1
|
Wang P, Li RQ, Wang L, Yang WT, Zou QH, Xiao D. Proteomic Analyses of Acinetobacter baumannii Clinical Isolates to Identify Drug Resistant Mechanism. Front Cell Infect Microbiol 2021; 11:625430. [PMID: 33718272 PMCID: PMC7943614 DOI: 10.3389/fcimb.2021.625430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter baumannii is one of the main causes of nosocomial infections. Increasing numbers of multidrug-resistant Acinetobacter baumannii cases have been reported in recent years, but its antibiotic resistance mechanism remains unclear. We studied 9 multidrug-resistant (MDR) and 10 drug-susceptible Acinetobacter baumannii clinical isolates using Label free, TMT labeling approach and glycoproteomics analysis to identify proteins related to drug resistance. Our results showed that 164 proteins exhibited different expressions between MDR and drug-susceptible isolates. These differential proteins can be classified into six groups: a. proteins related to antibiotic resistance, b. membrane proteins, membrane transporters and proteins related to membrane formation, c. Stress response-related proteins, d. proteins related to gene expression and protein translation, e. metabolism-related proteins, f. proteins with unknown function or other functions containing biofilm formation and virulence. In addition, we verified seven proteins at the transcription level in eight clinical isolates by using quantitative RT-PCR. Results showed that four of the selected proteins have positive correlations with the protein level. This study provided an insight into the mechanism of antibiotic resistance of multidrug-resistant Acinetobacter baumannii.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ren-Qing Li
- Institute for Control of Infectious Diseases and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lei Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Tao Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Di Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
iTRAQ®-based quantitative proteomics reveals the proteomic profiling of methicillin-resistant Staphylococcus aureus-derived extracellular vesicles after exposure to imipenem. Folia Microbiol (Praha) 2020; 66:221-230. [PMID: 33165807 DOI: 10.1007/s12223-020-00836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
This study sought to reveal the proteomic profiling of methicillin-resistant Staphylococcus aureus (MRSA)-derived extracellular vesicles (EVs) after exposure to imipenem. The advanced isobaric tags for relative and absolute quantitation (iTRAQ®) proteomic approach were used to analyze the alterations in MRSA-derived EV protein patterns upon exposure to imipenem. A total of 1260 EV proteins were identified and quantified. Among these, 861 differentially expressed exosome proteins (P < 0.05) were found. Multivariate analysis, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze the identified proteins. Enrichment analysis of GO annotations indicated that imipenem primarily regulated the metabolic processes in MRSA. The metabolism of differentially expressed proteins was found to be the most significant in the combined analysis of the KEGG pathway analysis. Based on the results from the STRING analysis, 50S ribosomal protein L16 (RplP) and 30S ribosomal protein S8 (RpsH) were involved in the imipenem-induced MRSA-derived EVs. These results provide vital information on MRSA-derived EVs, increasing our knowledge of the proteome level changes in EVs upon exposure to imipenem. Moreover, these results pave the way for developing novel MRSA treatments.
Collapse
|
3
|
Takahashi H, Saito R, Miya S, Tanaka Y, Miyamura N, Kuda T, Kimura B. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae. Int J Food Microbiol 2017; 246:92-97. [PMID: 28270336 DOI: 10.1016/j.ijfoodmicro.2016.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 10/20/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A <1log difference between the real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r2=0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods.
Collapse
Affiliation(s)
- Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Rumi Saito
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Satoko Miya
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yuichiro Tanaka
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Natsumi Miyamura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
4
|
Avilamycin and evernimicin induce structural changes in rProteins uL16 and CTC that enhance the inhibition of A-site tRNA binding. Proc Natl Acad Sci U S A 2016; 113:E6796-E6805. [PMID: 27791159 DOI: 10.1073/pnas.1614297113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Two structurally unique ribosomal antibiotics belonging to the orthosomycin family, avilamycin and evernimicin, possess activity against Enterococci, Staphylococci, and Streptococci, and other Gram-positive bacteria. Here, we describe the high-resolution crystal structures of the eubacterial large ribosomal subunit in complex with them. Their extended binding sites span the A-tRNA entrance corridor, thus inhibiting protein biosynthesis by blocking the binding site of the A-tRNA elbow, a mechanism not shared with other known antibiotics. Along with using the ribosomal components that bind and discriminate the A-tRNA-namely, ribosomal RNA (rRNA) helices H89, H91, and ribosomal proteins (rProtein) uL16-these structures revealed novel interactions with domain 2 of the CTC protein, a feature typical to various Gram-positive bacteria. Furthermore, analysis of these structures explained how single nucleotide mutations and methylations in helices H89 and H91 confer resistance to orthosomycins and revealed the sequence variations in 23S rRNA nucleotides alongside the difference in the lengths of the eukaryotic and prokaryotic α1 helix of protein uL16 that play a key role in the selectivity of those drugs. The accurate interpretation of the crystal structures that could be performed beyond that recently reported in cryo-EM models provide structural insights that may be useful for the design of novel pathogen-specific antibiotics, and for improving the potency of orthosomycins. Because both drugs are extensively metabolized in vivo, their environmental toxicity is very low, thus placing them at the frontline of drugs with reduced ecological hazards.
Collapse
|
5
|
Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. Proc Natl Acad Sci U S A 2016; 113:7527-32. [PMID: 27330110 DOI: 10.1073/pnas.1604790113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.
Collapse
|
6
|
Brehme N, Bayer-Császár E, Glass F, Takenaka M. The DYW Subgroup PPR Protein MEF35 Targets RNA Editing Sites in the Mitochondrial rpl16, nad4 and cob mRNAs in Arabidopsis thaliana. PLoS One 2015; 10:e0140680. [PMID: 26470017 PMCID: PMC4607164 DOI: 10.1371/journal.pone.0140680] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022] Open
Abstract
RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C) to uridine (U) mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35) to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209), for cytochrome b (cob-286) and for subunit 4 of complex I (nad4-1373), respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.
Collapse
Affiliation(s)
- Nadja Brehme
- Molekulare Botanik, Universität Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
7
|
Abstract
Covering up to December 2013. Oligosaccharide natural products target a wide spectrum of biological processes including disruption of cell wall biosynthesis, interference of bacterial translation, and inhibition of human α-amylase. Correspondingly, oligosaccharides possess the potential for development as treatments of such diverse diseases as bacterial infections and type II diabetes. Despite their potent and selective activities and potential clinical relevance, isolated bioactive secondary metabolic oligosaccharides are less prevalent than other classes of natural products and their biosynthesis has received comparatively less attention. This review highlights the unique modes of action and biosynthesis of four classes of bioactive oligosaccharides: the orthosomycins, moenomycins, saccharomicins, and acarviostatins.
Collapse
Affiliation(s)
- Emilianne K McCranie
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, USA.
| | | |
Collapse
|
8
|
Pon CL, Fabbretti A, Brandi L. Antibiotics Targeting Translation Initiation in Prokaryotes. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Mikolajka A, Liu H, Chen Y, Starosta AL, Márquez V, Ivanova M, Cooperman BS, Wilson DN. Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. ACTA ACUST UNITED AC 2011; 18:589-600. [PMID: 21609840 DOI: 10.1016/j.chembiol.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022]
Abstract
The ribosome is a major target in the bacterial cell for antibiotics. Here, we dissect the effects that the thiopeptide antibiotics thiostrepton (ThS) and micrococcin (MiC) as well as the orthosomycin antibiotic evernimicin (Evn) have on translational GTPases. We demonstrate that, like ThS, MiC is a translocation inhibitor, and that the activation by MiC of the ribosome-dependent GTPase activity of EF-G is dependent on the presence of the ribosomal proteins L7/L12 as well as the G' subdomain of EF-G. In contrast, Evn does not inhibit translocation but is a potent inhibitor of back-translocation as well as IF2-dependent 70S-initiation complex formation. Collectively, these results shed insight not only into fundamental aspects of translation but also into the unappreciated specificities of these classes of translational inhibitors.
Collapse
|
10
|
Abstract
Protein synthesis is one of the major targets in the cell for antibiotics. This review endeavors to provide a comprehensive "post-ribosome structure" A-Z of the huge diversity of antibiotics that target the bacterial translation apparatus, with an emphasis on correlating the vast wealth of biochemical data with more recently available ribosome structures, in order to understand function. The binding site, mechanism of action, and modes of resistance for 26 different classes of protein synthesis inhibitors are presented, ranging from ABT-773 to Zyvox. In addition to improving our understanding of the process of translation, insight into the mechanism of action of antibiotics is essential to the development of novel and more effective antimicrobial agents to combat emerging bacterial resistance to many clinically-relevant drugs.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, LMU, Munich, Germany.
| |
Collapse
|
11
|
Stereoselective synthesis of 1,1′-linked α-l-lyxopyranosyl β-d-glucopyranoside, the proposed biosynthetic precursor of the FG ring system of avilamycins. Carbohydr Res 2008; 343:1612-23. [DOI: 10.1016/j.carres.2008.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/29/2008] [Accepted: 05/04/2008] [Indexed: 11/22/2022]
|
12
|
Brandi L, Fabbretti A, Pon CL, Dahlberg AE, Gualerzi CO. Initiation of protein synthesis: a target for antimicrobials. Expert Opin Ther Targets 2008; 12:519-34. [PMID: 18410237 DOI: 10.1517/14728222.12.5.519] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Translation initiation is a basic and universal biological process that employs significantly different components and displays substantially different mechanisms in bacterial, archaeal and eukaryotic cells. A large amount of detailed mechanistic and structural information on the bacterial translation initiation apparatus has been uncovered in recent years. OBJECTIVE to understand which translation initiation steps could represent a novel or underexploited target for the discovery of new and specific antibacterial drugs. METHODS Brief descriptions of the properties and mechanism of action of the major antibiotics that have a documented direct inhibitory effect on bacterial translation initiation are presented. RESULTS/CONCLUSIONS Considerations and predictions concerning a future scenario for research and identification of bacterial translation initiation inhibitors are presented.
Collapse
|
13
|
Boll R, Hofmann C, Heitmann B, Hauser G, Glaser S, Koslowski T, Friedrich T, Bechthold A. The Active Conformation of Avilamycin A Is Conferred by AviX12, a Radical AdoMet Enzyme. J Biol Chem 2006; 281:14756-63. [PMID: 16537546 DOI: 10.1074/jbc.m601508200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibiotic avilamycin A is produced by Streptomyces viridochromogenes Tü57. Avilamycin belongs to the family of orthosomycins with a linear heptasaccharide chain linked to a terminal dichloroisoeverninic acid as aglycone. The gene cluster for avilamycin biosynthesis contains 54 open reading frames. Inactivation of one of these genes, namely aviX12, led to the formation of a novel avilamycin derivative named gavibamycin N1. The structure of the new metabolite was confirmed by mass spectrometry (MS) and NMR analysis. It harbors glucose as a component of the heptasaccharide chain instead of a mannose moiety in avilamycin A. Antibacterial activity tests against a spectrum of Gram-positive organisms showed that the new derivative possesses drastically decreased biological activity in comparison to avilamycin A. Thus, AviX12 seems to be implicated in converting avilamycin to its bioactive conformation by catalyzing an unusual epimerization reaction. Sequence comparisons grouped AviX12 in the radical S-adenosylmethionine protein family. AviX12 engineered with a His tag was overexpressed in Escherichia coli and purified by affinity chromatography. The iron sulfur cluster [Fe-S] present in radical AdoMet enzymes was detected in purified AviX12 by means of electron paramagnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Raija Boll
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hofmann C, Boll R, Heitmann B, Hauser G, Dürr C, Frerich A, Weitnauer G, Glaser SJ, Bechthold A. Genes Encoding Enzymes Responsible for Biosynthesis of L-Lyxose and Attachment of Eurekanate during Avilamycin Biosynthesis. ACTA ACUST UNITED AC 2005; 12:1137-43. [PMID: 16242656 DOI: 10.1016/j.chembiol.2005.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/01/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
The oligosaccharide antibiotic avilamycin A is composed of a polyketide-derived dichloroisoeverninic acid moiety attached to a heptasaccharide chain consisting of six hexoses and one unusual pentose moiety. We describe the generation of mutant strains of the avilamycin producer defective in different sugar biosynthetic genes. Inactivation of two genes (aviD and aviE2) resulted in the breakdown of the avilamycin biosynthesis. In contrast, avilamycin production was not influenced in an aviP mutant. Inactivation of aviGT4 resulted in a mutant that accumulated a novel avilamycin derivative lacking the terminal eurekanate residue. Finally, AviE2 was expressed in Escherichia coli and the gene product was characterized biochemically. AviE2 was shown to convert UDP-D-glucuronic acid to UDP-D-xylose, indicating that the pentose residue of avilamycin A is derived from D-glucose and not from D-ribose. Here we report a UDP-D-glucuronic acid decarboxylase in actinomycetes.
Collapse
Affiliation(s)
- Carsten Hofmann
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nishimura M, Yoshida T, Shirouzu M, Terada T, Kuramitsu S, Yokoyama S, Ohkubo T, Kobayashi Y. Solution Structure of Ribosomal Protein L16 from Thermus thermophilus HB8. J Mol Biol 2004; 344:1369-83. [PMID: 15561149 DOI: 10.1016/j.jmb.2004.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/06/2004] [Accepted: 10/11/2004] [Indexed: 12/01/2022]
Abstract
Ribosomal protein L16 is an essential component of the bacterial ribosome. It organizes the architecture of aminoacyl tRNA binding site in the ribosome 50S subunit. The three-dimensional structure of L16 from Thermus thermophilus HB8 was determined by NMR. In solution, L16 forms an alpha+beta sandwich structure combined with two additional beta sheets located at the loop regions connecting the two layers. The terminal regions and a central loop region did not show any specific secondary structure. The structured part of L16 could be superimposed well on the C(alpha) model of L16 determined in the crystal structure of the ribosome 50S subunit. By overlaying the L16 solution structure onto the coordinates of the ribosome crystal structure, we constructed the combined model that represents the ribosome-bound state of L16 in the detailed structure. The model showed that L16 possesses residues in contact with helices 38, 39, 42, 43 and 89 of 23S rRNA and helix 4 of 5S rRNA. This suggests its broad effect on the ribosome architecture. Comparison of L16 with the L10e protein, which is the archaeal counterpart, showed that they share a common fold, but differ in some regions of functional importance, especially in the N-terminal region. All known mutation sites in L16 that confer resistance to avilamycin and evernimicin were positioned so that their side-chains were exposed to solvent in the internal cavity of the ribosome. This suggests the direct participation of L16 as a part of the binding site for antibiotics.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Treede I, Jakobsen L, Kirpekar F, Vester B, Weitnauer G, Bechthold A, Douthwaite S. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol Microbiol 2003; 49:309-18. [PMID: 12828631 DOI: 10.1046/j.1365-2958.2003.03558.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avilamycin is an orthosomycin antibiotic that has shown considerable potential for clinical use, although it is presently used as a growth promoter in animal feed. Avilamycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit. The ribosomes of the producer strain, Streptomyces viridochromogenes Tü57, are protected from the drug by the action of three resistance factors located in the avilamycin biosynthetic gene cluster. Two of the resistance factors, aviRa and aviRb, encode rRNA methyltransferases that specifically target 23S rRNA. Recombinant AviRa and AviRb proteins retain their activity after purification, and both specifically methylate in vitro transcripts of 23S rRNA domain V. Reverse transcriptase primer extension indicated that AviRa is an N-methyltransferase that targets G2535 within helix 91 of the rRNA, whereas AviRb modified the 2'-O-ribose position of nucleotide U2479 within helix 89. MALDI mass spectrometry confirmed the exact positions of each of these modifications, and additionally established that a single methyl group is added at each nucleotide. Neither of these two nucleotides have previously been described as a target for enzymatic methylation. Molecular models of the 50S subunit crystal structure show that the N-1 of the G2535 base and the 2'-hydroxyl of U2479 are separated by approximately 10 A, a distance that can be spanned by avilamycin. In addition to defining new resistance mechanisms, these data refine our understanding of the probable ribosome contacts made by orthosomycins and of how these antibiotics inhibit protein synthesis.
Collapse
Affiliation(s)
- Irina Treede
- Department of Pharmaceutical Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Boneca IG, Chiosis G. Vancomycin resistance: occurrence, mechanisms and strategies to combat it. Expert Opin Ther Targets 2003; 7:311-28. [PMID: 12783569 DOI: 10.1517/14728222.7.3.311] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vancomycin has long been considered the antibiotic of last resort against serious and multi-drug-resistant infections caused by Gram-positive bacteria. However, vancomycin resistance has emerged, first in enterococci and, more recently, in Staphylococcus aureus. Here, the authors attempt to review the prevalence and the mechanisms of such resistance. Furthermore, they focus on strategies that have been developed or are under current investigation to overcome infections caused by vancomycin-resistant strains. Among these are glycopeptide derivatives with higher potency than vancomycin, small molecules that resensitise bacteria to the antibiotic and novel non-glycopeptide antibiotics. These agents are targeted to interfere with protein and/or peptidoglycan (PG) synthesis and integrity or with membrane permeability. Whilst most of these agents are still in clinical or preclinical development, some have entered the clinic and currently represent the only option for treating vancomycin-resistant enterococci (VRE).
Collapse
Affiliation(s)
- Ivo G Boneca
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 25 - 28 Rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | |
Collapse
|
18
|
Chu M, Mierzwa R, Jenkins J, Chan TM, Das P, Pramanik B, Patel M, Gullo V. Isolation and characterization of novel oligosaccharides related to Ziracin. JOURNAL OF NATURAL PRODUCTS 2002; 65:1588-1593. [PMID: 12444681 DOI: 10.1021/np020093t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Five novel oligosaccharide antibiotics, Sch 58769 (1), Sch 58771 (2), Sch 58773 (3), Sch 58775 (4), and Sch 58777 (5), were isolated from the fermentation broth of Micromonospora carbonacea var africana. Their structures were determined by spectroscopic methods, including MS and (1)H and (13)C NMR experiments. A comparison of the obtained data with that for Ziracin (Sch 27899) revealed that these oligosaccharides belong to the same everninomicin family of compounds. Ziracin demonstrates potent activity against Gram-positive bacteria both in vitro and in vivo including multiply resistant strains of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci faecalis.
Collapse
Affiliation(s)
- Min Chu
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kofoed CB, Vester B. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob Agents Chemother 2002; 46:3339-42. [PMID: 12384333 PMCID: PMC128742 DOI: 10.1128/aac.46.11.3339-3342.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibiotic growth promoter avilamycin inhibits protein synthesis by binding to bacterial ribosomes. Here the binding site is further characterized on Escherichia coli ribosomes. The drug interacts with domain V of 23S rRNA, giving a chemical footprint at nucleotides A2482 and A2534. Selection of avilamycin-resistant Halobacterium halobium cells revealed mutations in helix 89 of 23S rRNA. Furthermore, mutations in helices 89 and 91, which have previously been shown to confer resistance to evernimicin, give cross-resistance to avilamycin. These data place the binding site of avilamycin on 23S rRNA close to the elbow of A-site tRNA. It is inferred that avilamycin interacts with the ribosomes at the ribosomal A-site interfering with initiation factor IF2 and tRNA binding in a manner similar to evernimicin.
Collapse
Affiliation(s)
- Christine B Kofoed
- Institute of Molecular Biology, University of Copenhagen, DK-1307 Copenhagen K, Denmark
| | | |
Collapse
|
20
|
Zarazaga M, Tenorio C, Del Campo R, Ruiz-Larrea F, Torres C. Mutations in ribosomal protein L16 and in 23S rRNA in Enterococcus strains for which evernimicin MICs differ. Antimicrob Agents Chemother 2002; 46:3657-9. [PMID: 12384386 PMCID: PMC128729 DOI: 10.1128/aac.46.11.3657-3659.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in ribosomal protein L16 and in 23S rRNA were investigated in 22 Enterococcus strains of different species and for which the MICs of evernimicin differ (MICs, 0.023 to 16 micro g/ml). Amino acid changes (Arg56His, Ile52Thr, or Arg51His) in protein L16 were found in seven strains, and a nucleotide G2535A mutation in 23S rRNA was found in 1 strain among 13 for which the MICs are > or =1 micro g/ml.
Collapse
Affiliation(s)
- Myriam Zarazaga
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | | | | | | | | |
Collapse
|
21
|
Mann PA, Xiong L, Mankin AS, Chau AS, Mendrick CA, Najarian DJ, Cramer CA, Loebenberg D, Coates E, Murgolo NJ, Aarestrup FM, Goering RV, Black TA, Hare RS, McNicholas PM. EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance. Mol Microbiol 2001; 41:1349-56. [PMID: 11580839 DOI: 10.1046/j.1365-2958.2001.02602.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enterococcus faecium strain 9631355 was isolated from animal sources on the basis of its resistance to the growth promotant avilamycin. The strain also exhibited high-level resistance to evernimicin, a drug undergoing evaluation as a therapeutic agent in humans. Ribosomes from strain 9631355 exhibited a dramatic reduction in evernimicin binding, shown by both cell-free translation assays and direct-binding assays. The resistance determinant was cloned from strain 9631355; sequence alignments suggested it was a methyltransferase and therefore it was designated emtA for evernimicin methyltransferase. Evernimicin resistance was transmissible and emtA was localized to a plasmid-borne insertion element. Purified EmtA methylated 50S subunits from an evernimicin-sensitive strain 30-fold more efficiently than those from a resistant strain. Reverse transcription identified a pause site that was unique to the 23S rRNA extracted from resistant ribosomes. The pause corresponded to methylation of residue G2470 (Escherichia coli numbering). RNA footprinting revealed that G2470 is located within the evernimicin-binding site on the ribosome, thus providing an explanation for the reduced binding of the drug to methylated ribosomes.
Collapse
MESH Headings
- Aminoglycosides
- Animals
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- Binding Sites
- Cloning, Molecular
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial/genetics
- Drug Resistance, Bacterial/physiology
- Enterococcus faecium/drug effects
- Enterococcus faecium/enzymology
- Enterococcus faecium/genetics
- Genes, Bacterial
- Humans
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- P A Mann
- Schering Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|