faecium strains, which can be transmitted to humans. Resistance genes in the Enterococcus species can also be transmitted to pathogenic bacteria if they colonize the same poultry, thus threatening the safety of poultry production, leading to significant public health concerns.
Collapse
|
16
|
Inhibition of Erythromycin and Erythromycin-Induced Resistance among Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2023; 12:antibiotics12030503. [PMID: 36978370 PMCID: PMC10044026 DOI: 10.3390/antibiotics12030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The increasing incidence of erythromycin and erythromycin-induced resistance to clindamycin among Staphylococcus aureus (S. aureus) is a serious problem. Patients infected with inducible resistance phenotypes may fail to respond to clindamycin. This study aimed to identify the prevalence of erythromycin and erythromycin-induced resistance and assess for potential inhibitors. A total of 99 isolates were purified from various clinical sources. Phenotypic detection of macrolide-lincosamide-streptogramin B (MLSB)-resistance phenotypes was performed by D-test. MLSB-resistance genes were identified using PCR. Different compounds were tested for their effects on erythromycin and inducible clindamycin resistance by broth microdilution and checkerboard microdilution methods. The obtained data were evaluated using docking analysis. Ninety-one isolates were S. aureus. The prevalence of constitutive MLSB, inducible MLSB, and macrolide-streptogramin (MS) phenotypes was 39.6%, 14.3%, and 2.2%, respectively. Genes including ermC, ermA, ermB, msrA, msrB, lnuA, and mphC were found in 82.6%, 5.8%, 7.7%, 3.8%, 3.8%, 13.5%, and 3.8% of isolates, respectively. Erythromycin resistance was significantly reduced by doxorubicin, neomycin, and omeprazole. Quinine, ketoprofen, and fosfomycin combated and reversed erythromycin/clindamycin-induced resistance. This study highlighted the significance of managing antibiotic resistance and overcoming clindamycin treatment failure. Doxorubicin, neomycin, omeprazole, quinine, ketoprofen, and fosfomycin could be potential inhibitors of erythromycin and inducible clindamycin resistance.
Collapse
|
17
|
Phenotypic and Genotypic Characterization of Macrolide-Lincosamide-Streptogramin Resistance in Staphylococcus aureus Isolates from Bovine and Human. ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
In this study, penicillin, oxacillin, and macrolide-lincosamide-streptogramin (MLS) resistance in S. aureus strains that were isolated from bovine mastitis cases, and human patients were investigated. Inducible clindamycin resistance (iML) was not found in 30 bovine isolates, while it was detected in 3 (10%) of 30 human isolates. MIC90 values of penicillin, oxacillin and macrolide-lincosamides (ML) were 2, 0.19, >256 µg/ml in bovine isolates and were 3, 3 and 0.19-1.5 µg/ml in human isolates, respectively. Streptogramin resistance was not found in both bovine and human isolates. Although the mecA gene was detected in all of the oxacillin resistant isolates, blaZ gene could not be detected in penicillin resistant isolates. The erm(B) gene was detected in 5 (38.6%) of 13 ML-resistant bovine isolates, and the mph(C) gene was detected in 2 (66.66%) of 3 human isolates. As a result, resistance to penicillin and oxacillin was found to be higher in human S. aureus isolates, while ML resistance was found to be higher in bovine isolates in this investigation. It was concluded that the presence of genes in extra-chromosomal elements associated to penicillin and macrolide resistance should be investigated. The data obtained from this study will contribute to the studies on antimicrobial susceptibility in the field of human and veterinary medicine.
Collapse
|
18
|
Abu Lila AS, Alharby TN, Alanazi J, Alanazi M, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Al Balushi AA, Hegazy WAH. Clinical Resistant Strains of Enterococci and Their Correlation to Reduced Susceptibility to Biocides: Phenotypic and Genotypic Analysis of Macrolides, Lincosamides, and Streptogramins. Antibiotics (Basel) 2023; 12:antibiotics12030461. [PMID: 36978327 PMCID: PMC10044631 DOI: 10.3390/antibiotics12030461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved resistance genes were screened in the resistant isolates. The current results showed high resistance rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation) and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The present findings showed a significant correlation between MLS resistance and reduced susceptibility to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role of efflux in developing cross-resistance to both MLS antibiotics and biocides.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Tareq Nafea Alharby
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Muteb Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah Ali Al Balushi
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
19
|
Gaálová-Radochová B, Kendra S, Jordao L, Kursawe L, Kikhney J, Moter A, Bujdáková H. Effect of Quorum Sensing Molecule Farnesol on Mixed Biofilms of Candida albicans and Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12030441. [PMID: 36978309 PMCID: PMC10044556 DOI: 10.3390/antibiotics12030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The natural bioactive molecule farnesol (FAR) is widely studied mainly for its antibiofilm and antimicrobial properties. In addition, it increases the effectiveness of some antimicrobial substances, which makes it interesting for the development of combined therapy. In the present work, the effect of FAR either alone or in combination with oxacillin (OXA) on mixed biofilms formed by clinically relevant pathogens, Candida albicans and Staphylococcus aureus, was studied. S. aureus isolates used for biofilm formation originated from blood cultures and central venous catheters (CVC) were characterized in terms of antimicrobial resistance. The minimal biofilm inhibitory concentration (MBIC50) for FAR of 48 h mixed biofilms formed by the C. albicans and methicillin-sensitive S. aureus (MSSA) was determined to be 125 μM, and for the mixed biofilms with methicillin-resistant S. aureus (MRSA) was determined to be 250 μM. Treatment of mixed biofilms with OXA (2 mg/mL) showed ≤4% inhibition; however, the combination of OXA (2 mg/mL) and FAR (300 μM) resulted in 80% inhibition of biofilms. In addition, planktonic cells of S. aureus exhibited an increased susceptibility to OXA, cefoxitin and kanamycin in the presence of FAR (150 and 300 μM). Scanning electron microscopy (SEM) micrographs confirmed patchy biofilm and lack of candidal hyphae in the samples treated with FAR and FAR/OXA in comparison to control and mixed biofilms treated only with OXA. Intriguingly, in a pilot experiment using fluorescence in situ hybridization (FISH), considerable differences in activity (as indicated by ribosome content) of staphylococcal cells were detected. While the activity rate of the staphylococci in mixed biofilms treated with FAR was high, no FISH-positive signal for staphylococcal cells was found in the biofilm treated with FAR/OXA.
Collapse
Affiliation(s)
- Barbora Gaálová-Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9480
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Department of Environmental Health, Research and Development Unit, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Laura Kursawe
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Judith Kikhney
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
- Moter Diagnostics, Marienplatz 9, 12207 Berlin, Germany
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
20
|
Ikebe T, Okuno R, Uchitani Y, Takano M, Yamaguchi T, Otsuka H, Kazawa Y, Fujita S, Kobayashi A, Date Y, Isobe J, Maenishi E, Ohnishi M, Akeda Y. Serotype Distribution and Antimicrobial Resistance of Streptococcus agalactiae Isolates in Nonpregnant Adults with Streptococcal Toxic Shock Syndrome in Japan in 2014 to 2021. Microbiol Spectr 2023; 11:e0498722. [PMID: 36786620 PMCID: PMC10100893 DOI: 10.1128/spectrum.04987-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
The incidence of streptococcal toxic shock syndrome (STSS) due to group B Streptococcus (GBS) has been increasing annually in Japan and is becoming a serious challenge. Furthermore, in recent years, penicillin- or clindamycin-resistant strains used in treating streptococcal toxic shock syndrome have been reported. However, no report analyzed >100 isolates of group B Streptococcus causing streptococcal toxic shock syndrome. Therefore, we aimed to perform serotyping and antimicrobial susceptibility testing of 268 isolated group B Streptococcus strains from streptococcal toxic shock syndrome cases involving nonpregnant adult patients in Japan between 2014 and 2021. The most prevalent serotype was Ib, followed by serotypes V, III, and Ia. Seven isolates were resistant to penicillin G, and 17.9% (48 isolates) were resistant to clindamycin. Of the penicillin-resistant group B Streptococcus isolates, 71.4% (5 isolates) were clindamycin resistant. In addition, group B Streptococcus strains resistant to penicillin and clindamycin were isolated from patients with streptococcal toxic shock syndrome. Therefore, before these strains become prevalent, introduction of the group B Streptococcus vaccine is essential for disease prevention. IMPORTANCE Group B Streptococcus (GBS) has been increasingly associated with invasive disease in nonpregnant adults. Such infections are responsible for substantial morbidity and mortality, particularly in individuals with underlying chronic conditions. Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multiorgan failure, and high mortality. In this study, we assessed 268 GBS-related STSS cases in nonpregnant adults in Japan between 2014 and 2021. Serotype Ib was the most prevalent, followed by serotypes V, III, and Ia, which were identified in more than 80% of STSS isolates. We found that 48 clindamycin-resistant strains and 7 penicillin G-resistant strains were isolated between 2014 and 2021. We believe that our study makes a significant contribution to the literature because we show that the GBS vaccine, particularly the hexavalent conjugate vaccine, is important to reduce the number of patients with STSS.
Collapse
Affiliation(s)
| | - Rumi Okuno
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yumi Uchitani
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Mami Takano
- Oita Prefectural Institute of Health and Environment, Oita, Japan
| | | | - Hitoshi Otsuka
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | - Yu Kazawa
- Fukushima Prefectural Institute of Public Health, Fukushima, Japan
| | - Shohei Fujita
- Fukushima Prefectural Institute of Public Health, Fukushima, Japan
| | - Ayaka Kobayashi
- Fukushima Prefectural Institute of Public Health, Fukushima, Japan
| | - Yoshimi Date
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | | | | | - the Working Group for Beta-Hemolytic Streptococci in Japan
- National Institute of Infectious Diseases, Tokyo, Japan
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
- Oita Prefectural Institute of Health and Environment, Oita, Japan
- Osaka Institute of Public Health, Osaka, Japan
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
- Fukushima Prefectural Institute of Public Health, Fukushima, Japan
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
- Toyama Institute of Health, Toyama, Japan
| |
Collapse
|
21
|
Ktari S, Ben Ayed N, Ben Rbeh I, Garbi N, Maalej S, Mnif B, Rhimi F, Hammami A. Antibiotic resistance pattern, capsular types, and molecular characterization of invasive isolates of Streptococcus pneumoniae in the south of Tunisia from 2012 to 2018. BMC Microbiol 2023; 23:36. [PMID: 36739390 PMCID: PMC9898894 DOI: 10.1186/s12866-023-02784-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. In this study, we sought to analyze serotype distributions, antibiotic resistance, and genetic relationships of 106 clinical invasive pneumococcal isolates recovered in Tunisia between 2012 and 2018, prior to the routine use of pneumococcal conjugate vaccines (PCV). METHODS We used multiplex PCR, the disk diffusion method and/or E-test, and multi-locus sequence typing (MLST). RESULTS The most frequent serotypes were 14 (17%), 19F (14.2%), and 3 (11.3%). Of the 106 S. pneumoniae isolates, 67.9% were penicillin non-susceptible (29.4% were resistant), 45.3% were amoxicillin non-susceptible (17% were resistant), and 16% were cefotaxime non-susceptible. For antibiotics other than β-lactams, resistance rates to erythromycin, tetracycline, cotrimoxazole, and chloramphenicol were 62.3, 33, 22.6, and 4.7%, respectively. Two isolates were non-susceptible to levofloxacin. Among 66 erythromycin-resistant pneumococci, 77.3% exhibited the cMLSB phenotype, and 87.9% carried ermB gene. All tetracycline-resistant strains harbored the tetM gene. The potential coverage by 7-, 10-, and 13-valent pneumococcal conjugate vaccines were 55.7, 57.5, and 81.1%, respectively. A multilocus sequence typing analysis revealed great diversity. Fifty different sequence types (STs) were identified. These STs were assigned to 10 clonal complexes and 32 singletons. The most common STs were 179, 2918, 386, and 3772 - related mainly to 19F, 14, 6B/C, and 19A serotypes, respectively. CONCLUSIONS This study demonstrated that the majority of the serotypes of invasive pneumococci in the Tunisian population were 14, 19F, and 3. Moreover, we noted a high degree of genetic diversity among invasive S. pneumoniae isolates. The highest proportions of antibiotic non-susceptible isolates were for penicillin, erythromycin, and tetracycline. Further molecular characteristics are required to monitor the genetic variations and to follow the emergence of resistant pneumococci for the post-vaccination era in Tunisia.
Collapse
Affiliation(s)
- Sonia Ktari
- Laboratory of Microbiology, Faculty of Medicine Sfax, University of Sfax-Tunisia, Avenue Majida Boulila, 3027, Sfax, Tunisia. .,Research Laboratory Microorganisms and Human Disease "MPH LR03SP03", Sfax, Tunisia.
| | - Nourelhouda Ben Ayed
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Imen Ben Rbeh
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia
| | - Nourhène Garbi
- Medical Genetic Department, HediChaker Hospital, Sfax, Tunisia
| | - Sonda Maalej
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Basma Mnif
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Faouzia Rhimi
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Adnene Hammami
- grid.412124.00000 0001 2323 5644Laboratory of Microbiology, Faculty of Medicine Sfax, University of Sfax-Tunisia, Avenue Majida Boulila, 3027 Sfax, Tunisia ,Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
22
|
Ashwini M, Ray M, Sumana K, Halami PM. Prevalence of macrolide-lincosamide-streptogramin resistant lactic acid bacteria isolated from food samples. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:630-642. [PMID: 36712199 PMCID: PMC9873896 DOI: 10.1007/s13197-022-05648-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Lactic acid bacteria (LAB) being a reservoir of antibiotic resistance genes, tend to disseminate antibiotic resistance that possibly pose a threat to human and animal health. Therefore, the study focuses on the prevalence of macrolide-lincosamide-streptogramin- (MLS) resistance among LAB isolated from various food samples. Diverse phenotypic and genotypic MLS resistance were determined among the LAB species (n = 146) isolated from fermented food products (n = 6) and intestine of food-producing animals (n = 4). Double disc, triple disc diffusion and standard minimum inhibitory concentration (MIC) tests were evaluated for phenotypic MLS resistance. Specific primers for MLS resistance genes were used for the evaluation of genotypic MLS resistance and gene expressions using total RNA of each isolate at different antibiotic concentrations. The isolates identified are Levilactobacillus brevis (n = 1), Enterococcus hirae (n = 1), Limosilactobacillus fermentum (n = 2), Pediococcus acidilactici (n = 3), Enterococcus faecalis (n = 1). The MIC tests along with induction studies displayed cMLSb, L phenotype, M phenotype, KH phenotype, I phenotype resistance among MLS antibiotics. Genotypic evaluation tests revealed the presence of ermB, mefA/E, msrA/B and msrC genes. Also, gene expression studies displayed increased level of gene expression to the twofold increased antibiotic concentrations. In the view of global health concern, this study identified that food samples and food-producing animals represent source of antibiotic resistant LAB that can disseminate resistance through food chain. This suggests the implementation of awareness in the use of antibiotics as growth promoters and judicious use of antibiotics in veterinary sectors in order to prevent the spread of antibiotic resistance.
Collapse
Affiliation(s)
- M. Ashwini
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020 India
| | - K. Sumana
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - Prakash M. Halami
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020 India
| |
Collapse
|
23
|
Hristova PM, Hitkova HY, Balgaranov NK, Gergova RТ, Alexandrova AS. Pediatric case of septic arthritis due to Streptococcus pneumoniae serotype 19A. Braz J Infect Dis 2023; 27:102742. [PMID: 36731539 PMCID: PMC9926192 DOI: 10.1016/j.bjid.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 02/01/2023] Open
Abstract
In recent years, the incidence of pediatric septic arthritis caused by Streptococcus pneumoniae has been quite low. The pneumococcal conjugate vaccine PCV10 is the available vaccine included in the Bulgarian national immunization program. PCV10 reduces the incidence of invasive diseases, but non-vaccinal serotypes like 19A, the etiologic agent of the case of septic arthritis reported herein in a 3-year-old boy. The synovial fluid was positive for S. pneumoniae. The patient was treated with vancomycin during hospitalization and trimethoprim/sulfamethoxazole was recommended for at-home treatment. The isolate was subjected to latex agglutination, antimicrobial susceptibility testing, PCR detection for macrolide-resistance genes, and MLST. The strain revealed ST695 and a genotype previously associated with vaccine serotype 4. The incidence of pneumococcal infections caused by capsule-switching events and non-PCV10 serotypes is expected to increase.
Collapse
Affiliation(s)
- Preslava M Hristova
- Medical University - Pleven, Department of Microbiology and Virology, Pleven, Bulgaria.
| | - Hristina Y Hitkova
- Medical University - Pleven, Department of Microbiology and Virology, Pleven, Bulgaria
| | | | - Raina Т Gergova
- Medical University of Sofia, Department of Medical Microbiology, Sofia, Bulgaria
| | | |
Collapse
|
24
|
Navarro A, Sanseverino I, Cappelli F, Lahm A, Niegowska M, Fabbri M, Paracchini V, Petrillo M, Skejo H, Valsecchi S, Pedraccini R, Guglielmetti S, Frattini S, Villani G, Lettieri T. Study of antibiotic resistance in freshwater ecosystems with low anthropogenic impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159378. [PMID: 36272475 DOI: 10.1016/j.scitotenv.2022.159378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the bacterial diversity and the background level of antibiotic resistance in two freshwater ecosystems with low anthropogenic impact in order to evaluate the presence of natural antimicrobial resistance in these areas and its potential to spread downstream. Water samples from a pre-Alpine and an Apennine river (Variola and Tiber, respectively) were collected in three different sampling campaigns and bacterial diversity was assessed by 16S sequencing, while the presence of bacteria resistant to five antibiotics was screened using a culturable approach. Overall bacterial load was higher in the Tiber River compared with the Variola River. Furthermore, the study revealed the presence of resistant bacteria, especially the Tiber River showed, for each sampling, the presence of resistance to all antibiotics tested, while for the Variola River, the detected resistance was variable, comprising two or more antibiotics. Screening of two resistance genes on a total of one hundred eighteen bacterial isolates from the two rivers showed that blaTEM, conferring resistance to β-lactam antibiotics, was dominant and present in ~58 % of isolates compared to only ~9 % for mefA/E conferring resistance to macrolides. Moreover, β-lactam resistance was detected in various isolates showing also resistance to additional antibiotics such as macrolides, aminoglycosides and tetracyclines. These observations would suggest the presence of co-resistant bacteria even in non-anthropogenic environments and this resistance may spread from the environment to humans and/or animals.
Collapse
Affiliation(s)
- Anna Navarro
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Isabella Sanseverino
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Francesca Cappelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy
| | - Armin Lahm
- Bioinformatic project support, P.za S.M. Liberatrice 18, 00153 Roma, Italy
| | - Magdalena Niegowska
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Marco Fabbri
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Valentina Paracchini
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | | | - Helle Skejo
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Sara Valsecchi
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy
| | | | | | | | - Gabriella Villani
- Energy and Sustainable Economic Development (ENEA), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Teresa Lettieri
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
25
|
National Surveillance of Tetracycline, Erythromycin, and Clindamycin Resistance in Invasive Streptococcus pyogenes: A Retrospective Study of the Situation in Spain, 2007-2020. Antibiotics (Basel) 2023; 12:antibiotics12010099. [PMID: 36671301 PMCID: PMC9854882 DOI: 10.3390/antibiotics12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This work reports on antimicrobial resistance data for invasive Streptococcus pyogenes in Spain, collected by the 'Surveillance Program for Invasive Group A Streptococcus', in 2007-2020. METHODS emm typing was determined by sequencing. Susceptibility to penicillin, tetracycline, erythromycin, and clindamycin was determined via the E-test. tetM, tetO, msrD, mefA, ermB, ermTR, and ermT were sought by PCR. Macrolide-resistant phenotypes (M, cMLSB, and iMLSB) were detected using the erythromycin-clindamycin double-disk test. Resistant clones were identified via their emm type, multilocus sequence type (ST), resistance genotype, and macrolide resistance phenotype. RESULTS Penicillin susceptibility was universal. Tetracycline resistance was recorded for 237/1983 isolates (12.0%) (152 carried only tetM, 48 carried only tetO, and 33 carried both). Erythromycin resistance was detected in 172/1983 isolates (8.7%); ermB was present in 83, mefA in 58, msrD in 51, ermTR in 46, and ermT in 36. Clindamycin resistance (methylase-mediated) was present in 78/1983 isolates (3.9%). Eight main resistant clones were identified: two that were tetracycline-resistant only (emm22/ST46/tetM and emm77/ST63/tetO), three that were erythromycin-resistant only (emm4/ST39/mefA-msrD/M, emm12/ST36/mefA-msrD/M, and emm28/ST52/ermB/cMLSB), and three that were tetracycline-erythromycin co-resistant (emm11/ST403/tetM-ermB/cMLSB, emm77/ST63/tetO-ermTR/iMLSB, and emm77/ST63/tetM-tetO-ermTR/iMLSB). CONCLUSIONS Tetracycline, erythromycin, and clindamycin resistance rates declined between 2007 and 2020. Temporal variations in the proportion of resistant clones determined the change in resistance rates.
Collapse
|
26
|
Lee YJ, Kim K, Lee YJ. Dissemination and characteristics of high-level erythromycin-resistant Enterococcus faecalis from bulk tank milk of dairy companies in Korea. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:51-58. [PMID: 36606037 PMCID: PMC9808847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Enterococci are environmental pathogens that can cause bovine mastitis, which is treated with macrolides, one of which is erythromycin (ERY). The aim of this study was to compare the characteristics of high-level erythromycin-resistant (HLER) Enterococcus faecalis (E. faecalis) isolates from bulk tank milk of 4 dairy companies, identified as A to D, in order to assess the threat to public health. Although isolates from company D showed the highest prevalence of E. faecalis, the prevalence of HLER E. faecalis in isolates from company A showed a significant difference. A total of 149 of the 301 HLER E. faecalis isolates showed the highest rate of resistance to tetracycline. In the distribution of antimicrobial resistance genes, 147 isolates carried the ermB gene alone and 2 isolates carried both ermA and ermB genes. Also, 72 and 60 isolates carried both tetM and tetL genes and the tetM gene alone, respectively, and 38 isolates carried the optrA gene. The prevalence of both aac(6')Ie-aph(2″)-la and ant(6')-Ia genes was the highest and 104 isolates harbored the Int-Tn gene carrying the Tn916/1545-like transposon. Although the distribution of the e rmB gene showed no significant difference among dairy companies, the prevalence of other resistance genes and transposons showed significant differences among dairy companies. Virulence genes were highly conserved in the HLER E. faecalis isolates. Our results indicated that there were significant differences in phenotypic and genotypic characteristics of HLER E. faecalis isolates in milk from 4 different dairy companies. A structured management protocol by companies and constant monitoring are therefore necessary to minimize public health hazards.
Collapse
|
27
|
Li L, Ren J, Zhang Q, Luo Y, Zhang Y, Qi J, Zhao X, Hu M, Liu Y. Development of Two Loop-Mediated Isothermal Amplification Assays for Rapid Detection of ermB and mefA Genes in Streptococcus suis. Foodborne Pathog Dis 2022; 19:817-822. [PMID: 36399616 DOI: 10.1089/fpd.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that poses a serious threat to the pig industry and human health. The massive use of macrolides has led to the emergence of resistance in S. suis, and S. suis is suspected to be a reservoir of antimicrobial resistance genes. The mechanism to macrolide resistance in S. suis is mainly due to ermB and mefA. In this study, loop-mediated isothermal amplification (LAMP) methods were developed to detect ermB and mefA genes in S. suis through turbidimetry detection. The sensitivity and specificity of the LAMP reactions were determined. All results of LAMP and polymerase chain reaction (PCR) assay were compared to determine whether LAMP method was accurate and reliable. The results showed that all 100 nonstreptococcus clinical isolates tested negative, indicating the high specificity of LAMP assays. The detection limit of LAMP assay was 1 fg per reaction, and 102-104-fold lower than those of conventional PCR methods. Evaluation of the performance of the LAMP assay in S. suis clinical strains revealed a good consistency between LAMP and PCR assays. In conclusion, LAMP assays are specific, sensitive, and rapid methods to detect ermB and mefA in S. suis.
Collapse
Affiliation(s)
- LuLu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - JinRui Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - YanBo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Yin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - XiaoNan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - YuQing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| |
Collapse
|
28
|
Rumky J, Kruglova A, Repo E. Fate of antibiotic resistance genes (ARGs) in wastewater treatment plant: Preliminary study on identification before and after ultrasonication. ENVIRONMENTAL RESEARCH 2022; 215:114281. [PMID: 36096165 DOI: 10.1016/j.envres.2022.114281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
This study collected sludge samples from four different sections of a local wastewater treatment plant in Mikkeli, Finland, for antibiotic resistance genes (ARGs) analysis. Here, we examine the seven representative ARGs in sludge, encoding erythromycin (ermB), tetracycline (tetA, tetC, tetQ, tetW) and sulphonamide (sul1) to check abundance before and after ultrasonication. The class 1 integron (intl1) was also observed as an indicator of antibiotic resistance and horizontal gene transmission. The pre-treatment condition included 10 min of ultrasonication (US) for the sludge sample before freeze-drying. The droplet digital PCR system was used to assess the ARGs from the samples, and it was found that ARGs were not effectively eliminated by pre-treatment. After ultrasonication, tetA, tetC and tetQ did not show any variation but tetW showed 20 copies/ng of lower abundance in digested sludge than raw sludge, and a similar abundance was found in dewatered sludge. For MBR sludge, only ermB showed 1000 copies/ng higher abundance compared to the raw sample and surprisingly it did not show the presence of any other types of ARG. This study provides an overview of the appearance of ARGs in regional municipal sludge for further research reflection.
Collapse
Affiliation(s)
- Jannatul Rumky
- Department of Separation Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Antonina Kruglova
- Department of Built Environment, Aalto University, Tietotie 1E, 15200, Espoo, Finland
| | - Eveliina Repo
- Department of Separation Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| |
Collapse
|
29
|
Characterization of Streptococcus pneumoniae Macrolide Resistance and Its Mechanism in Northeast China over a 20-Year Period. Microbiol Spectr 2022; 10:e0054622. [PMID: 35938873 PMCID: PMC9602527 DOI: 10.1128/spectrum.00546-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Due to the resistance of Streptococcus pneumoniae to β-lactams, macrolides, and tetracyclines, treatment alternatives have become increasingly limited worldwide. We aim to describe the characterization of erythromycin-resistant S. pneumoniae (ERSP) strains in northeastern China over a period of 20 years. A total of 1,240 ERSP strains were collected and classified into five groups based on the ages of the patients. Etest strips and Kirby-Bauer disk diffusion were performed for drug susceptibility testing. The capsule swelling test was used for capsule typing. The phenotype of drug resistance was detected by the erythromycin and clindamycin double-disk method. The ermB, ermTR, mefA, and tetM genes were detected by PCR. Among the 1,240 ERSP strains, 510 were invasive isolates, and 730 were noninvasive isolates. The results of drug susceptibility testing showed that the rates of resistance to penicillin, amoxicillin, cefotaxime, ceftriaxone, meropenem, tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol varied among the different age groups. 19F, 19A, 23F, 14, and 6B were the serotypes that were commonly found among ERSP strains. Among all strains, 99.03% (1,228/1,240) exhibited an MLSB (macrolide-lincosamide-streptogramin B) resistance phenotype, of which 1,221 strains displayed a constitutive MLSB (cMLSB) phenotype and 7 strains showed an inducible MLSB (iMLSB) phenotype. All of these strains carried the ermB gene. In contrast, only 0.97% of strains of M phenotypes were found to carry the mefA gene. Both the ermB and mefA genes were detected in 704 strains that exhibited multidrug resistance, whereas the ermTR gene was not detected. Furthermore, 1,185 tetracycline-resistant strains were found to carry the tetM gene. Macrolide antimicrobial drugs should be used cautiously for the empirical treatment of S. pneumoniae infections. IMPORTANCE This study presents a retrospective analysis using 1,240 clinical erythromycin-resistant Streptococcus pneumoniae (ERSP) isolates collected in northeastern China between January 2000 and December 2019. The serotype distribution, corresponding vaccine coverage, as well as resistance phenotypes, genes, and mechanisms to macrolide and tetracycline of these isolates were systematically described, analyzed, and discussed. We hope that this study will inform clinicians in their respective regions when selecting antimicrobial agents. We also hope that this study is useful for researchers in related fields. Finally, we emphasize in this study that vaccination is the best preventive measure for S. pneumoniae infection considering its resistance to commonly used antibiotics. The determination of the S. pneumoniae serotype distribution also provides valuable empirical evidence for local health authorities when introducing appropriate vaccines in a specific area.
Collapse
|
30
|
Caballero Gómez N, Manetsberger J, Benomar N, Castillo Gutiérrez S, Abriouel H. Antibacterial and antibiofilm effects of essential oil components, EDTA and HLE disinfectant solution on Enterococcus, Pseudomonas and Staphylococcus sp. multiresistant strains isolated along the meat production chain. Front Microbiol 2022; 13:1014169. [PMID: 36299714 PMCID: PMC9589356 DOI: 10.3389/fmicb.2022.1014169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
The spread of multidrug resistant (MDR) bacteria and resistance genes along the food chain and the environment has become a global, but silent pandemic. To face this challenge, it is of outmost importance to develop efficient strategies to reduce potential contamination by these agents. In the present study, 30 strains of Enterococcus sp., Staphylococcus sp. and Pseudomonas sp. isolated from various surfaces throughout the meat production chain in a goat and lamb slaughterhouse were characterized as MDR bacteria harboring several antibiotic resistance genes (ARGs). The antimicrobial efficacy of natural essential oil components “EOCs” (carvacrol “CA,” cinnamaldehyde “CIN,” eugenol “EU,” geraniol “GE,” limonene “LI” and thymol “TH”), HLE disinfectant solution (3–6% H2O2; 2.2–4.4% lactic acid and 12.5–25 mM EDTA in water) and EDTA was tested against these MDR bacteria. Results showed that Minimum Inhibitory Concentrations (MIC) were compound and strain dependent. In addition, the synergistic effect of these antimicrobials was evaluated at 1/2 MIC. Here our study showed particularly promising results regarding the inhibitory effect at sub-inhibitory concentrations, which were confirmed by the analysis of bacterial growth dynamics over 72 h. Furthermore, the inhibitory effect of EOCs, HLE disinfectant solution and EDTA or their combinations was studied in developing and established biofilms of MDR bacteria obtaining variable results depending on the morphological structure of the tested strain and the phenolic character of the EOCs. Importantly, the combination of EOCs with HLE or EDTA showed particularly positive results given the effective inhibition of biofilm formation. Moreover, the synergistic combinations of EU and HLE/EDTA, TH, CA, GE, LI or CIN + EDTA/HLE caused log reductions in established biofilms of several strains (1–6 log10 CFU) depending on the species and the combination used, with Pseudomonas sp. strains being the most susceptible. Given these results, we propose novel antimicrobial formulations based on the combination of sub-inhibitory concentrations of EOCs and HLE or EDTA as a highly promising alternative to currently used approaches. This novel strategy notably shows great potential to efficiently decrease the emergence and spread of MDR bacteria and ARGs in the food chain and the environment, thus supporting the decrease of resistomes and pathogenesis in clinical and industrial areas while preserving the antibiotic therapeutic action.
Collapse
Affiliation(s)
- Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Julia Manetsberger
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Sonia Castillo Gutiérrez
- Área de Estadística e Investigación Operativa, Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
- *Correspondence: Hikmate Abriouel,
| |
Collapse
|
31
|
Lee H, Kim ES, Song KH, Kim HB, Park JS, Park KU. Clinical and molecular epidemiology of invasive group B Streptococcus infections in adults in a referral center in Korea. Eur J Clin Microbiol Infect Dis 2022; 41:1407-1413. [PMID: 36207553 PMCID: PMC9546748 DOI: 10.1007/s10096-022-04505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022]
Abstract
Invasive group B Streptococcus (GBS) infections are increasing among adults with underlying health conditions; however, clinical manifestations and serotype distribution remain unclear. This study investigated the molecular characteristics and antimicrobial resistance of invasive GBS in Korean adults. GBS isolates from patients with invasive diseases during 2006–2015 were investigated for capsular serotype, multilocus sequence type (ST), antimicrobial susceptibility, and resistance genes. Among the 74 isolates analyzed, the most common serotype was Ib (31.1%), followed by III (21.6%), V (20.3%), Ia (12.2%), and VI (12.2%). Thirteen STs were detected, with ST1, ST10, ST19, and ST23 as the most prevalent. The dominant capsular serotype exhibited by ST1 was V, and those expressed by ST10, ST19, and ST23 were Ib, III, and Ia, respectively. Erythromycin and levofloxacin resistance were observed in 33.8% and 31.1% of the isolates, respectively. ST10-Ib (n = 11/11, 100%) and ST654-Ib (n = 3/3, 100%) were dominant levofloxacin-resistant strains. Serotypes Ib, III, and V were most common among adults, which is inconsistent with recent reports in Korea where III, V, and Ia were predominant in infants. The difference in the serotype distribution between adults and children may be associated with the selective pressure imparted by antibiotics.
Collapse
Affiliation(s)
- Hyunju Lee
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea.,Seoul National University College of Medicine, Seoul, South Korea
| | - Eu Suk Kim
- Seoul National University College of Medicine, Seoul, South Korea. .,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Kyoung-Ho Song
- Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hong Bin Kim
- Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong Su Park
- Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
32
|
dos Santos RL, Davanzo EFA, Palma JM, Castro VHDL, da Costa HMB, Dallago BSL, Perecmanis S, Santana ÂP. Molecular characterization and biofilm-formation analysis of Listeria monocytogenes, Salmonella spp., and Escherichia coli isolated from Brazilian swine slaughterhouses. PLoS One 2022; 17:e0274636. [PMID: 36126071 PMCID: PMC9488830 DOI: 10.1371/journal.pone.0274636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to verify the presence of Listeria monocytogenes, Salmonella spp., and Escherichia coli in two Brazilian swine slaughterhouses, as well as to perform antibiograms, detect virulence and antimicrobial resistance genes, and evaluate the in vitro biofilm-forming capability of bacterial isolates from these environments. One Salmonella Typhi isolate and 21 E. coli isolates were detected, while L. monocytogenes was not detected. S. Typhi was isolated from the carcass cooling chamber’s floor, resistant to several antimicrobials, including nalidixic acid, cefazolin, chloramphenicol, doxycycline, streptomycin, gentamicin, tetracycline, and sulfonamide, and contained resistance genes, such as tet(B), tet(C), tet(M), and ampC. It also showed moderate biofilm-forming capacity at 37°C after incubating for 72 h. The prevalence of the 21 E. coli isolates was also the highest on the carcass cooling chamber floor (three of the four samplings [75%]). The E. coli isolates were resistant to 12 of the 13 tested antimicrobials, and none showed sensitivity to chloramphenicol, an antimicrobial prohibited in animal feed since 2003 in Brazil. The resistance genes MCR-1, MCR-3, sul1, ampC, clmA, cat1, tet(A), tet(B), and blaSHV, as well as the virulence genes stx-1, hlyA, eae, tir α, tir β, tir γ, and saa were detected in the E. coli isolates. Moreover, 5 (23.8%) and 15 (71.4%) E. coli isolates presented strong and moderate biofilm-forming capacity, respectively. In general, the biofilm-forming capacity increased after incubating for 72 h at 10°C. The biofilm-forming capacity was the lowest after incubating for 24 h at 37°C. Due to the presence of resistance and virulence genes, multi-antimicrobial resistance, and biofilm-forming capacity, the results of this study suggest a risk to the public health as these pathogens are associated with foodborne diseases, which emphasizes the hazard of resistance gene propagation in the environment.
Collapse
Affiliation(s)
- Rebecca Lavarini dos Santos
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
- * E-mail:
| | | | - Joana Marchesini Palma
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| | | | | | - Bruno Stéfano Lima Dallago
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Simone Perecmanis
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Ângela Patrícia Santana
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| |
Collapse
|
33
|
Antimicrobial Resistance and Virulence Genes in Staphylococci Isolated from Aviary Capercaillies and Free-living Birds in South-eastern Poland. J Vet Res 2022; 66:361-372. [PMID: 36349137 PMCID: PMC9597931 DOI: 10.2478/jvetres-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/07/2022] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION The current study characterises Staphylococcus bacteria recovered from dead free-living birds and captive capercaillies kept in south-eastern Poland. The results provide novel information about the antimicrobial resistance phenotype/genotype and the virulence profile of these bacteria. MATERIAL AND METHODS Samples of internal organs were taken from dead birds. Staphylococcus strains were identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry. Susceptibility to 13 antibiotics was tested using a standard disc diffusion method on Mueller-Hinton agar. All isolates were screened for the presence of antibiotic resistance genes and staphylococcal enterotoxins (A to E), toxic shock syndrome toxin 1, exfoliative toxins A and B and Panton-Valentine leukocidin. RESULTS A total of 129 bacterial strains belonging to 19 species of the Staphylococcus genus were isolated. A relatively high percentage of them resisted fluoroquinolones, tetracyclines, macrolides and β-lactams to a significant degree and harboured the tetK, tetM, ermC, mphC and mecA genes. Strains of the coagulase-negative S. sciuri, S. xylosus and S. cohnii were isolated with genes encoding enterotoxin A and toxic shock syndrome toxin. CONCLUSION Both coagulase-positive and coagulase-negative staphylococci isolated from aviary capercaillies and free-living birds have significant pathogenic potential, and greater attention must be paid to the coagulase-negative species, which are still often considered mere contaminants. Virulence factors associated with resistance to antimicrobials, this being multiple in some strains, seem most important because they can be easily transferred between animals, especially those living in a given area.
Collapse
|
34
|
Taxonomical Identification and Safety Characterization of Lactobacillaceae from Mediterranean Natural Fermented Sausages. Foods 2022; 11:foods11182776. [PMID: 36140904 PMCID: PMC9497648 DOI: 10.3390/foods11182776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Fermented meat products represent an important industrial sector in Europe, particularly in the Mediterranean Countries (MC), where the presence of numerous local productions, still obtained through spontaneous fermentation, is recognized as a formidable treasure chest of unexplored microbial biodiversity. Lactobacillaceae naturally occurring in fifteen spontaneously fermented sausages from MC (Italy, Spain, Croatia, and Slovenia) were isolated and taxonomically characterized using molecular techniques. Additionally, a safety assessment for the presence of antibiotic resistances and biogenic amine (BA) production was performed to determine their suitability as autochthonous starter cultures. Molecular typing, performed using REP-PCR, discriminated 151 strains belonging to Latilactobacillus sakei (59.6%), Latilactobacillus curvatus (26.5%) and Companilactobacillus alimentarius (13.9%). The minimum inhibitory concentrations (MICs) of eight different antibiotics revealed a high resistance to streptomycin (27%), tetracycline (16%), followed by gentamycin (14%) and kanamycin (13%). Interestingly, the results showed a geographical distribution of resistant biotypes. tetM/tetS or ermB genes were identified in only six strains. The amino-biogenic potential of the strains was assessed, confirming the absence of this trait among L. sakei, while a high number of producer strains was found among L. curvatus. On the 151 analyzed strains, 45 demonstrated safety traits for their future use as starter food cultures. These results open the way to further studies on the technological properties of these promising autochthonous strains, strongly linked to the Mediterranean environment.
Collapse
|
35
|
Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari I. Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 2022; 10:2896-2910. [PMID: 36171785 PMCID: PMC9469857 DOI: 10.1002/fsn3.2885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/06/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Weissella strains have been reported to be useful in biotechnological and probiotic determinations, and some of them are considered opportunistic pathogens. Given the widespread interest about antimicrobial susceptibilities, transmission of resistances, and virulence factors, there is little research available on such topics for Weissella. The aim of this study was to assess the safety aspects and antimicrobial potential of 54 Weissella spp. strains from different environmental sources. Antibiotic susceptibility, hemolytic activity, horizontal transfer, and antibacterial activity were studied, as well as the detection of biogenic amine BA production on decarboxylase medium and PCR was performed. All the strains were nonhemolytic and sensitive to chloramphenicol and ampicillin. Several strains were classified as resistant to fusidic acid, and very low resistance rates were detected to ciprofloxacin, tetracycline, streptomycin, lincomycin, erythromycin, and rifampicin, although all strains had intrinsic resistance to vancomycin, nalidixic acid, kanamycin, and teicoplanin. Two BA-producing strains (W. halotolerans FAS30 and FAS29) exhibited tyrosine decarboxylase activity, and just one W. confusa FS077 produced both tyramine and histamine, and their genetic determinants were identified. Ornithine decarboxylase/odc gene was found in 16 of the Weissella strains, although 3 of them synthesize putrescine. Interestingly, eight strains with good properties displayed antibacterial activity. Conjugation frequencies of erythromycin from Bacillus to Weissella spp. varied in the average of 3 × 10-9 transconjugants/recipient. However, no tetracycline-resistant transconjugant was obtained with Enterococcus faecalis JH2-2 as recipient. The obtained results support the safe status of Weissella strains, derived from environmental sources, when used as probiotics in animal feed.
Collapse
Affiliation(s)
- Imene Fhoula
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Mohamed Boumaiza
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Ghassan Tayh
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
- Service de Microbiologie et d’ImmunologieEcole Nationale de Médecine VétérinaireUniversité ManoubaSidi ThabetTunisia
| | - Amel Rehaiem
- Faculty of Medicine of TunisResearch Laboratory “Antimicrobial Resistance” LR99ES09University of Tunis El ManarTunisTunisia
- Laboratory of MicrobiologyCharles Nicolle HospitalTunisTunisia
| | - Naouel Klibi
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Imene‐Hadda Ouzari
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| |
Collapse
|
36
|
Sun W, Ma L, Li Y, Xu Y, Wei J, Sa L, Chen X, Su J. In vitro Studies of Non-Diphtheriae Corynebacterium Isolates on Antimicrobial Susceptibilities, Drug Resistance Mechanisms, and Biofilm Formation Capabilities. Infect Drug Resist 2022; 15:4347-4359. [PMID: 35971555 PMCID: PMC9375566 DOI: 10.2147/idr.s376328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Objective This study aimed to investigate the antimicrobial susceptibilities, drug resistance mechanisms, and biofilm formation capacities of non-diphtheriae Corynebacterium strains isolated from sterile midstream urine of hospitalized patients with clinical urinary tract infections (UTIs). Methods A total of 45 non-diphtheriae Corynebacterium isolates were recovered from sterile midstream urine. The available data of 45 patients were collected. Minimum inhibitory concentrations (MICs) of 10 commonly used antibiotics were determined. Meanwhile, the molecular resistance mechanisms of each agent were performed through PCR with specific primers. Moreover, the biofilm formation capability of each isolate on abiotic surfaces was detected with the MTT method. Results In this study, the most prevalent three species were C. striatum (15/45, 33.3%), C. glucuronolyticum (9/45, 20.0%) and C. urealyticum (8/45, 17.8%). These three species also accounted for most renal and ureteral calculi cases. Male patients older than 50 years, especially those with underlying diseases, were more susceptible to non-diphtheriae Corynebacterium infection. All the 45 isolates were 100% susceptible to vancomycin and linezolid, but highly resistant to macrolide–lincosamide–streptogramin B (MLSB), fluoroquinolones, tetracyclines and β-lactams with corresponding mechanisms. The detection rate of multidrug–resistant (MDR) non-diphtheriae Corynebacterium is 91.1%. All isolates are able to form biofilm on abiotic surfaces, except those of C. urealyticum, C. tuberculostearicum and C. jeikeium. Isolates of C. glucuronolyticum and C. Striatum possessed the strongest biofilm formation capacity. C. amycolatum could form biofilm, but varied greatly among different isolates. Conclusion C. striatum, C. glucuronolyticum and C. urealyticum were the most prevalent species relevant to UTIs. The high occurrence of MDR isolates and high diversities in resistance profiles, and the distinctive abilities of biofilm formation highlighted the urgency for identification to species level. We should pay more attention to the drug resistance profiles of non-diphtheriae Corynebacterium, which would help improve empirical antibiotic therapy and reduce drug resistance transmission.
Collapse
Affiliation(s)
- Wei Sun
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Liyan Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yana Li
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Ying Xu
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jingjuan Wei
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Lei Sa
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Xinxin Chen
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| |
Collapse
|
37
|
Kaptchouang Tchatchouang CD, Fri J, Montso PK, Amagliani G, Schiavano GF, Manganyi MC, Baldelli G, Brandi G, Ateba CN. Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens 2022; 11:pathogens11080843. [PMID: 36014964 PMCID: PMC9416180 DOI: 10.3390/pathogens11080843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Listeriosis is a foodborne disease caused by Listeria monocytogenes species and is known to cause severe complications, particularly in pregnant women, young children, the elderly, and immunocompromised individuals. The aim of this study was to investigate the presence of Listeria species in food and water using both biochemical and species-specific PCR analysis. L. monocytogenes isolates were further screened for the presence of various antibiotic resistance, virulence, and biofilm-forming determinants profiles using phenotypic and genotypic assays. A total of 207 samples (composed of meat, milk, vegetables, and water) were collected and analyzed for presence of L. monocytogenes using species specific PCR analysis. Out of 267 presumptive isolates, 53 (19.85%) were confirmed as the Listeria species, and these comprised 26 L. monocytogenes, 3 L. innocua, 2 L. welshimeri, and 1 L. thailandensis. The remaining 21 Listeria species were classified as uncultured Listeria, based on 16SrRNA sequence analysis results. A large proportion (76% to 100%) of the L. monocytogenes were resistant to erythromycin (76%), clindamycin (100%), gentamicin (100%), tetracycline (100%), novobiocin (100%), oxacillin (100%), nalidixic acid (100%), and kanamycin (100%). The isolates revealed various multi-drug resistant (MDR) phenotypes, with E-DA-GM-T-NO-OX-NA-K being the most predominant MDR phenotypes observed in the L. monocytogenes isolates. The virulence genes prfA, hlyA, actA, and plcB were detected in 100%, 68%, 56%, and 20% of the isolates, respectively. In addition, L. monocytogenes isolates were capable of forming strong biofilm at 4 °C (%) after 24 to 72 h incubation periods, moderate for 8% isolates at 48 h and 20% at 72 h (p < 0.05). Moreover, at 25 °C and 37 °C, small proportions of the isolates displayed moderate (8−20%) biofilm formation after 48 and 72 h incubation periods. Biofilm formation genes flaA and luxS were detected in 72% and 56% of the isolates, respectively. These findings suggest that proper hygiene measures must be enforced along the food chain to ensure food safety.
Collapse
Affiliation(s)
- Christ-Donald Kaptchouang Tchatchouang
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Justine Fri
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | | | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
- Correspondence: ; Tel.: +27-18-389-2247
| |
Collapse
|
38
|
Antimicrobial Susceptibility Profiles and Molecular Characterisation of Staphylococcus aureus from Pigs and Workers at Farms and Abattoirs in Zambia. Antibiotics (Basel) 2022; 11:antibiotics11070844. [PMID: 35884098 PMCID: PMC9311834 DOI: 10.3390/antibiotics11070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Pigs have been shown to be a reservoir for recently emerging livestock-associated Staphylococcus aureus (LA-SA), including methicillin resistant strains in many countries worldwide. However, there is sparse information about LA-SA strains circulating in Zambia. This study investigated the prevalence, phenotypic and genotypic characteristics of S. aureus from pigs and workers at farms and abattoirs handling pigs in Lusaka Province of Zambia. A total of 492 nasal pig swabs, 53 hand and 53 nasal human swabs were collected from farms and abattoirs in selected districts. Standard microbiological methods were used to isolate and determine antimicrobial susceptibility patterns of S. aureus. Polymerase Chain Reaction was used to confirm the species identity and detect antimicrobial resistance and virulence genes of isolates, whereas genetic diversity was evaluated using spa typing. Overall prevalence of S. aureus was 33.1%, 37.8% for pigs and 11.8% for humans. The isolates were resistant to several antibiotics with resistance ranging from 18% to 98% but were all susceptible to vancomycin. Typical LA-SA spa types were detected. The presence of plasmid mediated resistance genes such as tetM (12.8%), other resistance determinants and immune evasion cluster genes among the isolates is of great public health concern. Thus, continuous surveillance of S. aureus using a “One health” approach is warranted to monitor S.aureus infections and spread of antimicrobial resistance.
Collapse
|
39
|
Belloso Daza MV, Milani G, Cortimiglia C, Pietta E, Bassi D, Cocconcelli PS. Genomic Insights of Enterococcus faecium UC7251, a Multi-Drug Resistant Strain From Ready-to-Eat Food, Highlight the Risk of Antimicrobial Resistance in the Food Chain. Front Microbiol 2022; 13:894241. [PMID: 35814695 PMCID: PMC9262338 DOI: 10.3389/fmicb.2022.894241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The presence of multi-drug resistant (MDR) bacteria in ready-to-eat foods comprises a threat for public health due to their ability to acquire and transfer antibiotic-resistant determinants that could settle in the microbiome of the human digestive tract. In this study, Enterococcus faecium UC7251 isolated from a fermented dry sausage was characterized phenotypically and genotypically to hold resistance to multiple antibiotics including aminoglycosides, macrolides, β-lactams, and tetracyclines. We further investigated this strain following a hybrid sequencing and assembly approach (short and long reads) and determined the presence of various mobile genetic elements (MGEs) responsible of horizontal gene transfer (HGT). On the chromosome of UC7251, we found one integrative and conjugative element (ICE) and a conjugative transposon Tn916-carrying tetracycline resistance. UC7251 carries two plasmids: one small plasmid harboring a rolling circle replication and one MDR megaplasmid. The latter was identified as mobilizable and containing a putative integrative and conjugative element-like region, prophage sequences, insertion sequences, heavy-metal resistance genes, and several antimicrobial resistance (AMR) genes, confirming the phenotypic resistance characteristics. The transmissibility potential of AMR markers was observed through mating experiments, where Tn916-carried tetracycline resistance was transferred at intra- and inter-species levels. This work highlights the significance of constant monitoring of products of animal origin, especially RTE foodstuffs, to stimulate the development of novel strategies in the race for constraining the spread of antibiotic resistance.
Collapse
|
40
|
Tack B, Phoba MF, Thong P, Lompo P, Hupko C, Desmet S, Martiny D, Mattheus W, De La Gandara MP, Mbuyi-Kalonji L, Kuijpers L, Prevost B, Barbé B, Vandenberg O, Lunguya O, Ruiz J, Jacobs J, Hardy L. Epidemiological cut-off value and antibiotic susceptibility test methods for azithromycin in a collection of multi-country invasive non-typhoidal Salmonella. Clin Microbiol Infect 2022; 28:1615-1623. [PMID: 35738320 DOI: 10.1016/j.cmi.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Azithromycin is an alternative to treat invasive non-typhoidal Salmonella (iNTS) infections. We determined its epidemiological cut-off (ECOFF) and compared azithromycin susceptibility testing methods for iNTS. METHODS We used EUCAST ECOFFinder to determine the minimum inhibitory concentrations (MIC; obtained by broth microdilution) ECOFF and corresponding disk zone diameters of 515 iNTS from blood cultures in DR Congo, Burkina Faso, Rwanda, and Cambodia. Transferable resistance mechanisms were determined by polymerase chain reaction. We compared azithromycin susceptibility testing by semi-automated broth microdilution (customized Sensititre panel; reference), agar dilution, gradient tests (bioMérieux, Liofilchem, HiMedia; read at 80% (MIC80%) and 100% inhibition (MIC100%)) and disk diffusion (Rosco, Oxoid, BD, Liofilchem) for 161 wild and 198 non-wild type iNTS. RESULTS Azithromycin MIC ECOFF was 16 mg/l corresponding to a 12mm zone diameter; mphA was detected in 192/197 non-wild and 0/47 wild type iNTS. Categorical agreement was excellent (≥98%) for all methods. Essential agreement was very good for agar dilution (>90%), but moderate for gradient tests (MIC80%: 52 - 71% and MIC100%: 72 - 91%). Repeatability was good for all methods/brands. Interreader agreement was high for broth microdilution and agar dilution (all ≤1 twofold dilution difference) and disk diffusion (>96% ≤3mm difference), but lower for gradient tests (MIC80% & MIC100%: 83 - 94% ≤1 twofold dilution difference). CONCLUSIONS Azithromycin ECOFF of iNTS was 16 mg/l, i.e. equal to Salmonella Typhi. Disk diffusion is an accurate, precise, and user-friendly alternatives for agar dilution and broth microdilution. Reading gradient tests at 100% instead of 80% inhibition improved accuracy and precision.
Collapse
Affiliation(s)
- Bieke Tack
- Department of Clinical Sciences, Institute of Tropical Medicine - Antwerp Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven - Leuven Belgium.
| | - Marie-France Phoba
- Department of Microbiology, National Institute for Biomedical Research - Kinshasa Democratic Republic of the Congo; Department of Microbiology, University Teaching Hospital of Kinshasa - Kinshasa Democratic Republic of the Congo
| | - Phe Thong
- Sihanouk Hospital Center of Hope - Phnom Penh Cambodia
| | | | | | - Stefanie Desmet
- Department of Microbiology, Immunology and Transplantation, KU Leuven - Leuven Belgium; Clinical Department of Laboratory Medicine, University Hospitals Leuven - Leuven Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires de Bruxelles - Universitaire Laboratorium Brussel (LHUB-ULB) - Bruxelles Belgium; Faculté de Médecine et Pharmacie, Université de Mons (UMONS), Mons, Belgium
| | - Wesley Mattheus
- Division of Human Bacterial Diseases, Sciensano - Uccle Belgium
| | - Maria Pardos De La Gandara
- Institut Pasteur, Université de Paris, Unité des Bactéries pathogènes entériques, Centre National de Référence des E. coli,Shigella et Salmonella - Paris France
| | - Lisette Mbuyi-Kalonji
- Department of Microbiology, National Institute for Biomedical Research - Kinshasa Democratic Republic of the Congo; Department of Microbiology, University Teaching Hospital of Kinshasa - Kinshasa Democratic Republic of the Congo
| | - Laura Kuijpers
- Department of Infectious Diseases, Leiden University Medical Center - Leiden The Netherlands
| | - Benoit Prevost
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires de Bruxelles - Universitaire Laboratorium Brussel (LHUB-ULB) - Bruxelles Belgium
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine - Antwerp Belgium
| | - Olivier Vandenberg
- Center for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles - Brussels Belgium; Innovation and Business Development Unit, Laboratoire des Hôpitaux Universitaires de Bruxelles - Universitaire Laboratorium Brussel (LHUB-ULB) - Bruxelles Belgium; Division of Infection and Immunity, Faculty of Medical Sciences, University College London - London United Kingdom
| | - Octavie Lunguya
- Department of Microbiology, National Institute for Biomedical Research - Kinshasa Democratic Republic of the Congo; Department of Microbiology, University Teaching Hospital of Kinshasa - Kinshasa Democratic Republic of the Congo
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Cientifica del Sur - Lima Peru
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine - Antwerp Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven - Leuven Belgium
| | - Liselotte Hardy
- Department of Clinical Sciences, Institute of Tropical Medicine - Antwerp Belgium
| |
Collapse
|
41
|
Feuerschuette OHM, Alves EV, Scheffer MC, Vilela APP, Barazzetti FH, Feuerschuette HM, Cancelier ACL, Bazzo ML. Genetic diversity and antimicrobial resistance of invasive, noninvasive and colonizing group B Streptococcus isolates in southern Brazil. Access Microbiol 2022; 4:acmi000370. [PMID: 36004365 PMCID: PMC9394672 DOI: 10.1099/acmi.0.000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction. Group B
Streptococcus
(GBS) is a human commensal bacterium that is also associated with infection in pregnant and non-pregnant adults, neonates and elderly people.
Gap Statement. The authors hypothesize that knowledge of regional GBS genetic patterns may allow the use of prevention and treatment measures to reduce the burden of streptococcal disease.
Aim. The aim was to report the genotypic diversity and antimicrobial sensitivity profiles of invasive, noninvasive urinary and colonizing GBS strains, and evaluate the relationships between these findings.
Methodology. The study included consecutive and non-duplicated GBS isolates recovered in southern Brazil from 2015 to 2017. We performed multiple-locus variable-number tandem repeat analysis (MLVA) and PCR analyses to determine capsular serotypes and identify the presence of the resistance genes mefA/E, ermB and ermA/TR, and also antibiotic susceptibility testing.
Results. The sample consisted of 348 GBS strains, 42 MLVA types were identified, and 4 of them represented 64 % of isolates. Serotype Ia was the most prevalent (42.2 %) and was found in a higher percentage associated with colonization, followed by serotypes V (24.4 %), II (17.8 %) and III (7.8 %). Serotype V was associated with invasive isolates and serotypes II and III with noninvasive isolates, without significant differences. All isolates were susceptible to penicillin. GBS 2018/ hvgA was observed in 17 isolates, with 11 belonging to serogroup III. The Hunter–Gaston diversity index was calculated as 0.879. The genes mefA/E, erm/B and erm/A/TR were found in 45, 19 and 46 isolates.
Conclusion. This report suggests that the circulating GBS belong to a limited number of genetic lineages. The most common genotypes were Ia/MT12 and V/MT18, which are associated with high resistance to macrolides and the presence of the genes mefA/E and ermA/TR. Penicillin remains the antibiotic of choice. Implementation of continuous surveillance of GBS infections will be essential to assess GBS epidemiology and develop accurate GBS prevention, especially strategies associated with vaccination.
Collapse
Affiliation(s)
- Otto Henrique May Feuerschuette
- Universidade do Sul de Santa Catarina – UNISUL, Tubarão, Brazil
- Hospital Universitário Professor Polydoro Ernani de São Thiago, HU/UFSC, Florianópolis, Brazil
| | - Eduardo Venâncio Alves
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| | - Mara Cristina Scheffer
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
- Hospital Universitário Professor Polydoro Ernani de São Thiago, HU/UFSC, Florianópolis, Brazil
| | - Ana Paula Pessoa Vilela
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| | | | | | | | - Maria Luiza Bazzo
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| |
Collapse
|
42
|
Phenotypic Adaptation to Antiseptics and Effects on Biofilm Formation Capacity and Antibiotic Resistance in Clinical Isolates of Early Colonizers in Dental Plaque. Antibiotics (Basel) 2022; 11:antibiotics11050688. [PMID: 35625332 PMCID: PMC9137571 DOI: 10.3390/antibiotics11050688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
Despite the wide-spread use of antiseptics in dental practice and oral care products, there is little public awareness of potential risks associated with antiseptic resistance and potentially concomitant cross-resistance. Therefore, the aim of this study was to investigate potential phenotypic adaptation in 177 clinical isolates of early colonizers of dental plaque (Streptococcus, Actinomyces, Rothia and Veillonella spp.) upon repeated exposure to subinhibitory concentrations of chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC) over 10 passages using a modified microdilution method. Stability of phenotypic adaptation was re-evaluated after culture in antiseptic-free nutrient broth for 24 or 72 h. Strains showing 8-fold minimal inhibitory concentration (MIC)-increase were further examined regarding their biofilm formation capacity, phenotypic antibiotic resistance and presence of antibiotic resistance genes (ARGs). Eight-fold MIC-increases to CHX were detected in four Streptococcus isolates. These strains mostly exhibited significantly increased biofilm formation capacity compared to their respective wild-type strains. Phenotypic antibiotic resistance was detected to tetracycline and erythromycin, consistent with the detected ARGs. In conclusion, this study shows that clinical isolates of early colonizers of dental plaque can phenotypically adapt toward antiseptics such as CHX upon repeated exposure. The underlying mechanisms at genomic and transcriptomic levels need to be investigated in future studies.
Collapse
|
43
|
Silva V, Caniça M, Manageiro V, Verbisck N, Tejedor-Junco MT, González-Martin M, Corbera JA, Poeta P, Igrejas G. Staphylococcus aureus and Methicillin-Resistant Coagulase-Negative Staphylococci in Nostrils and Buccal Mucosa of Healthy Camels Used for Recreational Purposes. Animals (Basel) 2022; 12:ani12101255. [PMID: 35625101 PMCID: PMC9138023 DOI: 10.3390/ani12101255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Several different species of animals host staphylococci as normal microbiota. These animals can be a source of staphylococci zoonotic infections. People with routine or occupational exposure to infected/colonized animals are at risk of a potential transmission. Therefore, we aimed to investigate the presence of S. aureus and other staphylococci in camels used for recreational purposes as well as their antimicrobial resistance, virulence factors and genetic lineages. A total of 172 samples were collected from 86 healthy camels (nose and mouth) from different farms located in the Canary Islands, Spain. Antimicrobial susceptibility testing was performed against 14 antimicrobial agents. The presence of virulence genes was studied by PCR. Multilocus sequence typing, spa typing and agr typing were performed in all S. aureus isolates. From the 86 camels tested, 42 staphylococci were isolated, of which there were 11 S. aureus, 13 S. lentus, 12 S. sciuri, 3 S. xylosus, S. epidermidis, S. hominis and S. chromogenes. Staphylococci isolates were resistant to penicillin, ciprofloxacin, clindamycin and fusidic acid. All S. aureus isolates harbored the hla, hlb and hld virulence genes. S. aureus isolates were ascribed to three sequence types (STs) and three spa types. All S. aureus isolates belonged to agr type III. Camels from Gran Canaria used in recreational purposes have a moderate prevalence of S. aureus and other coagulase-negative staphylococci. Nevertheless, S. aureus isolates are susceptible to almost all antibiotics tested.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | | | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (M.T.T.-J.); (M.G.-M.)
| | - Margarita González-Martin
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (M.T.T.-J.); (M.G.-M.)
| | - Juan Alberto Corbera
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (M.T.T.-J.); (M.G.-M.)
- Correspondence: (J.A.C.); (P.P.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (J.A.C.); (P.P.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
| |
Collapse
|
44
|
Gonzales BE, Mercado EH, Pinedo-Bardales M, Hinostroza N, Campos F, Chaparro E, Del Águila O, Castillo ME, Saenz A, Reyes I, Ochoa TJ. Increase of Macrolide-Resistance in Streptococcus pneumoniae Strains After the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine in Lima, Peru. Front Cell Infect Microbiol 2022; 12:866186. [PMID: 35615398 PMCID: PMC9125093 DOI: 10.3389/fcimb.2022.866186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae upper respiratory infections and pneumonia are often treated with macrolides, but recently macrolide resistance is becoming an increasingly important problem. The 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in the National Immunization Program of Peru in 2015. This study aimed to evaluate the temporal evolution of macrolide resistance in S. pneumoniae isolates collected in five cross-sectional studies conducted before and after this vaccine introduction, from 2006 to 2019 in Lima, Peru. A total of 521 and 242 S. pneumoniae isolates recovered from nasopharyngeal swabs from healthy carrier children < 2 years old (2 carriage studies) and samples from normally sterile body areas from pediatric patients with invasive pneumococcal disease (IPD) (3 IPD studies), respectively, were included in this study. Phenotypic macrolide resistance was detected using the Kirby-Bauer method and/or MIC test. We found a significant increase in macrolide resistance over time, from 33.5% to 50.0% in carriage studies, and from 24.8% to 37.5% and 70.8% in IPD studies. Macrolide resistance genes [erm(B) and mef(A/E)] were screened using PCR. In carriage studies, we detected a significant decrease in the frequency of mef(A/E) genes among macrolide-resistant S. pneumoniae strains (from 66.7% to 50.0%) after introduction of PCV13. The most common mechanism of macrolide-resistant among IPD strains was the presence of erm(B) (96.0%, 95.2% and 85.1% in the 3 IPD studies respectively). Macrolide resistance was more common in serotype 19A strains (80% and 90% among carriage and IPD strains, respectively) vs. non-serotype 19A (35.5% and 34.4% among carriage and IPD strains, respectively). In conclusion, S. pneumoniae macrolide resistance rates are very high among Peruvian children. Future studies are needed in order to evaluate macrolide resistance trends among pneumococcal strains, especially now after the COVID-19 pandemic, since azithromycin was vastly used as empiric treatment of COVID-19 in Peru.
Collapse
Affiliation(s)
- Brayan E. Gonzales
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erik H. Mercado
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Pinedo-Bardales
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Noemi Hinostroza
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Campos
- Departamento de Pediatría, Hospital Nacional Docente Madre-Niño San Bartolomé, Lima, Peru
| | - Eduardo Chaparro
- Departamento de Pediatría, Hospital Nacional Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Olguita Del Águila
- Servicio de Pediatría de Especialidades Clínicas, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - María E. Castillo
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Oficina de Epidemiología, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Andrés Saenz
- Departamento de Pediatría, Hospital Nacional Daniel Alcides Carrión, Lima, Peru
| | - Isabel Reyes
- Servicio de Hospitalización, Hospital de Emergencias Pediátricas, Lima, Peru
| | - Theresa J. Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Correspondence: Theresa J. Ochoa,
| |
Collapse
|
45
|
Macrolide resistance genes and mobile genetic elements in waterways from pig farms to the sea in Taiwan. J Glob Antimicrob Resist 2022; 29:360-370. [DOI: 10.1016/j.jgar.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
|
46
|
Silva V, Correia S, Rocha J, Manaia CM, Silva A, García-Díez J, Pereira JE, Semedo-Lemsaddek T, Igrejas G, Poeta P. Antimicrobial Resistance and Clonal Lineages of Staphylococcus aureus from Cattle, Their Handlers, and Their Surroundings: A Cross-Sectional Study from the One Health Perspective. Microorganisms 2022; 10:microorganisms10050941. [PMID: 35630384 PMCID: PMC9144820 DOI: 10.3390/microorganisms10050941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus have been progressively identified in farm animals and in humans with direct contact with these animals showing that S. aureus may be a major zoonotic pathogen. Therefore, we aimed to isolate S. aureus from cows, their handlers, and their immediate surroundings, and to investigate the antimicrobial resistance and genetic lineages of the isolates. Mouth and nose swabs of 244 healthy cows (195 Maronesa, 11 Holstein-Friesians, and 28 crossbreeds), 82 farm workers, 53 water and 63 soil samples were collected. Identification of species was carried out by MALDI-TOF MS Biotyper. The presence of antimicrobial resistance genes and virulence factors was assessed based on gene search by PCR. All isolates were typed by multilocus sequence typing and spa-typing. From 442 samples, 33 (13.9%), 24 (29.3%), 1 (2%), and 1 (2%) S. aureus were recovered from cows, farm workers, water, and soil samples, respectively. Most of the isolates showed resistance only to penicillin. S. aureus isolates were ascribed to 17 sequence types (STs) and 26 spa-types. Some clonal lineages were common to both cows and farm workers such as ST30-t9413, ST72-t148, and ST45-t350. Through a One Health approach, this study revealed that there is a great diversity of clonal lineages of S. aureus in cows and their handlers. Furthermore, some S. aureus lineages are common to cows and handlers, which may suggest a possible transmission.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Susana Correia
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
| | - Jaqueline Rocha
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Célia M. Manaia
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Teresa Semedo-Lemsaddek
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence: (T.S.-L.); (P.P.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (T.S.-L.); (P.P.)
| |
Collapse
|
47
|
Dobrut A, Ochońska D, Brzozowska E, Górska S, Kaszuba-Zwoinska J, Gołda-Cępa M, Gamian A, Brzychczy-Wloch M. Molecular Characteristic, Antibiotic Resistance, and Detection of Highly Immunoreactive Proteins of Group B Streptococcus Strains Isolated From Urinary Tract Infections in Polish Adults. Front Microbiol 2022; 13:809724. [PMID: 35391726 PMCID: PMC8981152 DOI: 10.3389/fmicb.2022.809724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Group B streptococcus (GBS) is one of the uropathogens that causes urinary tract infections (UTIs). The aims of this article were molecular characterization, an analysis of antimicrobial susceptibility profiles, adherence to bladder endothelial cells, and the detection of immunoreactive proteins of 94 clinical strains of GBS isolated from adult Polish patients with UTI. Antibiotic susceptibilities were determined by disk diffusion. Serotyping and Alp family genes detection were studied using multiplex PCR. Genetic profiles were determined by pulsed-field gel electrophoresis. The adherence ability of the studied strains was estimated by incubation on human bladder microvascular endothelial cell line. Immunoreactive proteins were studied by immunoblotting. Antibiotic susceptibility investigation revealed that 22% of GBS strains were resistant to erythromycin, whereas 18% demonstrated resistance to clindamycin. cMLSB was present in 76% of the resistant strains, M phenotype was detected in 14%, whereas iMLSB was present for 10%. The most common serotype was serotype III (31%), followed by serotype V (27%), and serotype Ia (17%). The genes that dominated among other Alp genes were: epsilon (29%), alp2 (27%), and rib (23%). The most common co-occurring serotypes and Alp genes were: Ia and epsilon, III and rib, III and alp2, V and alp2, and V and alp3 (p < 0.001). The PFGE method showed high clonality for serotype V and cMLSB (p < 001). The PFGE method showed high clonality for serotype V. Furthermore, this serotype was significantly associated with the cMLSB phenotype (p < 0.001). The most common immunoreactive proteins demonstrated masses of 50 kDa and 45–47 kDa. Although examined GBS isolates showed high genetic diversity, immunoreactive proteins were common for most of the studied GBS isolates, which may indicate their conservation, and allows to consider them as potential immunodiagnostic markers. Although the examined GBS isolates showed high genetic diversity, immunoreactive proteins were shared by most of the studied GBS isolates. It may indicate their conservation, thus allowing to consider them as potential immunodiagnostic markers.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Brzozowska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jolanta Kaszuba-Zwoinska
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | | | - Andrzej Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Monika Brzychczy-Wloch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
48
|
Multidrug-Resistant Methicillin-Resistant Coagulase-Negative Staphylococci in Healthy Poultry Slaughtered for Human Consumption. Antibiotics (Basel) 2022; 11:antibiotics11030365. [PMID: 35326828 PMCID: PMC8944763 DOI: 10.3390/antibiotics11030365] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Coagulase-negative staphylococci are commensals that are known to be prevalent in most environments, and they are also an important reservoir of antimicrobial-resistant genes. Staphylococcal infections in animal husbandry are a high economic burden. Thus, we aimed to determine the prevalence and species diversity of methicillin-resistant coagulase-negative staphylococci (MRCoNS) in poultry slaughtered for human consumption and to study the antimicrobial resistance of the isolates. Swab samples were recovered from 220 commercial chickens, homebred chickens and quails. Species identification was performed using MALDI-TOF. Antimicrobial susceptibility testing was performed by the disc diffusion method against 14 antimicrobials. The presence of antimicrobial-resistant genes was investigated by polymerase chain reaction. Totals of 11 (19.6%), 13 (20.3%), and 51 (51%) MRCoNS were isolated from commercial chickens, homebred chickens and quails, respectively. S. lentus was isolated from all homebred chickens, whereas 11 S. lentus and 2 S. urealyticus were isolated from commercial chickens. As for quails, the most prevalent MRCoNS were S. urealyticus. Almost all isolates had a multidrug-resistant profile and carried the mecA gene. Most isolates showed resistance to erythromycin, clindamycin, penicillin, tetracycline, ciprofloxacin and fusidic acid and harbored the ermA, ermB, ermC, mphC tetK, tetL, tetM and tetO genes. This study showed a frequent occurrence of multidrug resistance in MRCoNS isolated from healthy poultry in Portugal.
Collapse
|
49
|
Akinola O, Okedigba I, Elutade O. Occurrence, antibiotic susceptibility and resistance genes among Staphylococcus aureus isolated from keypads of automated teller machines (ATM) in a private university, Nigeria. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
50
|
Prevalence and Profiles of Antibiotic Resistance Genes mph(A) and qnrB in Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Dairy Calf Feces. Microorganisms 2022; 10:microorganisms10020411. [PMID: 35208866 PMCID: PMC8880659 DOI: 10.3390/microorganisms10020411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The use of antibiotics to treat dairy calves may result in multidrug-resistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This study investigated fluoroquinolone and macrolide resistance genes among ESBL-producing E. coli isolated from dairy calves. Fresh fecal samples from 147 dairy calves across three age groups were enriched to select for ESBL-producing E. coli. Plasmid-mediated fluoroquinolone (qnrB), macrolide (mph(A)), and beta-lactam (blaCTX-M groups 1 and 9) resistance genes were identified by PCR and gel electrophoresis in ESBL-producing E. coli. Beta-lactamase variants and antibiotic resistance genes were characterized for eight isolates by whole-genome sequencing. Seventy-one (48.3%) samples were positive for ESBL-producing E. coli, with 159 (70.4%) isolates identified as blaCTX-M variant group 1 and 67 (29.6%) isolates as blaCTX-M variant group 9. Resistance gene mph(A) was more commonly associated with blaCTX-M variant group 1, while resistance gene qnrB was more commonly associated with variant group 9. E. coli growth was quantified on antibiotic media for 30 samples: 10 from each age group. Significantly higher quantities of ceftriaxone-resistant E. coli were present in the youngest calves. Results indicate the dominant blaCTX-M groups present in ESBL-producing E. coli may be associated with additional qnrB or mph(A) resistance genes and ESBL-producing E. coli is found in higher abundance in younger calves.
Collapse
|