1
|
Elsaman H, Golubtsov E, Brazil S, Ng N, Klugherz I, Martin R, Dichtl K, Müller C, Wagener J. Toxic eburicol accumulation drives the antifungal activity of azoles against Aspergillus fumigatus. Nat Commun 2024; 15:6312. [PMID: 39060235 PMCID: PMC11282106 DOI: 10.1038/s41467-024-50609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations. Partial repression of Erg6A, which converts lanosterol into eburicol, increases azole resistance. The sterol C5-desaturase (ERG3)-dependent conversion of eburicol into 14-methylergosta-8,24(28)-dien-3β,6α-diol, the "toxic diol" responsible for the fungistatic activity against yeasts, is not required for the fungicidal effects in A. fumigatus. While ERG3-lacking yeasts are azole resistant, ERG3-lacking A. fumigatus becomes more susceptible. Mutants lacking mitochondrial complex III functionality, which are much less effectively killed, but strongly inhibited in growth by azoles, convert eburicol more efficiently into the supposedly "toxic diol". We propose that the mode of action of azoles against A. fumigatus relies on accumulation of eburicol which exerts fungicidal effects by triggering cell wall carbohydrate patch formation.
Collapse
Affiliation(s)
- Hesham Elsaman
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Evgeny Golubtsov
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sean Brazil
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Natanya Ng
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Isabel Klugherz
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ronny Martin
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Karl Dichtl
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Wagener
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland.
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Das T, Pandey S, Joseph J, Sheth J, Belenje A, Behera UC, Kapoor A, Pandya R, Dave VP. Antibiotic susceptibility in Endophthalmitis Management Study and intravitreal antibiotic practice trend in India-EMS Report #5. Graefes Arch Clin Exp Ophthalmol 2024; 262:2163-2169. [PMID: 38319381 DOI: 10.1007/s00417-024-06391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
AIM Analyze antibiotic susceptibility in the Endophthalmitis Management Study (EMS) and compare it with the current intravitreal antibiotic practice trend of members of the Vitreoretinal Society of India (VRSI) practicing in India. METHODS The microbiology work-up of undiluted vitreous included microscopy, culture-susceptibility, polymerase chain reaction (PCR), and next-generation sequencing (NGS). VRSI members were invited to the survey. The EMS conventional culture-susceptibility (PCR and NGS excluded) results were compared vis-a-vis gram-positive cocci (GPC), gram-negative bacilli (GNB), and less commonly used antibiotics with the current recommended intravitreal antibiotics. p < 0.05 was considered significant. RESULTS Culture and positivity (culture + PCR/NGS) positivity was 28.8% and 56.1%, respectively. GPC was most susceptible to cefazolin, linezolid, and vancomycin; GNB was most susceptible to amikacin, ceftazidime, colistin, and imipenem. There was no susceptibility difference between cefazolin and vancomycin (p = 0.999) and between ceftazidime and imipenem (p = 1.0). Colistin was superior to ceftazidime (p = 0.047) against GNB. The GNB resistant to amikacin (n = 14) were equally susceptible to ceftazidime and colistin; resistant to ceftazidime (n = 16) were susceptible to colistin; and resistant to colistin (n = 7) were susceptible to ceftazidime. The preference of VRSI members (n = 231) practicing in India was a vancomycin-ceftazidime combination (82%), vancomycin for GPC (94%), ceftazidime for GNB (61%), and voriconazole for fungi (74%). CONCLUSION In EMS, GPC had good susceptibility to vancomycin; GNB had good susceptibility to ceftazidime and colistin. Given the lower resistance of colistin, a vancomycin-colistin combination could be an alternative empiric treatment in post-cataract endophthalmitis in India.
Collapse
Affiliation(s)
- Taraprasad Das
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Disease, L V Prasad Eye Institute, Hyderabad, India.
| | - Suchita Pandey
- Jhaveri Microbiology Center, L V Prasad Eye Institute, Hyderabad, India
| | - Joveeta Joseph
- Jhaveri Microbiology Center, L V Prasad Eye Institute, Hyderabad, India
| | - Jay Sheth
- Retina Service, Shantilal Shanghvi Eye Institute, Mumbai, India
| | - Akash Belenje
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Disease, L V Prasad Eye Institute, Hyderabad, India
| | - Umesh C Behera
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Bhubaneswar, India
| | - Aditya Kapoor
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Vijayawada, India
| | - Rudvij Pandya
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Vishakhapatnam, India
| | - Vivek Pravin Dave
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Disease, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
3
|
Schuster M, Kilaru S, Steinberg G. Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi. Nat Commun 2024; 15:4357. [PMID: 38821954 PMCID: PMC11143370 DOI: 10.1038/s41467-024-48157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Triazoles are widely used to control pathogenic fungi. They inhibit the ergosterol biosynthetic pathway, but the precise mechanisms leading to fungicidal activities in many fungal pathogens are poorly understood. Here, we elucidate the mode of action of epoxiconazole and metconazole in the wheat pathogen Zymoseptoria tritici and the rice blast fungus Magnaporthe oryzae. We show that both azoles have fungicidal activity and reduce fluidity, but not integrity, of the plasma membrane. This impairs localisation of Cdc15-like F-BAR proteins, resulting in defective actin ring assembly and incomplete septation. However, mutant studies and pharmacological experiments in vitro and in planta show that azole lethality is due to a combination of reactive oxygen species-induced apoptosis and macroautophagy. Simultaneous inhibition of both programmed cell death pathways abolishes azole-induced cell death. Other classes of ergosterol biosynthesis inhibitors also induce apoptosis and macroautophagy, suggesting that activation of these two cell death pathways is a hallmark of ergosterol synthesis-targeting fungicides. This knowledge will inform future crop protection strategies.
Collapse
|
4
|
Librais GMN, Jiang Y, Razzaq I, Brandl CJ, Shapiro RS, Lajoie P. Evolutionary diversity of the control of the azole response by Tra1 across yeast species. G3 (BETHESDA, MD.) 2024; 14:jkad250. [PMID: 37889998 PMCID: PMC10849324 DOI: 10.1093/g3journal/jkad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses. In the opportunistic fungal pathogen Candida albicans, the tra1Q3 allele reduces pathogenicity and increases sensitivity to the echinocandin antifungal drug caspofungin, which disrupts the fungal cell wall. Here, we found that compromised Tra1 function, in contrast to what is seen with caspofungin, increases tolerance to the azole class of antifungal drugs, which inhibits ergosterol synthesis. In C. albicans, tra1Q3 increases the expression of genes linked to azole resistance, such as ERG11 and CDR1. CDR1 encodes a multidrug ABC transporter associated with efflux of multiple xenobiotics, including azoles. Consequently, cells carrying tra1Q3 show reduced intracellular accumulation of fluconazole. In contrast, a tra1Q3 Saccharomyces cerevisiae strain displayed opposite phenotypes: decreased tolerance to azole, decreased expression of the efflux pump PDR5, and increased intracellular accumulation of fluconazole. Therefore, our data provide evidence that Tra1 differentially regulates the antifungal response across yeast species.
Collapse
Affiliation(s)
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
5
|
Kaur M, Singla N, Aggarwal D, Kundu R, Gulati N, Kumar MB, Gombar S, Chander J. Antifungal Susceptibility Profile of Clinical and Environmental Isolates of Aspergillus Species From a Tertiary Care Center in North India. Cureus 2024; 16:e54586. [PMID: 38524068 PMCID: PMC10958134 DOI: 10.7759/cureus.54586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Aspergillus species are ubiquitously found in the environment worldwide and are important causative agents for infection. Drug resistance among Aspergillus species is emerging, hence the present study was undertaken to look for antifungal susceptibility profiles of clinical and environmental isolates of Aspergillus species. MATERIALS AND METHODS During the period from January 2018 to June 2019, a total of 102 Aspergillus isolates (40 clinical, 40 hospital, and 22 community environment) were tested for antifungal susceptibility testing for determination of minimum inhibitory concentration (MIC)/minimum effective concentration (MEC) as per Clinical and Laboratory Standards Institute (CLSI) M38-A3 method for itraconazole, voriconazole, amphotericin B, and caspofungin. RESULTS Out of these 102 Aspergillus isolates, A. flavus was the most common species present. Aspergillus species were found to have low MIC values to azoles such as itraconazole and voriconazole except for one clinical isolate, which showed a MIC value of 2 μg/ml to voriconazole. Two isolates were non-wild-type for amphotericin B, but all isolates were wild-type for caspofungin. CONCLUSION Antifungal susceptibility testing among clinical Aspergillus isolates and environmental surveillance studies in view of emerging drug resistance should be undertaken at a larger scale.
Collapse
Affiliation(s)
- Manharpreet Kaur
- Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Nidhi Singla
- Microbiology, Government Medical College, Chandigarh, Chandigarh, IND
| | - Deepak Aggarwal
- Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, Chandigarh, IND
| | - Reetu Kundu
- Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Neelam Gulati
- Clinical Microbiology, Government Medical College and Hospital, Chandigarh, Chandigarh, IND
| | - Mani Bhushan Kumar
- Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Satinder Gombar
- Anesthesia and Intensive Care, Government Medical College and Hospital, Chandigarh, Chandigarh, IND
| | - Jagdish Chander
- Microbiology, Government Medical College, Chandigarh, Chandigarh, IND
| |
Collapse
|
6
|
Vanzolini T, Magnani M. Old and new strategies in therapy and diagnosis against fungal infections. Appl Microbiol Biotechnol 2024; 108:147. [PMID: 38240822 PMCID: PMC10799149 DOI: 10.1007/s00253-023-12884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Fungal infections represent a serious global health threat. The new emerging pathogens and the spread of different forms of resistance are now hardly challenging the tools available in therapy and diagnostics. With the commonly used diagnoses, fungal identification is often slow and inaccurate, and, on the other hand, some drugs currently used as treatments are significantly affected by the decrease in susceptibility. Herein, the antifungal arsenal is critically summarized. Besides describing the old approaches and their mechanisms, advantages, and limitations, the focus is dedicated to innovative strategies which are designed, identified, and developed to take advantage of the discrepancies between fungal and host cells. Relevant pathways and their role in survival and virulence are discussed as their suitability as sources of antifungal targets. In a similar way, molecules with antifungal activity are reported as potential agents/precursors of the next generation of antimycotics. Particular attention was devoted to biotechnological entities, to their novelty and reliability, to drug repurposing and restoration, and to combinatorial applications yielding significant improvements in efficacy. KEY POINTS: • New antifungal agents and targets are needed to limit fungal morbidity and mortality. • Therapeutics and diagnostics suffer of delays in innovation and lack of targets. • Biologics, drug repurposing and combinations are the future of antifungal treatments.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| |
Collapse
|
7
|
van der Weerden NL, Parisi K, McKenna JA, Hayes BM, Harvey PJ, Quimbar P, Wevrett SR, Veneer PK, McCorkelle O, Vasa S, Guarino R, Poon S, Gaspar YM, Baker MJ, Craik DJ, Turner RB, Brown MB, Bleackley MR, Anderson MA. The Plant Defensin Ppdef1 Is a Novel Topical Treatment for Onychomycosis. J Fungi (Basel) 2023; 9:1111. [PMID: 37998916 PMCID: PMC10672221 DOI: 10.3390/jof9111111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Onychomycosis, or fungal nail infection, causes not only pain and discomfort but can also have psychological and social consequences for the patient. Treatment of onychomycosis is complicated by the location of the infection under the nail plate, meaning that antifungal molecules must either penetrate the nail or be applied systemically. Currently, available treatments are limited by their poor nail penetration for topical products or their potential toxicity for systemic products. Plant defensins with potent antifungal activity have the potential to be safe and effective treatments for fungal infections in humans. The cystine-stabilized structure of plant defensins makes them stable to the extremes of pH and temperature as well as digestion by proteases. Here, we describe a novel plant defensin, Ppdef1, as a peptide for the treatment of fungal nail infections. Ppdef1 has potent, fungicidal activity against a range of human fungal pathogens, including Candida spp., Cryptococcus spp., dermatophytes, and non-dermatophytic moulds. In particular, Ppdef1 has excellent activity against dermatophytes that infect skin and nails, including the major etiological agent of onychomycosis Trichophyton rubrum. Ppdef1 also penetrates human nails rapidly and efficiently, making it an excellent candidate for a novel topical treatment of onychomycosis.
Collapse
Affiliation(s)
- Nicole L. van der Weerden
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Kathy Parisi
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - James A. McKenna
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Brigitte M. Hayes
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pedro Quimbar
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | | | - Prem K. Veneer
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Owen McCorkelle
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Shaily Vasa
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Rosemary Guarino
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Simon Poon
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Yolanda M. Gaspar
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Michael J. Baker
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rob B. Turner
- MedPharm Ltd., Surrey Research Park, Surrey GU2 7AB, UK
| | - Marc B. Brown
- MedPharm Ltd., Surrey Research Park, Surrey GU2 7AB, UK
| | - Mark R. Bleackley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| | - Marilyn A. Anderson
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Ltd., La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
8
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
9
|
Systemic Antifungal Therapy for Invasive Pulmonary Infections. J Fungi (Basel) 2023; 9:jof9020144. [PMID: 36836260 PMCID: PMC9966409 DOI: 10.3390/jof9020144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Antifungal therapy for pulmonary fungal diseases is in a state of flux. Amphotericin B, the time-honored standard of care for many years, has been replaced by agents demonstrating superior efficacy and safety, including extended-spectrum triazoles and liposomal amphotericin B. Voriconazole, which became the treatment of choice for most pulmonary mold diseases, has been compared with posaconazole and itraconazole, both of which have shown clinical efficacy similar to that of voriconazole, with fewer adverse events. With the worldwide expansion of azole-resistant Aspergillus fumigatus and infections with intrinsically resistant non-Aspergillus molds, the need for newer antifungals with novel mechanisms of action becomes ever more pressing.
Collapse
|
10
|
Partha ADSL, Widodo ADW, Endraswari PD. Evaluation of fluconazole, itraconazole, and voriconazole activity on Candida albicans: A case control study. Ann Med Surg (Lond) 2022; 84:104882. [DOI: 10.1016/j.amsu.2022.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
11
|
Gu L, Li C, Lin J, Wang Q, Yin M, Zhang L, Li N, Lin H, You Z, Wang S, Li D, Zhao G. Drug-loaded mesoporous carbon with sustained drug release capacity and enhanced antifungal activity to treat fungal keratitis. BIOMATERIALS ADVANCES 2022; 136:212771. [PMID: 35929310 DOI: 10.1016/j.bioadv.2022.212771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Fungal keratitis is a severe infectious corneal disease with a high rate of incidence and blindness. Since traditional treatments natamycin (NATA) eye drops, exhibit poor dissolution and bioavailability, and the efficacy of current therapeutic approaches remains limited. In this study, we innovatively utilized mesoporous carbon (Meso-C) and microporous carbon (Micro-C) as nanocarriers loaded with the antifungal drug NATA and silver nanoparticles (Ag-NPs). Porous carbon loaded with NATA and Ag-NPs has not previously been studied in fungal keratitis. Due to the mesoporous structure, high surface area and larger pore volume of Meso-C, it displayed greater superiority in sustained drug release and drug dispersity than Micro-C. Moreover, Meso-C could adsorb inflammatory cytokines during fungal infection. In vitro, Meso-C/NATA/Ag showed excellent antifungal effects. In vivo, compared with pure NATA treatment, Meso-C/NATA/Ag exhibited significantly improved therapeutic effects and reduced dosing frequency when treating fungal keratitis. Our study is the first to report the sustained drug release and improved drug dispersity of Meso-C/NATA and demonstrates that NATA and Ag-NPs-loaded Meso-C has therapeutic effects against fungal keratitis.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Na Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Zhihu You
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Siyu Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
12
|
Lim W, Nyuykonge B, Eadie K, Konings M, Smeets J, Fahal A, Bonifaz A, Todd M, Perry B, Samby K, Burrows J, Verbon A, van de Sande W. Screening the pandemic response box identified benzimidazole carbamates, Olorofim and ravuconazole as promising drug candidates for the treatment of eumycetoma. PLoS Negl Trop Dis 2022; 16:e0010159. [PMID: 35120131 PMCID: PMC8815882 DOI: 10.1371/journal.pntd.0010159] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Eumycetoma is a chronic subcutaneous neglected tropical disease that can be caused by more than 40 different fungal causative agents. The most common causative agents produce black grains and belong to the fungal orders Sordariales and Pleosporales. The current antifungal agents used to treat eumycetoma are itraconazole or terbinafine, however, their cure rates are low. To find novel drugs for eumycetoma, we screened 400 diverse drug-like molecules from the Pandemic Response Box against common eumycetoma causative agents as part of the Open Source Mycetoma initiative (MycetOS). 26 compounds were able to inhibit the growth of Madurella mycetomatis, Madurella pseudomycetomatis and Madurella tropicana, 26 compounds inhibited Falciformispora senegalensis and seven inhibited growth of Medicopsis romeroi in vitro. Four compounds were able to inhibit the growth of all five species of fungi tested. They are the benzimidazole carbamates fenbendazole and carbendazim, the 8-aminoquinolone derivative tafenoquine and MMV1578570. Minimal inhibitory concentrations were then determined for the compounds active against M. mycetomatis. Compounds showing potent activity in vitro were further tested in vivo. Fenbendazole, MMV1782387, ravuconazole and olorofim were able to significantly prolong Galleria mellonella larvae survival and are promising candidates to explore in mycetoma treatment and to also serve as scaffolds for medicinal chemistry optimisation in the search for novel antifungals to treat eumycetoma.
Collapse
Affiliation(s)
- Wilson Lim
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Bertrand Nyuykonge
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Kimberly Eadie
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Mickey Konings
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Juli Smeets
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Ahmed Fahal
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| | | | - Matthew Todd
- University College London, School of Pharmacy, London, United Kingdom
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | | | - Jeremy Burrows
- Medicines for Malaria Venture (MMV), Geneva, Switzerland
| | - Annelies Verbon
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Wendy van de Sande
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Species-Specific Differences in C-5 Sterol Desaturase Function Influence the Outcome of Azole Antifungal Exposure. Antimicrob Agents Chemother 2021; 65:e0104421. [PMID: 34516249 DOI: 10.1128/aac.01044-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The azole antifungals inhibit sterol 14α-demethylase (S14DM), leading to depletion of cellular ergosterol and the synthesis of an aberrant sterol diol that disrupts membrane function. In Candida albicans, sterol diol production is catalyzed by the C-5 sterol desaturase enzyme encoded by ERG3. Accordingly, mutations that inactivate ERG3 enable the fungus to grow in the presence of the azoles. The purpose of this study was to compare the propensities of C-5 sterol desaturases from different fungal pathogens to produce the toxic diol upon S14DM inhibition and thus contribute to antifungal efficacy. The coding sequences of ERG3 homologs from C. albicans (CaERG3), Candida glabrata (CgERG3), Candida auris (CaurERG3), Cryptococcus neoformans (CnERG3), Aspergillus fumigatus (AfERG3A-C) and Rhizopus delemar (RdERG3A/B) were expressed in a C. albicans erg3Δ/Δ mutant to facilitate comparative analysis. All but one of the Erg3p-like proteins (AfErg3C) at least partially restored C-5 sterol desaturase activity and to corresponding degrees rescued the stress and hyphal growth defects of the C. albicans erg3Δ/Δ mutant, confirming functional equivalence. Each C-5 desaturase enzyme conferred markedly different responses to fluconazole exposure in terms of the MIC and residual growth observed at supra-MICs. Upon fluconazole-mediated inhibition of S14DM, the strains expressing each homolog also produced various levels of 14α-methylergosta-8,24(28)-dien-3β,6α-diol. The RdErg3A and AfErg3A proteins are notable for low levels of sterol diol production and failing to confer appreciable azole sensitivity upon the C. albicans erg3Δ/Δ mutant. These findings suggest that species-specific properties of C-5 sterol desaturase may be an important determinant of intrinsic azole sensitivity.
Collapse
|
14
|
Preliminary Characterization of NP339, a Novel Polyarginine Peptide with Broad Antifungal Activity. Antimicrob Agents Chemother 2021; 65:e0234520. [PMID: 34031048 PMCID: PMC8284473 DOI: 10.1128/aac.02345-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fungi cause disease in nearly one billion individuals worldwide. Only three classes of antifungal agents are currently available in mainstream clinical use. Emerging and drug-resistant fungi, toxicity, and drug-drug interactions compromise their efficacy and applicability. Consequently, new and improved antifungal therapies are urgently needed. In response to that need, we have developed NP339, a 2-kDa polyarginine peptide that is active against pathogenic fungi from the genera Candida, Aspergillus, and Cryptococcus, as well as others. NP339 was designed based on endogenous cationic human defense peptides, which are constituents of the cornerstone of immune defense against pathogenic microbes. NP339 specifically targets the fungal cell membrane through a charge-charge-initiated membrane interaction and therefore possesses a differentiated safety and toxicity profile to existing antifungal classes. NP339 is rapidly fungicidal and does not elicit resistance in target fungi upon extensive passaging in vitro. Preliminary analyses in murine models indicate scope for therapeutic application of NP339 against a range of systemic and mucocutaneous fungal infections. Collectively, these data indicate that NP339 can be developed into a highly differentiated, first-in-class antifungal candidate for poorly served invasive and other serious fungal diseases.
Collapse
|
15
|
Huang J, Cano EJ, Shweta F, Shah AS, Schuetz AN, Bois M, Gurram PR. Infected Aneurysm of the Native Aorta due to Coccidioides posadasii. Open Forum Infect Dis 2021; 8:ofab266. [PMID: 34159219 PMCID: PMC8214011 DOI: 10.1093/ofid/ofab266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
Coccidioidomycosis is an endemic fungal infection that is typically asymptomatic or associated with pulmonary disease. Extrapulmonary disease may involve the skin, bones, or central nervous system, yet endovascular infections are exceedingly rare. We report the first case, to our knowledge, of coccidioidomycosis of the native aorta in an immunocompromised host.
Collapse
Affiliation(s)
- Jeffrey Huang
- Division of Critical Care, Mayo Clinic, Rochester, Minnesota, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Edison J Cano
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Fnu Shweta
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Aditya S Shah
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Audrey N Schuetz
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Melanie Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pooja R Gurram
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Herity LB, Cruz OADL, Aziz MT. Evaluation of a primary antifungal prophylaxis protocol for preventing invasive mold infections after allogeneic hematopoietic stem cell transplantation. J Oncol Pharm Pract 2021; 28:794-804. [PMID: 33906508 DOI: 10.1177/10781552211011221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Invasive mold infections contribute to morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation. The optimal strategy for primary antifungal prophylaxis in this patient population remains uncertain. METHODS Medical records of patients who underwent allogeneic hematopoietic stem cell transplantation between 1 January 2013 and 31 December 2017 were retrospectively reviewed. Adult patients were included if they received micafungin followed by fluconazole, with the option to escalate to voriconazole, for antifungal prophylaxis. The primary outcome was the incidence rate of proven or probable invasive mold infection. Secondary outcomes were time to invasive mold infection diagnosis, invasive mold infection-related mortality, and risk factors associated with invasive mold infection. RESULTS Two hundred patients were included in the study, a majority of whom underwent matched unrelated (46%) or matched related (33%) donor transplants. The incidence rate of proven or probable invasive mold infection was 18.4 cases per 100 patient-years, with a one-year cumulative incidence of 14%. Median time to proven or probable invasive mold infection was 94 days post-transplant (IQR 26-178), with invasive mold infection-related mortality occurring in 18 (64%) of 28 patients diagnosed with invasive mold infection. Comparison of invasive mold infection-free survival by potential risk factors failed to show any significant differences. CONCLUSIONS In this real-life cohort of allogeneic hematopoietic stem cell transplantation recipients, the incidence of proven or probable invasive mold infection was higher than expected based on previous literature. In the absence of standard guidance on anti-mold prophylaxis in this patient population and given that unique risk factors for invasive mold infection may differ between institutions, it is essential that centers performing allogeneic hematopoietic stem cell transplantation routinely monitor their antifungal prophylaxis strategies for effectiveness.
Collapse
Affiliation(s)
- Leah B Herity
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA.,Department of Pharmacy Services, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Oveimar A De la Cruz
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - May T Aziz
- Department of Pharmacy Services, Virginia Commonwealth University Health System, Richmond, VA, USA
| |
Collapse
|
17
|
Hata K. Development of E1224 by leveraging a strategic partnership for the medicines creation against neglected tropical diseases. Parasitol Int 2020; 81:102278. [PMID: 33370607 DOI: 10.1016/j.parint.2020.102278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022]
Abstract
Neglected tropical diseases (NTDs) are communicable diseases that are uncommon in developed countries but epidemic in developing countries in tropical and subtropical regions of the world. One of the important contributions expected of pharmaceutical companies is the development and provision of drugs effective against NTDs. Eisai's efforts toward improving global health have resulted in a rich portfolio of assets addressing six infectious diseases: malaria, tuberculosis, Chagas disease, lymphatic filariasis, leishmaniasis, and mycetoma. As the most advanced project, Eisai has developed E1224 (fosravuconazole l-lysine ethanolate), which is available in both intravenous and oral formulations, and provides ravuconazole, an active form of fosravuconazole, with a long plasma half-life. The first clinical trials of E1224, for Chagas disease, have already been completed, led by the Drugs for Neglected Diseases initiative (DNDi). As a result, parasite clearance was observed with E1224 during the treatment phase, but parasite regrowth was observed after the end of drug administration, suggesting that the mechanism of action of E1224 on Trypanosoma cruzi is static rather than parasiticidal. On the other hand, a clinical trial for eumycetoma in collaboration with DNDi is ongoing supported by the Global Health Innovative Technology Fund, and is examining the efficacy of weekly treatment with E1224 versus the current standard of care, daily treatment with itraconazole. In this manner, Eisai will continue its drug-discovery research projects in collaboration with various PDPs and academia supported by funding agencies.
Collapse
Affiliation(s)
- Katsura Hata
- Global Health Research Section, hhc Data Creation Center, Eisai Co., Ltd., 1-3, Tokodai 5-chome, Tsukuba-shi, Ibaraki 300-2635, Japan.
| |
Collapse
|
18
|
Tits J, Cools F, De Cremer K, De Brucker K, Berman J, Verbruggen K, Gevaert B, Cos P, Cammue BPA, Thevissen K. Combination of Miconazole and Domiphen Bromide Is Fungicidal against Biofilms of Resistant Candida spp. Antimicrob Agents Chemother 2020; 64:e01296-20. [PMID: 32690639 PMCID: PMC7508569 DOI: 10.1128/aac.01296-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence and recurrence of mucosal biofilm-related Candida infections, such as oral and vulvovaginal candidiasis, are serious clinical issues. Vaginal infections caused by Candida spp., for example, affect 70 to 75% of women at least once during their lives. Miconazole (MCZ) is the preferred topical treatment against these fungal infections, yet it has only moderate antibiofilm activity. Through screening of a drug-repurposing library, we identified the quaternary ammonium compound domiphen bromide (DB) as an MCZ potentiator against Candida biofilms. DB displayed synergistic anti-Candida albicans biofilm activity with MCZ, reducing the number of viable biofilm cells 1,000-fold. In addition, the MCZ-DB combination also resulted in significant killing of biofilm cells of azole-resistant C. albicans, C. glabrata, and C. auris isolates. In vivo, the MCZ-DB combination had significantly improved activity in a vulvovaginal candidiasis rat model compared to that of single-compound treatments. Data from an artificial evolution experiment indicated that the development of resistance against the combination did not occur, highlighting the potential of MCZ-DB combination therapy to treat Candida biofilm-related infections.
Collapse
Affiliation(s)
- Jana Tits
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Freya Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Tamura N, Okano A, Kuroda T, Niwa H, Kusano K, Matsuda Y, Fukuda K, Mita H, Nagata S. Utility of systemic voriconazole in equine keratomycosis based on pharmacokinetic-pharmacodynamic analysis of tear fluid following oral administration. Vet Ophthalmol 2020; 23:640-647. [PMID: 32383526 PMCID: PMC7496923 DOI: 10.1111/vop.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/30/2022]
Abstract
Objective To clarify the detailed pharmacokinetics (PK) of orally administered voriconazole in tear fluid (TF) of horses for evaluating the efficacy of voriconazole secreted into TF against equine keratomycosis. Animals studied Five healthy Thoroughbred horses. Procedures Voriconazole was administrated through a nasogastric tube to each horse at a single dose of 4.0 mg/kg. TF and blood samples were collected before and periodically throughout the 24 hours after administration. Voriconazole concentrations in plasma and TF samples were analyzed using liquid chromatography‐electrospray tandem‐mass spectrometry. The predicted voriconazole concentration in both samples following multiple dosing every 24 hours was simulated by the superposition principle. Results The mean maximum voriconazole concentrations in plasma and TF were 3.3 μg/mL at 1.5 h and 1.9 μg/mL at 1.6 h, respectively. Mean half‐life in both samples were 16.4 and 25.2 h, respectively. The ratio of predicted AUC0–24 at steady state in TF (51.3 μg∙h/mL) to previously published minimum inhibitory concentration (MIC) of Aspergillus and Fusarium species was >100 and 25.7, respectively. Conclusions This study demonstrated the detailed single‐dose PK of voriconazole in TF after oral administration and simulated the predicted concentration curves in a multiple oral dosing. Based on the analyses of PK‐PD, the simulation results indicated that repeated oral administration of voriconazole at 4.0 mg/kg/d achieves the ratio of AUC to MIC associated with treatment efficacy against Aspergillus species. The detailed PK‐PD analyses against pathogenic fungi in TF can be used to provide evidence‐based medicine for equine keratomycosis.
Collapse
Affiliation(s)
- Norihisa Tamura
- Miho Training Center, Japan Racing Association, Racehorse Hospital, Ibaraki, Japan.,Japan Racing Association, Equine Research Institute, Tochigi, Japan
| | - Atsushi Okano
- Miho Training Center, Japan Racing Association, Racehorse Hospital, Ibaraki, Japan
| | - Taisuke Kuroda
- Miho Training Center, Japan Racing Association, Racehorse Hospital, Ibaraki, Japan
| | - Hidekazu Niwa
- Japan Racing Association, Equine Research Institute, Tochigi, Japan
| | - Kanichi Kusano
- Miho Training Center, Japan Racing Association, Racehorse Hospital, Ibaraki, Japan
| | - Yoshikazu Matsuda
- Miho Training Center, Japan Racing Association, Racehorse Hospital, Ibaraki, Japan
| | - Kentaro Fukuda
- Miho Training Center, Japan Racing Association, Racehorse Hospital, Ibaraki, Japan
| | - Hiroshi Mita
- Japan Racing Association, Equine Research Institute, Tochigi, Japan
| | | |
Collapse
|
20
|
Eldesouky HE, Salama EA, Hazbun TR, Mayhoub AS, Seleem MN. Ospemifene displays broad-spectrum synergistic interactions with itraconazole through potent interference with fungal efflux activities. Sci Rep 2020; 10:6089. [PMID: 32269301 PMCID: PMC7142066 DOI: 10.1038/s41598-020-62976-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/19/2020] [Indexed: 11/24/2022] Open
Abstract
Azole antifungals are vital therapeutic options for treating invasive mycotic infections. However, the emergence of azole-resistant isolates combined with limited therapeutic options presents a growing challenge in medical mycology. To address this issue, we utilized microdilution checkerboard assays to evaluate nine stilbene compounds for their ability to interact synergistically with azole drugs, particularly against azole-resistant fungal isolates. Ospemifene displayed the most potent azole chemosensitizing activity, and its combination with itraconazole displayed broad-spectrum synergistic interactions against Candida albicans, Candida auris, Cryptococcus neoformans, and Aspergillus fumigatus (ΣFICI = 0.05–0.50). Additionally, in a Caenorhabditis elegans infection model, the ospemifene-itraconazole combination significantly reduced fungal CFU burdens in infected nematodes by ~75–96%. Nile Red efflux assays and RT-qPCR analysis suggest ospemifene interferes directly with fungal efflux systems, thus permitting entry of azole drugs into fungal cells. This study identifies ospemifene as a novel antifungal adjuvant that augments the antifungal activity of itraconazole against a broad range of fungal pathogens.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Ehab A Salama
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.,Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Abdelrahman S Mayhoub
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt.
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Efficacy of Voriconazole against Aspergillus fumigatus Infection Depends on Host Immune Function. Antimicrob Agents Chemother 2020; 64:AAC.00917-19. [PMID: 31740552 DOI: 10.1128/aac.00917-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022] Open
Abstract
Antifungal therapy can fail in a remarkable number of patients with invasive fungal disease, resulting in significant morbidity worldwide. A major contributor to this failure is that while these drugs have high potency in vitro, we do not fully understand how they work inside infected hosts. Here, we used a transparent larval zebrafish model of Aspergillus fumigatus infection amenable to real-time imaging of invasive disease as an in vivo intermediate vertebrate model to investigate the efficacy and mechanism of the antifungal drug voriconazole. We found that the ability of voriconazole to protect against A. fumigatus infection depends on host innate immune cells and, specifically, on the presence of macrophages. While voriconazole inhibits fungal spore germination and growth in vitro, it does not do so in larval zebrafish. Instead, live imaging of whole, intact larvae over a multiday course of infection revealed that macrophages slow down initial fungal growth, allowing voriconazole time to target and kill A. fumigatus hyphae postgermination. These findings shed light on how antifungal drugs such as voriconazole may synergize with the immune response in living hosts.
Collapse
|
22
|
New Triazole NT-a9 Has Potent Antifungal Efficacy against Cryptococcus neoformans In Vitro and In Vivo. Antimicrob Agents Chemother 2020; 64:AAC.01628-19. [PMID: 31791946 DOI: 10.1128/aac.01628-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.
Collapse
|
23
|
Identification of a Phenylthiazole Small Molecule with Dual Antifungal and Antibiofilm Activity Against Candida albicans and Candida auris. Sci Rep 2019; 9:18941. [PMID: 31831822 PMCID: PMC6908612 DOI: 10.1038/s41598-019-55379-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Candida species are a leading source of healthcare infections globally. The limited number of antifungal drugs combined with the isolation of Candida species, namely C. albicans and C. auris, exhibiting resistance to current antifungals necessitates the development of new therapeutics. The present study tested 85 synthetic phenylthiazole small molecules for antifungal activity against drug-resistant C. albicans. Compound 1 emerged as the most potent molecule, inhibiting growth of C. albicans and C. auris strains at concentrations ranging from 0.25–2 µg/mL. Additionally, compound 1 inhibited growth of other clinically-relevant yeast (Cryptococcus) and molds (Aspergillus) at a concentration as low as 0.50 µg/mL. Compound 1 exhibited rapid fungicidal activity, reducing the burden of C. albicans and C. auris below the limit of detection within 30 minutes. Compound 1 exhibited potent antibiofilm activity, similar to amphotericin B, reducing the metabolic activity of adherent C. albicans and C. auris biofilms by more than 66% and 50%, respectively. Furthermore, compound 1 prolonged survival of Caenorhabditis elegans infected with strains of C. albicans and C. auris, relative to the untreated control. The present study highlights phenylthiazole small molecules, such as compound 1, warrant further investigation as novel antifungal agents for drug-resistant Candida infections.
Collapse
|
24
|
Development of a new stability indicating method for the simultaneous separation of voriconazole from its impurities along with sodium benzoate used as a preservative in a powder for oral suspension. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 77:394-417. [PMID: 31257019 DOI: 10.1016/j.pharma.2019.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/21/2022]
Abstract
Voriconazole is a second-generation triazole derived from fluconazole, having an enhanced antifungal spectrum, compared with older triazoles. It is the drug of choice for treatment of invasive aspergillosis and many Scedosporium/Pseudallescheria Fusarium infections. Voriconazole is available in both intravenous and oral formulations. Since there is much interest in pharmaceutical quality control, separation of impurities from the main drug substances and accurate assay quantification, and since there is no reference or monograph until nowadays reported for the simultaneous separation of voriconazole from its specified and unspecified impurities along with sodium benzoate used as an antimicrobial preservative, our aim of this work is to develop a new simple, sensitive and stability indicating assay method allowing thus separation by high-performance liquid chromatography. The development of our method consisted in optimizing the following analytical parameters: nature and composition of the mobile phase, its pH, buffer concentration, nature of the stationary phase, column temperature and detection wavelength. After optimisation, separation was achieved on a stainless steel column NOVAPACK C18 (3.9mm×150mm; 4μm particle size) using a gradient mode with methanol, acetonitrile R and an aqueous solution acidified by acetic acid at 1% and adjusted to pH 2.77. The eluted compounds were monitored at 254nm. The flow rate was set at 1.0mL/min, the injection volume at 10μL, and the column oven temperature was maintained at 35°C. Under these conditions, separation was achieved with good resolution and symmetrical peaks' shape. The developed method was validated according to the International Conference on Harmonization (ICH) guidelines, and then it was successfully applied to establish inherent stability of the pharmaceutical formulation subjected to different ICH prescribed stress conditions. The developed method was proved to be simple, specific and precise. Hence, it can be considered as a method for stability study and for routine quality control analysis of voriconazole and sodium benzoate in a powder for oral suspension.
Collapse
|
25
|
Veloso DFMC, Benedetti NIGM, Ávila RI, Bastos TSA, Silva TC, Silva MRR, Batista AC, Valadares MC, Lima EM. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv 2018; 25:1585-1594. [PMID: 30044149 PMCID: PMC6060385 DOI: 10.1080/10717544.2018.1492046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
Voriconazole (VCZ), a triazole with a large spectrum of action is one of the most recommended antifungal agents as the first line therapy against several clinically important systemic fungal infections, including those by Candida albicans. This antifungal has moderate water solubility and exhibits a nonlinear pharmacokinetic (PK) profile. By entrapping VCZ into liposomes, it is possible to circumvent certain downsides of the currently available product such as a reduction in the rate of its metabolization into an inactive form, avoidance of the toxicity of the sulfobutyl ether-beta-cyclodextrin (SBECD), vehicle used to increase its solubility. PKs and biodistribution of VCZ modified by encapsulation into liposomes resulted in improved antifungal activity, due to increased specificity and tissue penetration. In this work, liposomal VCZ resulted in AUC0-24/MIC ratio of 53.51 ± 11.12, whereas VFEND® resulted in a 2.5-fold lower AUC0-24/MIC ratio (21.51 ± 2.88), indicating favorable antimicrobial systemic activity. VCZ accumulation in the liver and kidneys was significantly higher when the liposomal form was used. Protection of the drug from biological degradation and reduced rate of metabolism leads to a 30% reduction of AUC of the inactive metabolite voriconazole-N-oxide (VNO) when the liposomal drug was administered. Liposomal VCZ presents an alternative therapeutic platform, leading to a safe and effective treatment against systemic fungal infections.
Collapse
Affiliation(s)
- Danillo F. M. C. Veloso
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology – FamaTec, Federal University of Goiás, Goiânia, Brazil
| | - Naiara I. G. M. Benedetti
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology – FamaTec, Federal University of Goiás, Goiânia, Brazil
| | - Renato I. Ávila
- Faculty of Pharmacy, Laboratory of Celullar Toxicology and Pharmacology – FarmaTec, Federal University of Goiás, Goiânia, Brazil
| | | | - Thaísa C. Silva
- Laboratory of Micology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Maria R. R. Silva
- Laboratory of Micology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Aline C. Batista
- Laboratory of Oral Pathology, Dental School, Federal University of Goiás, Goiânia, Brazil
| | - Marize C. Valadares
- Faculty of Pharmacy, Laboratory of Celullar Toxicology and Pharmacology – FarmaTec, Federal University of Goiás, Goiânia, Brazil
| | - Eliana M. Lima
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology – FamaTec, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
26
|
Geißel B, Loiko V, Klugherz I, Zhu Z, Wagener N, Kurzai O, van den Hondel CAMJJ, Wagener J. Azole-induced cell wall carbohydrate patches kill Aspergillus fumigatus. Nat Commun 2018; 9:3098. [PMID: 30082817 PMCID: PMC6078979 DOI: 10.1038/s41467-018-05497-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022] Open
Abstract
Azole antifungals inhibit the fungal ergosterol biosynthesis pathway, resulting in either growth inhibition or killing of the pathogen, depending on the species. Here we report that azoles have an initial growth-inhibitory (fungistatic) activity against the pathogen Aspergillus fumigatus that can be separated from the succeeding fungicidal effects. At a later stage, the cell wall salvage system is induced. This correlates with successive cell integrity loss and death of hyphal compartments. Time-lapse fluorescence microscopy reveals excessive synthesis of cell wall carbohydrates at defined spots along the hyphae, leading to formation of membrane invaginations and eventually rupture of the plasma membrane. Inhibition of β-1,3-glucan synthesis reduces the formation of cell wall carbohydrate patches and delays cell integrity failure and fungal death. We propose that azole antifungals exert their fungicidal activity by triggering synthesis of cell wall carbohydrate patches that penetrate the plasma membrane, thereby killing the fungus. The elucidated mechanism may be potentially exploited as a novel approach for azole susceptibility testing. Azole antifungals inhibit fungal ergosterol biosynthesis. Here, Geißel et al. show that the fungicidal activity of azoles involves excessive synthesis of cell wall carbohydrates at defined spots along the hyphae, leading to formation of membrane invaginations and eventually rupture of the plasma membrane.
Collapse
Affiliation(s)
- Bernadette Geißel
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Veronika Loiko
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Isabel Klugherz
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Zhaojun Zhu
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Nikola Wagener
- Zell- und Entwicklungsbiologie, Department Biologie II, LMU München, Großhaderner Straße 2, 82152, Planegg-Martinsried, Germany
| | - Oliver Kurzai
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Cees A M J J van den Hondel
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Pettenkoferstraße 9a, 80336, Munich, Germany. .,Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany. .,National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745, Jena, Germany.
| |
Collapse
|
27
|
Effect of the Novel Antifungal Drug F901318 (Olorofim) on Growth and Viability of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62:AAC.00231-18. [PMID: 29891595 DOI: 10.1128/aac.00231-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/02/2018] [Indexed: 11/20/2022] Open
Abstract
F901318 (olorofim) is a novel antifungal drug that is highly active against Aspergillus species. Belonging to a new class of antifungals called the orotomides, F901318 targets dihydroorotate dehydrogenase (DHODH) in the de novo pyrimidine biosynthesis pathway. In this study, the antifungal effects of F901318 against Aspergillus fumigatus were investigated. Live cell imaging revealed that, at a concentration of 0.1 μg/ml, F901318 completely inhibited germination, but conidia continued to expand by isotropic growth for >120 h. When this low F901318 concentration was applied to germlings or vegetative hyphae, their elongation was completely inhibited within 10 h. Staining with the fluorescent viability dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC) showed that prolonged exposure to F901318 (>24 h) led to vegetative hyphal swelling and a decrease in hyphal viability through cell lysis. The time-dependent killing of F901318 was further confirmed by measuring the fungal biomass and growth rate in liquid culture. The ability of hyphal growth to recover in drug-free medium after 24 h of exposure to F901318 was strongly impaired compared to that of the untreated control. A longer treatment of 48 h further improved the antifungal effect of F901318. Together, the results of this study indicate that F901318 initially has a fungistatic effect on Aspergillus isolates by inhibiting germination and growth, but prolonged exposure is fungicidal through hyphal swelling followed by cell lysis.
Collapse
|
28
|
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2018; 1435:57-78. [DOI: 10.1111/nyas.13739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry; Munich Germany
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
29
|
Lelièvre B, Briet M, Godon C, Legras P, Riou J, Vandeputte P, Diquet B, Bouchara JP. Impact of Infection Status and Cyclosporine on Voriconazole Pharmacokinetics in an Experimental Model of Cerebral Scedosporiosis. J Pharmacol Exp Ther 2018; 365:408-412. [PMID: 29491040 DOI: 10.1124/jpet.117.245449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
Cerebral Scedosporium infections usually occur in lung transplant recipients as well as in immunocompetent patients in the context of near drowning. Voriconazole is the first-line treatment. The diffusion of voriconazole through the blood-brain barrier in the context of cerebral infection and cyclosporine administration is crucial and remains a matter of debate. To address this issue, the pharmacokinetics of voriconazole was assessed in the plasma, cerebrospinal fluid (CSF), and brain in an experimental model of cerebral scedosporiosis in rats receiving or not receiving cyclosporine. A single dose of voriconazole (30 mg/kg, i.v.) was administered to six groups of rats randomized according to the infection status and the cyclosporine dosing regimen (no cyclosporine, a single dose, or three doses; 15 mg/kg each). Voriconazole concentrations in plasma, CSF, and brain samples were quantified using ultra-performance liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography UV methods and were documented up to 48 hours after administration. Pharmacokinetic parameters were estimated using a noncompartmental approach. Voriconazole pharmacokinetic profiles were similar for plasma, CSF, and brain in all groups studied. The voriconazole Cmax and area under the curve (AUC) (AUC0 ≥ 48 hours) values were significantly higher in plasma than in CSF [CSF/plasma ratio, median (range) = 0.5 (0.39-0.55) for AUC0 ≥ 48 hours and 0.47 (0.35 and 0.75) for Cmax]. Cyclosporine administration was significantly associated with an increase in voriconazole exposure in the plasma, CSF, and brain. In the plasma, but not in the brain, an interaction between the infection and cyclosporine administration reduced the positive impact of cyclosporine on voriconazole exposure. Together, these results emphasize the impact of cyclosporine on brain voriconazole exposure.
Collapse
Affiliation(s)
- Bénédicte Lelièvre
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| | - Marie Briet
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| | - Charlotte Godon
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| | - Pierre Legras
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| | - Jérémie Riou
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| | - Patrick Vandeputte
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| | - Bertrand Diquet
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| | - Jean-Philippe Bouchara
- Service de Pharmacologie-Toxicologie-Centre Régional de Pharmacovigilance, Institut de Biologie en Santé (B.L., M.B., B.D.), MITOVASC, UMR CNRS 6214, Inserm 1083, Université d'Angers (M.B.), Micro- et Nanomédecines Biomimétiques, UMR INSERM 1066-CNRS 6021, Université d'Angers (J.R.), and Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé (J.-P.B.), Centre Hospitalier Universitaire, Angers, France; Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université d'Angers, Université de Bretagne Occidentale, Institut de Biologie en Santé, Angers, France (B.L., C.G., P.L., P.V., J.-P.B., B.D.); and Service Commun de l'Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France (P.L.)
| |
Collapse
|
30
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:144-151. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/06/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
31
|
Temperature modulates the interaction between fungicide pollution and disease: evidence from a Daphnia-microparasitic yeast model. Parasitology 2017; 145:939-947. [PMID: 29160185 DOI: 10.1017/s0031182017002062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Temperature is expected to modulate the responses of organisms to stress. Here, we aimed to assess the influence of temperature on the interaction between parasitism and fungicide contamination. Specifically, using the cladoceran Daphnia as a model system, we explored the isolated and interactive effects of parasite challenge (yeast Metschnikowia bicuspidata) and exposure to fungicides (copper sulphate and tebuconazole) at two temperatures (17 and 20 °C), in a fully factorial design. Confirming a previous study, M. bicuspidata infection and copper exposure caused independent effects on Daphnia life history, whereas infection was permanently suppressed with tebuconazole exposure. Here, we show that higher temperature generally increased the virulence of the parasite, with the hosts developing signs of infection earlier, reproducing less and dying at an earlier age. These effects were consistent across copper concentrations, whereas the joint effects of temperature (which enhanced the difference between non-infected and infected hosts) and the anti-parasitic action of tebuconazole resulted in a more pronounced parasite × tebuconazole interaction at the higher temperature. Thus, besides independently influencing parasite and contaminant effects, the temperature can act as a modulator of interactions between pollution and disease.
Collapse
|
32
|
Giurg M, Gołąb A, Suchodolski J, Kaleta R, Krasowska A, Piasecki E, Piętka-Ottlik M. Reaction of bis[(2-chlorocarbonyl)phenyl] Diselenide with Phenols, Aminophenols, and Other Amines towards Diphenyl Diselenides with Antimicrobial and Antiviral Properties. Molecules 2017; 22:molecules22060974. [PMID: 28604620 PMCID: PMC6152648 DOI: 10.3390/molecules22060974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/16/2022] Open
Abstract
A reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with various mono and bisnucleophiles such as aminophenols, phenols, and amines have been studied as a convenient general route to a series of new antimicrobial and antiviral diphenyl diselenides. The compounds, particularly bis[2-(hydroxyphenylcarbamoyl)]phenyl diselenides and reference benzisoselenazol-3(2H)-ones, exhibited high antimicrobial activity against Gram-positive bacterial species (Enterococcus spp., Staphylococcus spp.), and some compounds were also active against Gram-negative E. coli and fungi (Candida spp., A. niger). The majority of compounds demonstrated high activity against human herpes virus type 1 (HHV-1) and moderate activity against encephalomyocarditis virus (EMCV), while they were generally inactive against vesicular stomatitis virus (VSV).
Collapse
Affiliation(s)
- Mirosław Giurg
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Anna Gołąb
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Jakub Suchodolski
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | - Rafał Kaleta
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Anna Krasowska
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | - Egbert Piasecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Magdalena Piętka-Ottlik
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
33
|
Gómez-Sequeda N, Torres R, Ortiz C. Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid). Nanotechnol Sci Appl 2017; 10:95-104. [PMID: 28572725 PMCID: PMC5441665 DOI: 10.2147/nsa.s96018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) loaded with fluconazole (FLZ) and FLZ-NPs coated with the cationic polymer polyethylenimine (PEI) (FLZ-NP-PEI) were synthetized in order to improve antimycotic activity against four strains of Candida spp. of clinical relevance. FLZ-NPs and FLZ-NP-PEI were synthesized by double emulsion solvent-diffusion (DES-D) and characterized. Minimum inhibitory concentration (MIC50) and minimum fungicide concentration (MFC) were determined in vitro by culturing Candida strains in the presence of these nanocompounds. FLZ-NPs were spherical in shape with hydrodynamic sizes of ~222 nm and surface charge of -11.6 mV. The surface charges of these NPs were successfully modified using PEI (FLZ-NP-PEI) with mean hydrodynamic sizes of 281 nm and surface charge of 23.5 mV. The efficiency of encapsulation (~53%) and a quick release of FLZ (≥90% after 3 h) were obtained. Cytotoxicity assay showed a good cell viability for FLZ-NPs (≥86%), and PEI-modified NPs presented a decrease in cell viability (~38%). FLZ-NPs showed an increasing antifungal activity of FLZ for sensitive (Candida parapsilosis ATCC22019 and Candida albicans ATCC10231, MIC50 =0.5 and 0.1 µg/mL, respectively) and resistant strains (Candida glabrata EMLM14 and Candida krusei ATCC6258, MIC50 =0.1 and 0.5 µg/mL, respectively). FLZ-NP-PEI showed fungicidal activity even against C. glabrata and C. krusei (MFC =4 and 8 µg/mL, respectively). MIC50 values showed best results for FLZ-NPs and FLZ-NP-PEI. Nevertheless, only FLZ-NP-PEI displayed fungicidal activity against the studied strains.
Collapse
Affiliation(s)
| | | | - Claudia Ortiz
- School of Microbiology, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
34
|
Abstract
Aspergillus species are ubiquitous fungal saprophytes found in diverse ecological niches worldwide. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis with high mortality rates in some immunocompromised hosts. Azoles are the first-line drugs in treating diseases caused by Aspergillus spp. However, increasing reports in A. fumigatus azole resistance, both in the clinical setting and in the environment, are threatening the effectiveness of clinical and agricultural azole drugs. The azole target is the 14-α sterol demethylase encoded by cyp51A gene and the main mechanisms of resistance involve the integration of tandem repeats in its promoter and/or single point mutations in this gene. In A. fumigatus, azole resistance can emerge in two different scenarios: a medical route in which azole resistance is generated during long periods of azole treatment in the clinical setting and a route of resistance derived from environmental origin due to extended use of demethylation inhibitors in agriculture. The understanding of A. fumigatus azole resistance development and its evolution is needed in order to prevent or minimize its impact. In this article, we review the current situation of azole resistance epidemiology and the predominant molecular mechanisms described based on the resistance acquisition routes. In addition, the clinical implications of A. fumigatus azole resistance and future research are discussed.
Collapse
|
35
|
Cuco AP, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Interplay between fungicides and parasites: Tebuconazole, but not copper, suppresses infection in a Daphnia-Metschnikowia experimental model. PLoS One 2017; 12:e0172589. [PMID: 28231278 PMCID: PMC5322920 DOI: 10.1371/journal.pone.0172589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/07/2017] [Indexed: 11/23/2022] Open
Abstract
Natural populations are commonly exposed to complex stress scenarios, including anthropogenic contamination and their biological enemies (e.g., parasites). The study of the pollutant-parasite interplay is especially important, given the need for adequate regulations to promote improved ecosystem protection. In this study, a host-parasite model system (Daphnia spp. and the microparasitic yeast Metschnikowia bicuspidata) was used to explore the reciprocal effects of contamination by common agrochemical fungicides (copper sulphate and tebuconazole) and parasite challenge. We conducted 21-day life history experiments with two host clones exposed to copper (0.00, 25.0, 28.8 and 33.1 μg L-1) or tebuconazole (0.00, 154, 192 and 240 μg L-1), in the absence or presence of the parasite. For each contaminant, the experimental design consisted of 2 Daphnia clones × 4 contaminant concentrations × 2 parasite treatments × 20 replicates = 320 experimental units. Copper and tebuconazole decreased Daphnia survival or reproduction, respectively, whilst the parasite strongly reduced host survival. Most importantly, while copper and parasite effects were mostly independent, tebuconazole suppressed infection. In a follow-up experiment, we tested the effect of a lower range of tebuconazole concentrations (0.00, 6.25, 12.5, 25.0, 50.0 and 100 μg L-1) crossed with increasing parasite challenge (2 Daphnia clones × 6 contaminant concentrations × 2 parasite levels × 20 replicates = 480 experimental units). Suppression of infection was confirmed at environmentally relevant concentrations (> 6.25 μg L-1), irrespective of the numbers of parasite challenge. The ecological consequences of such a suppression of infection include interferences in host population dynamics and diversity, as well as community structure and energy flow across the food web, which could upscale to ecosystem level given the important role of parasites.
Collapse
Affiliation(s)
- Ana P. Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
- Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B. Castro
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- * E-mail:
| |
Collapse
|
36
|
|
37
|
Pinheiro AM, Carreira A, Rollo F, Fernandes R, Ferreira RB, Monteiro SA. Blad-Containing Oligomer Fungicidal Activity on Human Pathogenic Yeasts. From the Outside to the Inside of the Target Cell. Front Microbiol 2016; 7:1803. [PMID: 27933037 PMCID: PMC5122710 DOI: 10.3389/fmicb.2016.01803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/27/2016] [Indexed: 12/02/2022] Open
Abstract
Blad polypeptide comprises residues 109-281 of Lupinus albus β-conglutin precursor. It occurs naturally as a major subunit of an edible, 210 kDa oligomer which accumulates to high levels, exclusively in the cotyledons of Lupinus seedlings between the 4th and 14th day after the onset of germination. Blad-containing oligomer (BCO) exhibits a potent and broad spectrum fungicide activity toward plant pathogens and is now on sale in the US under the tradename FractureTM. In this work we demonstrate its antifungal activity toward human pathogens and provide some insights on its mode of action. BCO bioactivity was evaluated in eight yeast species and compared to that of amphotericin B (AMB). BCO behaved similarly to AMB in what concerns both cellular inhibition and cellular death. As a lectin, BCO binds strongly to chitin. In addition, BCO is known to possess 'exochitinase' and 'endochitosanase' activities. However, no clear disruption was visualized at the cell wall after exposure to a lethal BCO concentration, except in cell buds. Immunofluorescent and immunogold labeling clearly indicate that BCO enters the cell, and membrane destabilization was also demonstrated. The absence of haemolytic activity, its biological origin, and its extraordinary antifungal activity are the major outcomes of this work, and provide a solid background for a future application as a new antifungal therapeutic drug. Furthermore, its predictable multisite mode of action suggests a low risk of inducing resistance mechanisms, which are now a major problem with other currently available antifungal drugs.
Collapse
Affiliation(s)
- Ana M. Pinheiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | | | - Filipe Rollo
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Rui Fernandes
- Histology and Electron Microscopy Service, Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - Ricardo B. Ferreira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Sara A. Monteiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
- CEV, SACantanhede, Portugal
| |
Collapse
|
38
|
|
39
|
Bromley M, Johns A, Davies E, Fraczek M, Mabey Gilsenan J, Kurbatova N, Keays M, Kapushesky M, Gut M, Gut I, Denning DW, Bowyer P. Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi. PLoS One 2016; 11:e0158724. [PMID: 27438017 PMCID: PMC4954691 DOI: 10.1371/journal.pone.0158724] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Recent estimates of the global burden of fungal disease suggest that that their incidence has been drastically underestimated and that mortality may rival that of malaria or tuberculosis. Azoles are the principal class of antifungal drug and the only available oral treatment for fungal disease. Recent occurrence and increase in azole resistance is a major concern worldwide. Known azole resistance mechanisms include over—expression of efflux pumps and mutation of the gene encoding the target protein cyp51a, however, for one of the most important fungal pathogens of humans, Aspergillus fumigatus, much of the observed azole resistance does not appear to involve such mechanisms. Here we present evidence that azole resistance in A. fumigatus can arise through mutation of components of mitochondrial complex I. Gene deletions of the 29.9KD subunit of this complex are azole resistant, less virulent and exhibit dysregulation of secondary metabolite gene clusters in a manner analogous to deletion mutants of the secondary metabolism regulator, LaeA. Additionally we observe that a mutation leading to an E180D amino acid change in the 29.9 KD subunit is strongly associated with clinical azole resistant A. fumigatus isolates. Evidence presented in this paper suggests that complex I may play a role in the hypoxic response and that one possible mechanism for cell death during azole treatment is a dysfunctional hypoxic response that may be restored by dysregulation of complex I. Both deletion of the 29.9 KD subunit of complex I and azole treatment alone profoundly change expression of gene clusters involved in secondary metabolism and immunotoxin production raising potential concerns about long term azole therapy.
Collapse
Affiliation(s)
- Mike Bromley
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Anna Johns
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Emma Davies
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, School of Translational Medicine, Manchester Academic Health Science Centre, 2nd Floor Education & Research Centre, University of Manchester, Manchester, M23 9LT, United Kingdom
| | - Marcin Fraczek
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Jane Mabey Gilsenan
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Natalya Kurbatova
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Maria Keays
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Misha Kapushesky
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Marta Gut
- Centro Nacional de Analisis Genomico, Parc Cientific de Barcelona, Baldiri Reixac, 4, PCB - Tower I, 08028 Barcelona, Spain
| | - Ivo Gut
- Centro Nacional de Analisis Genomico, Parc Cientific de Barcelona, Baldiri Reixac, 4, PCB - Tower I, 08028 Barcelona, Spain
| | - David W. Denning
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, School of Translational Medicine, Manchester Academic Health Science Centre, 2nd Floor Education & Research Centre, University of Manchester, Manchester, M23 9LT, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, School of Translational Medicine, Manchester Academic Health Science Centre, 2nd Floor Education & Research Centre, University of Manchester, Manchester, M23 9LT, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Wattier RL, Ramirez-Avila L. Pediatric Invasive Aspergillosis. J Fungi (Basel) 2016; 2:jof2020019. [PMID: 29376936 PMCID: PMC5753081 DOI: 10.3390/jof2020019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Invasive aspergillosis (IA) is a disease of increasing importance in pediatrics due to growth of the immunocompromised populations at risk and improvements in long-term survival for many of these groups. While general principles of diagnosis and therapy apply similarly across the age spectrum, there are unique considerations for clinicians who care for children and adolescents with IA. This review will highlight important differences in the epidemiology, clinical manifestations, diagnosis, and therapy of pediatric IA.
Collapse
Affiliation(s)
- Rachel L Wattier
- Department of Pediatrics, Division of Infectious Diseases and Global Health, University of California-San Francisco, 550 16th St, 4th Floor, Box 0434, San Francisco, CA 94143, USA.
| | - Lynn Ramirez-Avila
- Department of Pediatrics, Division of Infectious Diseases and Global Health, University of California-San Francisco, 550 16th St, 4th Floor, Box 0434, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol 2016; 9:961-79. [PMID: 27018631 DOI: 10.1586/17512433.2016.1172209] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Initial adequate anti-infective therapy is associated with significantly improved clinical outcomes for patients with severe infections. However, in critically ill patients, several pathophysiological and/or iatrogenic factors may affect the pharmacokinetics of anti-infective agents leading to suboptimal drug exposure, in particular during the early phase of therapy. Therapeutic drug monitoring (TDM) may assist to overcome this problem. We discuss the available evidence on the use of TDM in critically ill patient populations for a number of anti-infective agents, including aminoglycosides, β-lactams, glycopeptides, antifungals and antivirals. Also, we present the available evidence on the practices of anti-infective TDM and describe the potential utility of TDM to improve treatment outcome in critically ill patients with severe infections. For aminoglycosides, glycopeptides and voriconazole, beneficial effects of TDM have been established on both drug effectiveness and potential side effects. However, for other drugs, therapeutic ranges need to be further defined to optimize treatment prescription in this setting.
Collapse
Affiliation(s)
- Nynke G L Jager
- a Department of Pharmacy , Academic Medical Center , Amsterdam , The Netherlands
| | - Reinier M van Hest
- a Department of Pharmacy , Academic Medical Center , Amsterdam , The Netherlands
| | - Jeffrey Lipman
- b Burns Trauma and Critical Care Research Centre , The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia
| | - Fabio S Taccone
- d Department of Intensive Care, Hopital Erasme , Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Jason A Roberts
- b Burns Trauma and Critical Care Research Centre , The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia.,e School of Pharmacy , The University of Queensland , Brisbane , Australia
| |
Collapse
|
42
|
Abstract
STUDY DESIGN Review of the literature. OBJECTIVE To retrospectively examine the frequency of published fungal infections by species and the treatment algorithms used to eradicate the disease. SUMMARY OF BACKGROUND DATA Fungal infections of the spine present unique challenges to the modern multispecialty treatment team. Although rare in comparison with bacterial infections, fungal infections have been increasing in incidence over the past several decades. Evidences-based practice is limited to referencing smaller case series. METHODS MEDLINE, Scopus, and EMBASE searches were carried out by one of the authors as well as by the research desk at the University of Miami/Calder Memorial Library. We included peer-reviewed articles published between 1948 and September 2010; case reports, series, and reviews were all examined and compiled into a database. RESULTS A total of 130 articles, representing 157 cases, were included in the review. Aspergillus (60 cases, 38.2% of the total) and Candida species (36 cases, 22.9% of the total) were the 2 most common organisms. Surgery was associated with a greater survival rate than medical management alone in patients with Aspergillus (26.9% mortality in surgical patients; 60% in medically treated patients) and Candida (0% vs. 28.6%). Overall mortality was 19.3%. The overall recurrence rate was 7.4%. Amphotericin use was associated with a higher mortality rate than azoles. CONCLUSION Aspergillus is the most common published pathogen in fungal infections of the spine. Recent publications depicting the use of newer antifungal medications such as azoles report higher survival rates. Surgically treated patients in combination with antifungal therapy showed highest frequencies of patient survival in Aspergillus and Candida infections. LEVEL OF EVIDENCE 3.
Collapse
|
43
|
|
44
|
Botero-Calderon L, Benjamin DK, Cohen-Wolkowiez M. Advances in the treatment of invasive neonatal candidiasis. Expert Opin Pharmacother 2015; 16:1035-48. [PMID: 25842986 PMCID: PMC4402277 DOI: 10.1517/14656566.2015.1031108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Invasive candidiasis is responsible for ∼ 10% of nosocomial sepsis in very-low-birth-weight infants and is associated with substantial morbidity and mortality. Over the last two decades, the antifungal armamentarium against Candida spp. has increased; however, efficacy and safety studies in this population are lacking. AREAS COVERED We reviewed the medical literature and extracted information on clinical and observational studies evaluating the use of antifungal agents in neonates with invasive candidiasis. EXPERT OPINION Efficacy and safety data for antifungals in neonates are lacking, and the majority of studies conducted to date have concentrated on pharmacokinetic/pharmacodynamic evaluations. Unlike other anti-infective agents, efficacy data in the setting of neonatal candidiasis cannot be extrapolated from adult studies due to differences in the pathophysiology of the disease in this population relative to older children and adults. Data for amphotericin B deoxycholate, fluconazole, and micafungin suggest that these are the current agents of choice for this disease in neonates until data for newer antifungal agents become available. For prophylaxis, data from fluconazole randomized controlled trials will be submitted to the regulatory agencies for labeling. Ultimately, the field of therapeutics for neonatal candidiasis will require multidisciplinary collaboration given the numerous challenges associated with conducting clinical trials in neonates.
Collapse
|
45
|
Baharuddin NS, Abdullah H, Abdul Wahab WNAW. Anti-Candida activity of Quercus infectoria gall extracts against Candida species. J Pharm Bioallied Sci 2015; 7:15-20. [PMID: 25709331 PMCID: PMC4333621 DOI: 10.4103/0975-7406.148742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/27/2014] [Accepted: 05/25/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Galls of Quercus infectoria have been traditionally used to treat common ailments, including yeast infections caused by Candida species. OBJECTIVE This study aimed to evaluate the in vitro anti-Candida activity of Q. infectoria gall extracts against selected Candida species. MATERIALS AND METHODS Methanol and aqueous extracts of Q. infectoria galls were tested for anti-Candida activity against Candida albicans, Candida krusei, Candida glabrata, Candida parapsilosis and Candida tropicalis. The minimum inhibitory concentrations were determined using the two-fold serial dilution technique of concentrations ranging from 16 mg/ml to 0.03 mg/ml. After 24 h, the minimum fungicidal concentrations were determined by subculturing the wells, which showed no turbidity on the agar plate. Potential phytochemical group in the crude extracts was screened by phytochemical qualitative tests and subsequently subjected to the gas chromatography-mass spectrometry analysis. RESULTS Both methanol and aqueous extracts displayed substantial anti-Candida activity and pyrogallol was the major component of both crude extracts. CONCLUSIONS Data from current study suggested that Q. infectoria gall extracts are a potential source to be developed as anti-candidiasis.
Collapse
Affiliation(s)
- Nur Saeida Baharuddin
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan
| | - Hasmah Abdullah
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan
| | | |
Collapse
|
46
|
Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK, Capparelli EV. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 2014; 74:891-909. [PMID: 24872147 PMCID: PMC4073603 DOI: 10.1007/s40265-014-0227-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Invasive fungal disease (IFD) remains life threatening in premature infants and immunocompromised children despite the recent development of new antifungal agents. Optimal dosing of antifungals is one of the few factors clinicians can control to improve outcomes of IFD. However, dosing in children cannot be extrapolated from adult data because IFD pathophysiology, immune response, and drug disposition differ from adults. We critically examined the literature on pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal agents and highlight recent developments in treating pediatric IFD. To match adult exposure in pediatric patients, dosing adjustment is necessary for almost all antifungals. In young infants, the maturation of renal and metabolic functions occurs rapidly and can significantly influence drug exposure. Fluconazole clearance doubles from birth to 28 days of life and, beyond the neonatal period, agents such as fluconazole, voriconazole, and micafungin require higher dosing than in adults because of faster clearance in children. As a result, dosing recommendations are specific to bracketed ranges of age. PD principles of antifungals mostly rely on in vitro and in vivo models but very few PD studies specifically address IFD in children. The exposure-response relationship may differ in younger children compared with adults, especially in infants with invasive candidiasis who are at higher risk of disseminated disease and meningoencephalitis, and by extension severe neurodevelopmental impairment. Micafungin is the only antifungal agent for which a specific target of exposure was proposed based on a neonatal hematogenous Candida meningoencephalitis animal model. In this review, we found that pediatric data on drug disposition of newer triazoles and echinocandins are lacking, dosing of older antifungals such as fluconazole and amphotericin B products still need optimization in young infants, and that target PK/PD indices need to be clinically validated for almost all antifungals in children. A better understanding of age-specific PK and PD of new antifungals in infants and children will help improve clinical outcomes of IFD by informing dosing and identifying future research areas.
Collapse
Affiliation(s)
- Julie Autmizguine
- Duke Clinical Research Institute, 2400 Pratt St, Durham, NC 27705, USA
| | | | | | | | - Edmund V. Capparelli
- Department of Pediatric Pharmacology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0831, USA
| |
Collapse
|
47
|
Invasive fungal infections in the ICU: how to approach, how to treat. Molecules 2014; 19:1085-119. [PMID: 24445340 PMCID: PMC6271196 DOI: 10.3390/molecules19011085] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 12/29/2022] Open
Abstract
Invasive fungal infections are a growing problem in critically ill patients and are associated with increased morbidity and mortality. Most of them are due to Candida species, especially Candida albicans. Invasive candidiasis includes candidaemia, disseminated candidiasis with deep organ involvement and chronic disseminated candidiasis. During the last decades rare pathogenic fungi, such as Aspergillus species, Zygomycetes, Fusarium species and Scedosporium have also emerged. Timely diagnosis and proper treatment are of paramount importance for a favorable outcome. Besides blood cultures, several laboratory tests have been developed in the hope of facilitating an earlier detection of infection. The antifungal armamentarium has also been expanded allowing a treatment choice tailored to individual patients' needs. The physician can choose among the old class of polyenes, the older and newer azoles and the echinocandins. Factors related to patient's clinical situation and present co-morbidities, local epidemiology data and purpose of treatment (prophylactic, pre-emptive, empiric or definitive) should be taken into account for the appropriate choice of antifungal agent.
Collapse
|
48
|
Cecil JA, Wenzel RP. Voriconazole: a broad-spectrum triazole for the treatment of invasive fungal infections. Expert Rev Hematol 2014; 2:237-54. [DOI: 10.1586/ehm.09.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
MIC values of voriconazole are predictive of treatment results in murine infections by Aspergillus terreus species complex. Antimicrob Agents Chemother 2013; 57:1532-4. [PMID: 23295929 DOI: 10.1128/aac.01436-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the efficacy of voriconazole against nine strains of Aspergillus terreus with different MICs (0.12 to 4 μg/ml) by using a murine model. Markers of efficacy included survival, tissue burden, galactomannan antigenemia, and drug serum levels. Voriconazole was especially effective in prolonging survival and reducing the fungal load in infections by strains that showed MICs that were less than or equal to the epidemiological cutoff value (1 μg/ml). In vitro data might be useful for predicting the outcome of A. terreus infections.
Collapse
|
50
|
Calabrese EC, Castellano S, Santoriello M, Sgherri C, Quartacci MF, Calucci L, Warrilow AGS, Lamb DC, Kelly SL, Milite C, Granata I, Sbardella G, Stefancich G, Maresca B, Porta A. Antifungal activity of azole compounds CPA18 and CPA109 against azole-susceptible and -resistant strains of Candida albicans. J Antimicrob Chemother 2013; 68:1111-9. [PMID: 23292344 DOI: 10.1093/jac/dks506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES In this study we investigated the in vitro fungistatic and fungicidal activities of CPA18 and CPA109, two azole compounds with original structural features, alone and in combination with fluconazole against fluconazole-susceptible and -resistant Candida albicans strains. METHODS Antifungal activities were measured by MIC evaluation and time-kill studies. Azole binding analysis was performed by UV-Vis spectroscopy. Hyphal growth inhibition and filipin and propidium iodide staining assays were used for morphological analysis. An analysis of membrane lipids was also performed to gauge alterations in membrane composition and integrity. Synergism was calculated using fractional inhibitory concentration indices (FICIs). Evaluation of cytotoxicity towards murine macrophages was performed to verify selective antifungal activity. RESULTS Even though their binding affinity to C. albicans Erg11p is comparable to that of fluconazole, CPA compounds are active against resistant strains of C. albicans with a mutation in ERG11 sequences and/or overexpressing the ABC transporter genes CDR1 and CDR2, which encode ATP-dependent efflux pumps. Moreover, CPA18 is fungistatic, even against the two resistant strains, and was found to be synergistic with fluconazole. Differently from fluconazole and other related azoles, CPA compounds induced marked changes in membrane permeability and dramatic alterations in membrane lipid composition. CONCLUSIONS Our outcomes suggest that CPA compounds are able to overcome major mechanisms of resistance in C. albicans. Also, they are promising candidates for combination treatment that could reduce the toxicity caused by high fluconazole doses, particularly in immunocompromised patients.
Collapse
Affiliation(s)
- Elena C Calabrese
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, 84084 Fisciano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|