1
|
Krajewska J, Tyski S, Laudy AE. In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective. Pharmaceuticals (Basel) 2024; 17:1068. [PMID: 39204172 PMCID: PMC11357384 DOI: 10.3390/ph17081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Environmental Health and Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland;
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology and Laboratory Diagnostic, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Chavanet P, Fournel I, Bourredjem A, Piroth L, Blot M, Sixt T, Binquet C. Addition of daptomycin for the treatment of pneumococcal meningitis: protocol for the AddaMAP study. BMJ Open 2023; 13:e073032. [PMID: 37491088 PMCID: PMC10373719 DOI: 10.1136/bmjopen-2023-073032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The leading cause of acute bacterial meningitis in adults is Streptococcus pneumoniae. This infection is associated with high rates of mortality and morbidity related, among other factors, to the excessive host response to the pneumococcal lysis. Experimental in vitro and in vivo data show that the combination of corticosteroids/third-generation cephalosporins and the non-lytic antibiotic, daptomycin, has synergistic effects with (1) a rapid cerebrospinal fluid sterilisation, (2) less brain damages and (3) less loss of cognitive performances. Despite these encouraging results, daptomycin has never been evaluated in adult patients with pneumococcal meningitis. METHODS AND ANALYSIS The AddaMAP trial is a phase II, open-label, Simon's two-stage, multicentre trial that has been designed to assess the efficacy and safety of adding daptomycin (10 mg/kg/d for 8 days) to the recommended treatment (corticosteroids+third generation cephalosporin) in adults with confirmed pneumococcal meningitis. The main endpoint is the disability-free survival (defined as modified Rankin Scale mRS≤2) at day 30. Secondary outcomes are overall mortality, disability at D30 and D90 (mRS, Glasgow Coma Scale and Glasgow Outcome Scales, mini-mental score), hearing loss (Hearing Handicap Inventory Test at D30 and D90, routine audiometric test and Hearing-it test at D30), and quality of life (12-item Short Form Survey and WHO QOL BREF). Seventy-two analysable patients are required. ETHICS AND DISSEMINATION The study protocol was approved by the Institutional Review Board of the IDF 1 of the ethics committee on 16 January 2018, and authorisation was obtained from the Agence Nationale de Securité des Médicaments et des Produits de Santé on 22 September 2017. The results will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT03480191.
Collapse
Affiliation(s)
- Pascal Chavanet
- Infectious Diseases Department, University Hospital, Dijon, France
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
| | - Isabelle Fournel
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
- Centre d'Investigation Clinique, CHU Dijon, Dijon, France
| | - Abderrahmane Bourredjem
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
- Centre d'Investigation Clinique, CHU Dijon, Dijon, France
| | - Lionel Piroth
- Infectious Diseases Department, University Hospital, Dijon, France
| | - Mathieu Blot
- Infectious Diseases Department, University Hospital, Dijon, France
| | - Thibault Sixt
- Infectious Diseases Department, University Hospital, Dijon, France
| | - Christine Binquet
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
- Centre d'Investigation Clinique, CHU Dijon, Dijon, France
| |
Collapse
|
3
|
Oh J, Warner M, Ambler JE, Schuch R. The Lysin Exebacase Has a Low Propensity for Resistance Development in Staphylococcus aureus and Suppresses the Emergence of Resistance to Antistaphylococcal Antibiotics. Microbiol Spectr 2023; 11:e0526122. [PMID: 36862002 PMCID: PMC10100934 DOI: 10.1128/spectrum.05261-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Exebacase (CF-301) belongs to a novel class of protein-based antibacterial agents, called lysins (peptidoglycan hydrolases). Exebacase exhibits potent antistaphylococcal activity and is the first lysin to initiate clinical trials in the United States. To support clinical development, the potential for resistance development to exebacase was assessed over 28 days of serial daily subculture in the presence of increasing concentrations of the lysin performed in its reference broth medium. Exebacase MICs remained unchanged over serial subculture for three replicates each of methicillin-susceptible Staphylococcus aureus (MSSA) strain ATCC 29213 and methicillin-resistant S. aureus (MRSA) strain MW2. For comparator antibiotics also tested, oxacillin MICs increased by 32-fold with ATCC 29213 and daptomycin and vancomycin MICs increased by 16- and 8-fold, respectively, with MW2. Serial passage was also used to examine the capacity of exebacase to suppress selection for increased oxacillin, daptomycin, and vancomycin MICs when used together in combination, wherein daily exposures to increasing concentrations of antibiotic were performed over 28 days with the added presence of fixed sub-MIC amounts of exebacase. Exebacase suppressed increases in antibiotic MICs over this period. These findings are consistent with a low propensity for resistance to exebacase and an added benefit of reducing the potential for development of antibiotic resistance. IMPORTANCE To guide development of an investigational new antibacterial drug, microbiological data are required to understand the potential for development of resistance to the drug in the target organism(s). Exebacase is a lysin (peptidoglycan hydrolase) that represents a novel antimicrobial modality based on degradation of the cell wall of Staphylococcus aureus. Exebacase resistance was examined here using an in vitro serial passage method that assesses the impact of daily exposures to increasing concentrations of exebacase over 28 days in medium approved for use in exebacase antimicrobial susceptibility testing (AST) by the Clinical and Laboratory Standards Institute (CLSI). No changes in susceptibility to exebacase were observed over the 28-day period for multiple replicates of two S. aureus strains, indicating a low propensity for resistance development. Interestingly, while high-level resistance to commonly used antistaphylococcal antibiotics was readily obtained using the same method, the added presence of exebacase acted to suppress antibiotic resistance development.
Collapse
Affiliation(s)
- Jun Oh
- ContraFect Corporation, Yonkers, New York, USA
| | | | | | | |
Collapse
|
4
|
Schultz JR, Costa SK, Jachak GR, Hegde P, Zimmerman M, Pan Y, Josten M, Ejeh C, Hammerstad T, Sahl HG, Pereira PM, Pinho MG, Dartois V, Cheung A, Aldrich CC. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as Potent Membrane-Disrupting Agents to Combat Antibiotic-Resistant Gram-Positive Bacteria. J Med Chem 2022; 65:13910-13934. [PMID: 36219779 PMCID: PMC9826610 DOI: 10.1021/acs.jmedchem.2c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone 111 with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.06 μg/mL against numerous clinical isolates. Preliminary mechanism of action and resistance studies demonstrate that the 5-amino-4-quinolones are bacteriostatic, do not select for resistance, and selectively disrupt bacterial membranes. While the precise molecular mechanism has not been elucidated, the lead compound is nontoxic displaying a therapeutic index greater than 500, is devoid of hemolytic activity, and has attractive physicochemical properties (clog P = 3.8, molecular weight (MW) = 441) that warrant further investigation of this promising antibacterial scaffold for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- John R Schultz
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen K Costa
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Gorakhnath R Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Michaele Josten
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Chinedu Ejeh
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Travis Hammerstad
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hans Georg Sahl
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Pedro M Pereira
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Lade H, Joo HS, Kim JS. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:1378. [PMID: 36290036 PMCID: PMC9598170 DOI: 10.3390/antibiotics11101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful human pathogens with the potential to cause significant morbidity and mortality. MRSA has acquired resistance to almost all β-lactam antibiotics, including the new-generation cephalosporins, and is often also resistant to multiple other antibiotic classes. The expression of penicillin-binding protein 2a (PBP2a) is the primary basis for β-lactams resistance by MRSA, but it is coupled with other resistance mechanisms, conferring resistance to non-β-lactam antibiotics. The multiplicity of resistance mechanisms includes target modification, enzymatic drug inactivation, and decreased antibiotic uptake or efflux. This review highlights the molecular basis of resistance to non-β-lactam antibiotics recommended to treat MRSA infections such as macrolides, lincosamides, aminoglycosides, glycopeptides, oxazolidinones, lipopeptides, and others. A thorough understanding of the molecular and biochemical basis of antibiotic resistance in clinical isolates could help in developing promising therapies and molecular detection methods of antibiotic resistance.
Collapse
Affiliation(s)
- Harshad Lade
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| |
Collapse
|
6
|
Martínez-Fortún J, Phillips DW, Jones HD. Natural and artificial sources of genetic variation used in crop breeding: A baseline comparator for genome editing. Front Genome Ed 2022; 4:937853. [PMID: 36072906 PMCID: PMC9441798 DOI: 10.3389/fgeed.2022.937853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional breeding has successfully selected beneficial traits for food, feed, and fibre crops over the last several thousand years. The last century has seen significant technological advancements particularly in marker assisted selection and the generation of induced genetic variation, including over the last few decades, through mutation breeding, genetic modification, and genome editing. While regulatory frameworks for traditional varietal development and for genetic modification with transgenes are broadly established, those for genome editing are lacking or are still evolving in many regions. In particular, the lack of "foreign" recombinant DNA in genome edited plants and that the resulting SNPs or INDELs are indistinguishable from those seen in traditional breeding has challenged development of new legislation. Where products of genome editing and other novel breeding technologies possess no transgenes and could have been generated via traditional methods, we argue that it is logical and proportionate to apply equivalent legislative oversight that already exists for traditional breeding and novel foods. This review analyses the types and the scale of spontaneous and induced genetic variation that can be selected during traditional plant breeding activities. It provides a base line from which to judge whether genetic changes brought about by techniques of genome editing or other reverse genetic methods are indeed comparable to those routinely found using traditional methods of plant breeding.
Collapse
Affiliation(s)
| | | | - Huw D. Jones
- IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
7
|
Nepal A, Ræder SB, Søgaard CK, Haugan MS, Otterlei M. Broad-Spectrum Antibacterial Peptide Kills Extracellular and Intracellular Bacteria Without Affecting Epithelialization. Front Microbiol 2021; 12:764451. [PMID: 34899646 PMCID: PMC8661032 DOI: 10.3389/fmicb.2021.764451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
New antibacterial drugs with novel modes of action are urgently needed as antibiotic resistance in bacteria is increasing and spreading throughout the world. In this study, we aimed to explore the possibility of using APIM-peptides targeting the bacterial β-clamp for treatment of skin infections. We selected a lead peptide, named betatide, from five APIM-peptide candidates based on their antibacterial and antimutagenic activities in both G+ and G- bacteria. Betatide was further tested in minimal inhibitory concentration (MIC) assays in ESKAPE pathogens, in in vitro infection models, and in a resistance development assay. We found that betatide is a broad-range antibacterial which obliterated extracellular bacterial growth of methicillin-resistant Staphylococcus epidermidis (MRSE) in cell co-cultures without affecting the epithelialization of HaCaT keratinocytes. Betatide also reduced the number of intracellular Staphylococcus aureus in infected HaCaT cells. Furthermore, long-time exposure to betatide at sub-MICs induced minimal or no increase in resistance development compared to ciprofloxacin and gentamicin or ampicillin in S. aureus and Escherichia coli. These properties support the potential of betatide for the treatment of topical skin infections.
Collapse
Affiliation(s)
- Anala Nepal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Synnøve Brandt Ræder
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Caroline Krogh Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Maria Schei Haugan
- Department of Medical Microbiology, St. Olav's University Hospital, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Medical Microbiology, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Miller BW, Lim AL, Lin Z, Bailey J, Aoyagi KL, Fisher MA, Barrows LR, Manoil C, Schmidt EW, Haygood MG. Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter. Cell Chem Biol 2021; 28:1628-1637.e4. [PMID: 34146491 PMCID: PMC8605984 DOI: 10.1016/j.chembiol.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.
Collapse
Affiliation(s)
- Bailey W Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Albebson L Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Jeannie Bailey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari L Aoyagi
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| | - Margo G Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| |
Collapse
|
9
|
Dadashi M, Sharifian P, Bostanshirin N, Hajikhani B, Bostanghadiri N, Khosravi-Dehaghi N, van Belkum A, Darban-Sarokhalil D. The Global Prevalence of Daptomycin, Tigecycline, and Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Strains From Human Clinical Samples: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:720647. [PMID: 34568377 PMCID: PMC8460910 DOI: 10.3389/fmed.2021.720647] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background and Aim: The predominant species of the Enterococcus, Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) cause great variety of infections. Therefore, the expansion of antimicrobial resistance in the Enterococcus is one of the most important global concerns. This study was conducted to investigate the prevalence of resistance to linezolid, tigecycline, and daptomycin among enterococcal strains isolated from human clinical specimens worldwide. Methods: Several databases including Web of Science, EMBASE, and Medline (via PubMed), were carefully searched and reviewed for original research articles available in databases and published between 2000 and 2020. A total of 114 studies worldwide that address E. faecalis and E. faecium resistance to linezolid, tigecycline, and daptomycin were analyzed by STATA software. Results: The overall prevalence of antibiotic-resistant E. faecalis and E. faecium was reported to be 0.9 and 0.6%, respectively. E. faecalis and E. faecium were more resistant to the linezolid (2.2%) and daptomycin (9%), respectively. The prevalence of tigecyline-resistant E. facium (1%) strains was higher than E. faecalis strains (0.3%). Accordingly, the prevalence of linezolid-resistant E. faecalis was higher in Asia (2.8%), while linezolid-resistant E. faecium was higher in the America (3.4%). Regarding tigecycline-resistance, a higher prevalence of E. faecalis (0.4%) and E. faecium (3.9%) was reported in Europe. Conclusion: In conclusion, this meta-analysis shows that there is an emerging resistance in Enterococcus strains. Despite the rising resistance of enterococci to antibiotics, our results demonstrate that tigecycline, daptomycin, and linezolid can still be used for the treatment of enterococcal infections worldwide.
Collapse
Affiliation(s)
- Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parastoo Sharifian
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nazila Bostanshirin
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Khosravi-Dehaghi
- Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.,Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux, La Balme-les-Grottes, France
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zhang R, Barreras Beltran IA, Ashford NK, Penewit K, Waalkes A, Holmes EA, Hines KM, Salipante SJ, Xu L, Werth BJ. Synergy Between Beta-Lactams and Lipo-, Glyco-, and Lipoglycopeptides, Is Independent of the Seesaw Effect in Methicillin-Resistant Staphylococcus aureus. Front Mol Biosci 2021; 8:688357. [PMID: 34646861 PMCID: PMC8503943 DOI: 10.3389/fmolb.2021.688357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Methicillin-resistant S. aureus (MRSA) are resistant to beta-lactams, but synergistic activity between beta-lactams and glycopeptides/lipopeptides is common. Many have attributed this synergy to the beta-lactam-glycopeptide seesaw effect; however, this association has not been rigorously tested. The objective of this study was to determine whether the seesaw effect is necessary for synergy and to measure the impact of beta-lactam exposure on lipid metabolism. We selected for three isogenic strains with reduced susceptibility to vancomycin, daptomycin, and dalbavancin by serial passaging the MRSA strain N315. We used whole genome sequencing to identify genetic variants that emerged and tested for synergy between vancomycin, daptomycin, or dalbavancin in combination with 6 beta-lactams with variable affinity for staphylococcal penicillin binding proteins (PBPs), including nafcillin, meropenem, ceftriaxone, ceftaroline, cephalexin, and cefoxitin, using time-kills. We observed that the seesaw effect with each beta-lactam was variable and the emergence of the seesaw effect for a particular beta-lactam was not necessary for synergy between that beta-lactam and vancomycin, daptomycin, or dalbavancin. Synergy was more commonly observed with vancomycin and daptomycin based combinations than dalbavancin in time-kills. Among the beta-lactams, cefoxitin and nafcillin were the most likely to exhibit synergy using the concentrations tested, while cephalexin was the least likely to exhibit synergy. Synergy was more common among the resistant mutants than the parent strain. Interestingly N315-D1 and N315-DAL0.5 both had mutations in vraTSR and walKR despite their differences in the seesaw effect. Lipidomic analysis of all strains exposed to individual beta-lactams at subinhibitory concentrations suggested that in general, the abundance of cardiolipins (CLs) and most free fatty acids (FFAs) positively correlated with the presence of synergistic effects while abundance of phosphatidylglycerols (PGs) and lysylPGs mostly negatively correlated with synergistic effects. In conclusion, the beta-lactam-glycopeptide seesaw effect and beta-lactam-glycopeptide synergy are distinct phenomena. This suggests that the emergence of the seesaw effect may not have clinical importance in terms of predicting synergy. Further work is warranted to characterize strains that don't exhibit beta-lactam synergy to identify which strains should be targeted with combination therapy and which ones cannot and to further investigate the potential role of CLs in mediating synergy.
Collapse
Affiliation(s)
- Rutan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | | | - Nathaniel K. Ashford
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Kelly M. Hines
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Brian J. Werth
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
New Quinone Antibiotics against Methicillin-Resistant S. aureus. Antibiotics (Basel) 2021; 10:antibiotics10060614. [PMID: 34063846 PMCID: PMC8224091 DOI: 10.3390/antibiotics10060614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
There is an urgent need for the development of new antibiotics. Here, we describe the inhibitory activity of new quinone compounds against methicillin-resistant Staphylococcus aureus (ATCC® 43300), methicillin-sensitive S. aureus (ATCC® 29213), and two clinical isolates from Chile (ISP-213 and ISP-214). We observed 99.9% reduction in viability within 2 h of exposure without the cultures exhibiting any post-antibiotic effect, which was twice the kinetics to that observed with vancomycin. These clinical isolates did not acquire resistance to these quinone derivatives during the course of our study. We found that these compounds protected larvae of the greater wax moth, sp. Galleria mellonella, from infection by these MRSA clinical strains as effectively as vancomycin. These quinone derivatives are potential drug candidates worth further development.
Collapse
|
13
|
Shen T, Penewit K, Waalkes A, Xu L, Salipante SJ, Nath A, Werth BJ. Identification of a novel tedizolid resistance mutation in rpoB of MRSA after in vitro serial passage. J Antimicrob Chemother 2021; 76:292-296. [PMID: 33057715 DOI: 10.1093/jac/dkaa422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/13/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Tedizolid is an oxazolidinone antimicrobial with activity against Gram-positive bacteria, including MRSA. Tedizolid resistance is uncommon and tedizolid's capacity to select for cross-resistance to other antimicrobials is incompletely understood. The objective of this study was to further explore the phenotypic and genetic basis of tedizolid resistance in MRSA. METHODS We selected for tedizolid resistance in an MRSA laboratory strain, N315, by serial passage until an isolate with an MIC ≥1 log2 dilution above the breakpoint for resistance (≥2 mg/L) was recovered. This isolate was subjected to WGS and susceptibility to a panel of related and unrelated antimicrobials was tested in order to determine cross-resistance. Homology modelling was performed to evaluate the potential impact of the mutation on target protein function. RESULTS After 10 days of serial passage we recovered a phenotypically stable mutant with a tedizolid MIC of 4 mg/L. WGS revealed only one single nucleotide variant (A1345G) in rpoB, corresponding to amino acid substitution D449N. MICs of linezolid, chloramphenicol, retapamulin and quinupristin/dalfopristin increased by ≥2 log2 dilutions, suggesting the emergence of the so-called 'PhLOPSa' resistance phenotype. Susceptibility to other drugs, including rifampicin, was largely unchanged. Homology models revealed that the mutated residue of RNA polymerase would be unlikely to directly affect oxazolidinone action. CONCLUSIONS To the best of our knowledge, this is the first time that an rpoB mutation has been implicated in resistance to PhLOPSa antimicrobials. The mechanism of resistance remains unclear, but is likely indirect, involving σ-factor binding or other alterations in transcriptional regulation.
Collapse
Affiliation(s)
- Tianwei Shen
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Brian J Werth
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Karas JA, Carter GP, Howden BP, Turner AM, Paulin OKA, Swarbrick JD, Baker MA, Li J, Velkov T. Structure–Activity Relationships of Daptomycin Lipopeptides. J Med Chem 2020; 63:13266-13290. [DOI: 10.1021/acs.jmedchem.0c00780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John A. Karas
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adrianna M. Turner
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Olivia K. A. Paulin
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James D. Swarbrick
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark. A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
15
|
Shariati A, Dadashi M, Chegini Z, van Belkum A, Mirzaii M, Khoramrooz SS, Darban-Sarokhalil D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9:56. [PMID: 32321574 PMCID: PMC7178749 DOI: 10.1186/s13756-020-00714-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MRCoNS) are among the main causes of nosocomial infections, which have caused major problems in recent years due to continuously increasing spread of various antibiotic resistance features. Apparently, vancomycin is still an effective antibiotic for treatment of infections caused by these bacteria but in recent years, additional resistance phenotypes have led to the accelerated introduction of newer agents such as linezolid, tigecycline, daptomycin, and quinupristin/dalfopristin (Q/D). Due to limited data availability on the global rate of resistance to these antibiotics, in the present study, the resistance rates of S. aureus, Methicillin-resistant S. aureus (MRSA), and CoNS to these antibiotics were collected. Method Several databases including web of science, EMBASE, and Medline (via PubMed), were searched (September 2018) to identify those studies that address MRSA, and CONS resistance to linezolid, tigecycline, daptomycin, and Q/D around the world. Result Most studies that reported resistant staphylococci were from the United States, Canada, and the European continent, while African and Asian countries reported the least resistance to these antibiotics. Our results showed that linezolid had the best inhibitory effect on S. aureus. Although resistances to this antibiotic have been reported from different countries, however, due to the high volume of the samples and the low number of resistance, in terms of statistical analyzes, the resistance to this antibiotic is zero. Moreover, linezolid, daptomycin and tigecycline effectively (99.9%) inhibit MRSA. Studies have shown that CoNS with 0.3% show the lowest resistance to linezolid and daptomycin, while analyzes introduced tigecycline with 1.6% resistance as the least effective antibiotic for these bacteria. Finally, MRSA and CoNS had a greater resistance to Q/D with 0.7 and 0.6%, respectively and due to its significant side effects and drug-drug interactions; it appears that its use is subject to limitations. Conclusion The present study shows that resistance to new agents is low in staphylococci and these antibiotics can still be used for treatment of staphylococcal infections in the world.
Collapse
Affiliation(s)
- Aref Shariati
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chegini
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Sajjad Khoramrooz
- Cellular and Molecular Research Center and Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Hirsch R, Wiesner J, Marker A, Pfeifer Y, Bauer A, Hammann PE, Vilcinskas A. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. J Antimicrob Chemother 2020; 74:96-107. [PMID: 30272195 PMCID: PMC6322280 DOI: 10.1093/jac/dky386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background The ability of MDR Gram-negative bacteria to evade even antibiotics of last resort is a severe global challenge. The development pipeline for conventional antibiotics cannot address this issue, but antimicrobial peptides (AMPs) offer an alternative solution. Objectives Two insect-derived AMPs (LS-sarcotoxin and LS-stomoxyn) were profiled to assess their suitability for systemic application in humans. Methods The peptides were tested against an extended panel of 114 clinical MDR Gram-negative bacterial isolates followed by time–kill analysis, interaction studies and assays to determine the likelihood of emerging resistance. In further in vitro studies we addressed cytotoxicity, cardiotoxicity and off-target interactions. In addition, an in vivo tolerability and pharmacokinetic study in mice was performed. Results LS-sarcotoxin and LS-stomoxyn showed potent and selective activity against Gram-negative bacteria and no cross-resistance with carbapenems, fluoroquinolones or aminoglycosides. Peptide concentrations of 4 or 8 mg/L inhibited 90% of the clinical MDR isolates of Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii and Salmonella enterica isolates tested. The ‘all-d’ homologues of the peptides displayed markedly reduced activity, indicating a chiral target. Pharmacological profiling revealed a good in vitro therapeutic index, no cytotoxicity or cardiotoxicity, an inconspicuous broad-panel off-target profile, and no acute toxicity in mice at 10 mg/kg. In mouse pharmacokinetic experiments LS-sarcotoxin and LS-stomoxyn plasma levels above the lower limit of quantification (1 and 0.25 mg/mL, respectively) were detected after 5 and 15 min, respectively. Conclusions LS-sarcotoxin and LS-stomoxyn are suitable as lead candidates for the development of novel antibiotics; however, their pharmacokinetic properties need to be improved for systemic administration.
Collapse
Affiliation(s)
- Rolf Hirsch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Jochen Wiesner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
| | - Alexander Marker
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Yvonne Pfeifer
- Department 1 – Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Peter E Hammann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Gießen, Germany
- Corresponding author. Tel: +49 641 99 39500; E-mail: orcid.org/0000-0001-8276-4968
| |
Collapse
|
17
|
Pyrrolomycins Are Potent Natural Protonophores. Antimicrob Agents Chemother 2019; 63:AAC.01450-19. [PMID: 31405863 DOI: 10.1128/aac.01450-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
The escalating burden of antibiotic drug resistance necessitates research into novel classes of antibiotics and their mechanism of action. Pyrrolomycins are a family of potent natural product antibiotics with nanomolar activity against Gram-positive bacteria, yet with an elusive mechanism of action. In this work, we dissect the apparent Gram-positive specific activity of pyrrolomycins and show that Gram-negative bacteria are equally sensitive to pyrrolomycins when drug efflux transporters are removed and that albumin in medium plays a large role in pyrrolomycin activity. The selection of resistant mutants allowed for the characterization and validation of a number of mechanisms of resistance to pyrrolomycins in both Staphylococcus aureus and an Escherichia coli ΔtolC mutant, all of which appear to affect compound penetration rather than being target associated. Imaging of the impact of pyrrolomycin on the E. coli ΔtolC mutant using scanning electron microscopy showed blebbing of the bacterial cell wall often at the site of bacterial division. Using potentiometric probes and an electrophysiological technique with an artificial bilayer lipid membrane, it was demonstrated that pyrrolomycins C and D are very potent membrane-depolarizing agents, an order of magnitude more active than conventional carbonyl cyanide m-chlorophenylhydrazone (CCCP), specifically disturbing the proton gradient and uncoupling oxidative phosphorylation via protonophoric action. This work clearly unveils the until-now-elusive mechanism of action of pyrrolomycins and explains their antibiotic activity as well as mechanisms of innate and acquired drug resistance in bacteria.
Collapse
|
18
|
Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother 2019:AAC.01216-19. [PMID: 31527033 DOI: 10.1128/aac.01216-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) result in significant morbidity and mortality for patients in both community and health care settings. This is primarily due to the difficulty in treating MRSA, which is often resistant to multiple classes of antibiotics. Understanding the mechanisms of antimicrobial resistance (AMR) in MRSA provides insight into the optimal use of antimicrobial agents in clinical practice and also underpins critical aspects of antimicrobial stewardship programs. In this review we delineate the mechanisms, prevalence, and clinical importance of resistance to antibiotics licensed in the past 20 years that target MRSA, as well as new drugs in the pipeline which are likely to be licensed soon. Current gaps in scientific knowledge about MRSA resistance mechanisms are discussed, and topics in the epidemiology of AMR in S. aureus that require further investigation are highlighted.
Collapse
|
19
|
Frohlich KM, Weintraub SF, Bell JT, Todd GC, Väre VYP, Schneider R, Kloos ZA, Tabe ES, Cantara WA, Stark CJ, Onwuanaibe UJ, Duffy BC, Basanta-Sanchez M, Kitchen DB, McDonough KA, Agris PF. Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria. ChemMedChem 2019; 14:758-769. [PMID: 30707489 DOI: 10.1002/cmdc.201800744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 μg mL-1 ). Resistance developed at an extremely low mutational frequency (1.21×10-10 ). At 4 μg mL-1 , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd ≈24 μm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.
Collapse
Affiliation(s)
- Kyla M Frohlich
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Regeneron Inc., Rensselaer, NY, USA
| | - Spencer F Weintraub
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: New York Medical College, Valhalla, NY, USA
| | - Janeen T Bell
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Albany Medical College, Center for Physician Assistant Studies, Albany, NY, USA
| | - Gabrielle C Todd
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ville Y P Väre
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ryan Schneider
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA
| | - Zachary A Kloos
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Molecular, Cellular and Developmental Biology, Yale University, West Haven, CT, USA
| | - Ebot S Tabe
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - William A Cantara
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Caren J Stark
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Urenna J Onwuanaibe
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bryan C Duffy
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA.,Current address: New York State Department of Health, Albany, NY, USA
| | - Maria Basanta-Sanchez
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Waters Corporation, Pleasanton, CA, USA
| | - Douglas B Kitchen
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA
| | - Paul F Agris
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Duke University, Medical School, Durham, NC, USA
| |
Collapse
|
20
|
Lasek-Nesselquist E, Lu J, Schneider R, Ma Z, Russo V, Mishra S, Pai MP, Pata JD, McDonough KA, Malik M. Insights Into the Evolution of Staphylococcus aureus Daptomycin Resistance From an in vitro Bioreactor Model. Front Microbiol 2019; 10:345. [PMID: 30891010 PMCID: PMC6413709 DOI: 10.3389/fmicb.2019.00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/08/2019] [Indexed: 02/02/2023] Open
Abstract
The extensive use of daptomycin for treating complex methicillin-resistant Staphylococcus aureus infections has led to the emergence of daptomycin-resistant strains. Although genomic studies have identified mutations associated with daptomycin resistance, they have not necessarily provided insight into the evolution and hierarchy of genetic changes that confer resistance, particularly as antibiotic concentrations are increased. Additionally, plate-dependent in vitro analyses that passage bacteria in the presence of antibiotics can induce selective pressures unrelated to antibiotic exposure. We established a continuous culture bioreactor model that exposes S. aureus strain N315 to increasing concentrations of daptomycin without the confounding effects of nutritional depletion to further understand the evolution of drug resistance and validate the bioreactor as a method that produces clinically relevant results. Samples were collected every 24 h for a period of 14 days and minimum inhibitory concentrations were determined to monitor the acquisition of daptomycin resistance. The collected samples were then subjected to whole genome sequencing. The development of daptomycin resistance in N315 was associated with previously identified mutations in genes coding for proteins that alter cell membrane charge and composition. Although genes involved in metabolic functions were also targets of mutation, the common route to resistance relied on a combination of mutations at a few key loci. Tracking the frequency of each mutation throughout the experiment revealed that mutations need not arise progressively in response to increasing antibiotic concentrations and that most mutations were present at low levels within populations earlier than would be recorded based on single-nucleotide polymorphism (SNP) filtering criteria. In contrast, a serial-passaged population showed only one mutation in a gene associated with resistance and provided limited detail on the changes that occur upon exposure to higher drug dosages. To conclude, this study demonstrates the successful in vitro modeling of antibiotic resistance in a bioreactor and highlights the evolutionary paths associated with the acquisition of daptomycin non-susceptibility.
Collapse
Affiliation(s)
| | - Jackson Lu
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Ryan Schneider
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY, United States
| | - Zhuo Ma
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Vincenzo Russo
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Smruti Mishra
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Manjunath P Pai
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY, United States
| | - Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY, United States
| | - Meenakshi Malik
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| |
Collapse
|
21
|
Lehman SM, Mearns G, Rankin D, Cole RA, Smrekar F, Branston SD, Morales S. Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-Resistant Staphylococcus aureus Infections. Viruses 2019; 11:E88. [PMID: 30669652 PMCID: PMC6356596 DOI: 10.3390/v11010088] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages, viruses that only kill specific bacteria, are receiving substantial attention as nontraditional antibacterial agents that may help alleviate the growing antibiotic resistance problem in medicine. We describe the design and preclinical development of AB-SA01, a fixed-composition bacteriophage product intended to treat Staphylococcus aureus infections. AB-SA01 contains three naturally occurring, obligately lytic myoviruses related to Staphylococcus phage K. AB-SA01 component phages have been sequenced and contain no identifiable bacterial virulence or antibiotic resistance genes. In vitro, AB-SA01 killed 94.5% of 401 clinical Staphylococcus aureus isolates, including methicillin-resistant and vancomycin-intermediate ones for a total of 95% of the 205 known multidrug-resistant isolates. The spontaneous frequency of resistance to AB-SA01 was ≤3 × 10-9, and resistance emerging to one component phage could be complemented by the activity of another component phage. In both neutropenic and immunocompetent mouse models of acute pneumonia, AB-SA01 reduced lung S. aureus populations equivalently to vancomycin. Overall, the inherent characteristics of AB-SA01 component phages meet regulatory and generally accepted criteria for human use, and the preclinical data presented here have supported production under good manufacturing practices and phase 1 clinical studies with AB-SA01.
Collapse
|
22
|
Chen BC, Lin CX, Chen NP, Gao CX, Zhao YJ, Qian CD. Phenanthrene Antibiotic Targets Bacterial Membranes and Kills Staphylococcus aureus With a Low Propensity for Resistance Development. Front Microbiol 2018; 9:1593. [PMID: 30065715 PMCID: PMC6056686 DOI: 10.3389/fmicb.2018.01593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
New classes of antibiotics with different mechanisms of action are urgently required for combating antimicrobial resistance. Blestriacin, a dihydro-biphenanthrene with significant antibacterial activity, was recently isolated from the fibrous roots of Bletilla striata. Here, we report the further characterization of the antimicrobial potential and mode of action of blestriacin. The phenanthrene compound inhibited the growth of all tested clinical isolates of Staphylococcus aureus including methicillin-resistant S. aureus (MRSA). The minimum inhibitory concentrations (MICs) of blestriacin against these pathogens ranged from 2 to 8 μg/mL. Minimum bactericidal concentration (MBC) tests were conducted, and the results demonstrated that blestriacin was bactericidal against S. aureus. This effect was confirmed by the time-kill assays. At bactericidal concentrations, blestriacin caused loss of membrane potential in B. subtilis and S. aureus and disrupted the bacterial membrane integrity of the two strains. The spontaneous mutation frequency of S. aureus to blestriacin was determined to be lower than 10-9. The selection and whole genome sequencing of the blestriacin –resistant mutants of S. aureus indicated that the development of blestriacin resistance in S. aureus involves mutations in multi-genes. All these observations can be rationalized by the suggestion that membrane is a biological target of blestriacin.
Collapse
Affiliation(s)
- Bo-Chen Chen
- Institute of Molecular Medicine, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang-Xin Lin
- Institute of Molecular Medicine, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- Institute of Molecular Medicine, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-Xian Gao
- Institute of Molecular Medicine, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying-Jie Zhao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao-Dong Qian
- Institute of Molecular Medicine, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Li B, Ni S, Mao F, Chen F, Liu Y, Wei H, Chen W, Zhu J, Lan L, Li J. Novel Terminal Bipheny-Based Diapophytoene Desaturases (CrtN) Inhibitors as Anti-MRSA/VISR/LRSA Agents with Reduced hERG Activity. J Med Chem 2017; 61:224-250. [DOI: 10.1021/acs.jmedchem.7b01300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Baoli Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuaishuai Ni
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feifei Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yifu Liu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hanwen Wei
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenhua Chen
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefu Lan
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2017; 2:mSphere00492-17. [PMID: 29242835 PMCID: PMC5729219 DOI: 10.1128/msphere.00492-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Previous work suggests that altered lipid metabolism may be associated with daptomycin resistance in Gram-positive pathogens, but lipidomic changes underlying resistance are not fully understood. We performed untargeted lipidomics by using three-dimensional hydrophilic interaction liquid chromatography-ion mobility-mass spectrometry (HILIC-IM-MS) to characterize alterations in the lipidomes of daptomycin-susceptible and -resistant isogenic strain pairs of Enterococcus faecalis, Staphylococcus aureus, and Corynebacterium striatum. We first validated the HILIC-IM-MS method by replicating the expected alterations of phospholipid metabolism in the previously studied E. faecalis strain pairs, such as reduced phosphatidylglycerols (PGs), while also revealing additional changes in cardiolipins (CLs), lysyl-PGs, and glycolipids. Whole-genome sequencing of the S. aureus and C. striatum strains found that daptomycin resistance was associated with mutations in pgsA, which encodes phosphatidylglycerophosphate synthase, as well as mutations in genes affecting fatty acid biosynthesis and cell wall metabolism. Lipidomics revealed significantly decreased levels of PGs, CLs, and amino acid-modified PGs, as well as accumulation of lipids upstream of PGs, such as glycolipids and phosphatidic acids, in the resistant strains. Notably, the glycolipids, diglucosyldiacylglycerols, were significantly elevated in a fatty acid-dependent manner in the daptomycin-resistant S. aureus strain. In daptomycin-resistant C. striatum, which has a unique cell envelope architecture, the glycolipids, glucuronosyldiacylglycerols, and phosphatidylinositols were significantly elevated. These results demonstrate that alteration of lipid metabolism via mutations in pgsA is a common mechanism of daptomycin resistance in two distinct species of Gram-positive bacteria and point to the potential contribution of altered glycolipid and fatty acid compositions to daptomycin resistance. IMPORTANCE This work comprehensively characterizes lipidomic changes underlying daptomycin resistance in three Gram-positive bacterial species, E. faecalis, S. aureus, and C. striatum, by using a novel three-dimensional lipidomics methodology based on advanced mass spectrometry. We demonstrated a number of advantages of our method in comparison with other methods commonly used in the field, such as high molecular specificity, sensitivity, and throughput. Whole-genome sequencing of the S. aureus and C. striatum strains identified mutations in pgsA, which encodes phosphatidylglycerophosphate synthase, in both resistant strains. Lipidomics revealed significantly decreased levels of lipids downstream of PgsA, as well as accumulation of lipids upstream of PgsA in the resistant strains. Furthermore, we found that changes in individual molecular species of each lipid class depend on the their specific fatty acid compositions. The characteristic changes in individual lipid species could be used as biomarkers for identifying underlying resistance mechanisms and for evaluating potential therapies.
Collapse
|
25
|
Affiliation(s)
| | - Terri Levien
- Drug Information Center, Washington State University Spokane
| | - Danial E. Baker
- Drug Information Center and College of Pharmacy, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| |
Collapse
|
26
|
Fakhri A, Tahami S, Naji M. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 169:21-26. [PMID: 28254569 DOI: 10.1016/j.jphotobiol.2017.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Nano-medicine is a breakthrough discovery in the healthcare sector. Doxycycline is a new generation antibiotic which is proved to be a boon in the treatment of patients with complicated skin infections. We have tried to explore the benefits of synthesized bimetallic silver-gold nanoparticles in combination with new generation antibiotic for burn infections. The bimetallic nanoparticles synthesized by core-shell method were characterized using scanning electron microscopy equipped with an energy dispersive spectrometer, transmission electron microscopy, X-ray diffraction and UV-Vis spectroscopy. The calculated average particle sizes of the Ag-Au NPs were found to be 27.5nm. The Ag-Au core-shell BNPs show a characteristic Plasmon peak at 525nm which is broad and red shifted. The synergistic antimicrobial activity of doxycycline conjugated bimetallic nanoparticles was investigated against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Micrococcus luteus. This combined therapeutic agent showed greater bactericidal activity. Synergy of antibiotic with bimetallic nanoparticles is quite promising for significant application in burn healing therapy. The mechanism of the antibacterial activity was studied through the formation of reactive oxygen species (ROS) that was later suppressed with antioxidant to establish correlation with the Ag-Au NPs antimicrobial activity. Ag-Au NPs showed effective antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines.
Collapse
Affiliation(s)
- Ali Fakhri
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Shiva Tahami
- Department of Biology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mahsa Naji
- Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
27
|
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 2017; 11:73. [PMID: 28261050 PMCID: PMC5306396 DOI: 10.3389/fnins.2017.00073] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.
Collapse
Affiliation(s)
- Jianguo Li
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| | - Jun-Jie Koh
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | - Shouping Liu
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | | | - Chandra S. Verma
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Roger W. Beuerman
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| |
Collapse
|
28
|
Hirschwerk D, Ginocchio CC, Bythrow M, Condon S. Diminished Susceptibility to Daptomycin Accompanied by Clinical Failure in a Patient With Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect Control Hosp Epidemiol 2016; 27:315-7. [PMID: 16532424 DOI: 10.1086/502688] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/14/2005] [Indexed: 11/03/2022]
Abstract
We cared for a patient with methicillin-resistant Staphylococcus aureus bacteremia who experienced clinical failure with daptomycin. The failure was accompanied by progressive elevation of the daptomycin minimum inhibitory concentration during treatment. DNA fingerprinting confirmed that the minimum inhibitory concentration elevation occurred within the same strain of methicillin-resistant Staphylococcus aureus. This observation provides important new information to clinicians who adopt this promising drug for treatment of serious infections caused by methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- David Hirschwerk
- Department of Medicine, New York University School of Medicine, Manhasset, USA.
| | | | | | | |
Collapse
|
29
|
Andersson D, Hughes D, Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26:43-57. [DOI: 10.1016/j.drup.2016.04.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
30
|
Impact of calcium concentration in Muller–Hinton medium on the antimicrobial activity of daptomycin. J Glob Antimicrob Resist 2016; 4:76-77. [DOI: 10.1016/j.jgar.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/26/2015] [Accepted: 11/06/2015] [Indexed: 11/21/2022] Open
|
31
|
Cameron DR, Mortin LI, Rubio A, Mylonakis E, Moellering RC, Eliopoulos GM, Peleg AY. Impact of daptomycin resistance on Staphylococcus aureus virulence. Virulence 2016; 6:127-31. [PMID: 25830650 DOI: 10.1080/21505594.2015.1011532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Daptomycin resistance (DAP(R)) in Staphylococcus aureus is associated with mutations in genes that are also implicated in staphylococcal pathogenesis. Using a laboratory-derived series of DAP exposed strains, we showed a relationship between increasing DAP MIC and reduced virulence in a Galleria mellonella infection model. Point mutations in walK and rpoC led to cumulative reductions in virulence and simultaneous increases in DAP MIC. A point mutation to mprF did not impact on S.aureus virulence; however deletion of mprF led to virulence attenuation and hyper-susceptibility to DAP. To validate our findings in G. mellonella, we confirmed the attenuated virulence of select isolates from the laboratory-derived series using a murine septicaemia model. As a corollary, we showed significant virulence reductions for clinically-derived DAP(R) isolates compared to their isogenic, DAP-susceptible progenitors (DAP(S)). Intriguingly, each clinical DAP(R) isolate was persistent in vivo. Taken together, it appears the genetic correlates underlying daptomycin resistance in S. aureus also alter pathogenicity.
Collapse
Affiliation(s)
- David R Cameron
- a Department of Microbiology ; School of Biomedical Sciences; Monash University ; Melbourne , Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The ability to create mutations is an important step towards understanding bacterial physiology and virulence. While targeted approaches are invaluable, the ability to produce genome-wide random mutations can lead to crucial discoveries. Transposon mutagenesis is a useful approach, but many interesting mutations can be missed by these insertions that interrupt coding and noncoding sequences due to the integration of an entire transposon. Chemical mutagenesis and UV-based random mutagenesis are alternate approaches to isolate mutations of interest with the potential of only single nucleotide changes. Once a standard method, difficulty in identifying mutation sites had decreased the popularity of this technique. However, thanks to the recent emergence of economical whole-genome sequencing, this approach to making mutations can once again become a viable option. Therefore, this chapter provides an overview protocol for random mutagenesis using UV light or DNA-damaging chemicals.
Collapse
Affiliation(s)
- Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, MSN 3029, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
33
|
Abstract
Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP resistance (DAP-R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP-R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria.
Collapse
Affiliation(s)
- Truc T Tran
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas.,International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Jose M Munita
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas.,International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia.,Clinica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas.,International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia.,Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas.,Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
34
|
Lellek H, Franke GC, Ruckert C, Wolters M, Wolschke C, Christner M, Büttner H, Alawi M, Kröger N, Rohde H. Emergence of daptomycin non-susceptibility in colonizing vancomycin-resistant Enterococcus faecium isolates during daptomycin therapy. Int J Med Microbiol 2015; 305:902-9. [PMID: 26454536 DOI: 10.1016/j.ijmm.2015.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022] Open
Abstract
Infections due to vancomycin-resistant enterococci (VRE) are of significant importance in high-risk populations, and daptomycin is a bactericidal antibiotic to treat multidrug-resistant VRE in these patients. The emergence of daptomycin non-susceptibility invasive VRE during daptomycin therapy is a major clinical issue. Here the hypothesis was tested that systemic daptomycin therapy also induces the emergence of daptomycin non-susceptible (DNS-) isolates in colonizing VRE populations. 11 vancomycin-resistant Enterococcus faecium strain pairs recovered from rectal swabs were available for analysis. All initial isolates exhibited daptomycin MICs within the wild type MIC distribution of E. faecium (MIC≤4 mg/L). In follow-up isolates from five patients a 4-16-fold daptomycin MIC increase was detected. All patients carrying DNS-VRE received daptomycin (14-28 days) at 4 mg/kg body weight, while two patients in whom no DNS-VRE emerged were only treated with daptomycin for 1 and 4 days, respectively. Comparative whole genome sequencing identified DNS-VRE-specific single nucleotide polymorphisms (SNP), including mutations in cardiolipin synthase (Cls), and additional SNPs in independent genes potentially relevant for the DNS phenotype. Mutations within cls were also identified in three additional, colonizing DNS-VRE. Of these, at least one strain was transmitted within the hospital. In none of the VRE isolates tested, pre-existing or de novo mutations in the liaFSR operon were detected. This is the first report documenting the emergence of DNS-VRE in colonizing strains during daptomycin treatment, putting the patient at risk for subsequent DNS-VRE infections and priming the spread of DNS-VRE within the hospital environment.
Collapse
Affiliation(s)
- Heinrich Lellek
- Klinik für Stammzelltransplantation, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gefion C Franke
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Carolin Ruckert
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuel Wolters
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christiane Wolschke
- Klinik für Stammzelltransplantation, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Martin Christner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henning Büttner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Nicolaus Kröger
- Klinik für Stammzelltransplantation, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
35
|
Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob Agents Chemother 2015; 59:6983-91. [PMID: 26324273 DOI: 10.1128/aac.01303-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Daptomycin is a lipopeptide antibiotic used clinically for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The emergence of daptomycin-nonsusceptible S. aureus isolates during therapy is often associated with multiple genetic changes; however, the relative contributions of these changes to resistance and other phenotypic changes usually remain unclear. The present study was undertaken to investigate this issue using a genetically characterized series of four isogenic clinical MRSA strains derived from a patient with bacteremia before and during daptomycin treatment. The first strain obtained after daptomycin therapy carried a single-nucleotide polymorphism (SNP) in rpoB (RpoB A477D) that decreased susceptibility not only to daptomycin but also to vancomycin, β-lactams, and rifampin. Furthermore, the rpoB mutant exhibited pleiotropic phenotypes, including increased cell wall thickness, reduced expression of virulence traits, induced expression of the stress-associated transcriptional regulator Spx, and slow growth. A subsequently acquired loss-of-function mutation in clpX partly alleviated the growth defect conferred by the rpoB mutation without changing antibiotic susceptibility. The final isolate acquired three additional mutations, including an SNP in mprF (MprF S295L) known to confer daptomycin nonsusceptibility, and accordingly, this isolate was the only daptomycin-nonsusceptible strain of this series. Interestingly, in this isolate, the cell wall had regained the same thickness as that of the parental strain, while the level of transcription of the vraSR (cell wall stress regulator) was increased. In conclusion, this study illustrates how serial genetic changes selected in vivo contribute to daptomycin nonsusceptibility, growth fitness, and virulence traits.
Collapse
|
36
|
Rio-Marques L, Hartke A, Bizzini A. The effect of inoculum size on selection of in vitro resistance to vancomycin, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Microb Drug Resist 2015; 20:539-43. [PMID: 25010140 DOI: 10.1089/mdr.2014.0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) at high bacterial densities. The effect of three inoculum sizes on the selection of resistance to vancomycin, daptomycin, and linezolid was investigated in methicillin-resistant Staphylococcus aureus (MRSA). METHODS Low (10(4) CFU/ml), medium (10(6) CFU/ml), and high (10(8) CFU/ml) inocula of MRSA were exposed to twofold increasing concentrations of either drug during 15 days of cycling. MICs for low (MICL), medium (MICM), and high (MICH) inocula were determined daily. Conventional MICs were measured at days 1, 5, 10, and 15. Experiments were performed in triplicate. RESULTS At the beginning of the experiment a small IE was observed for vancomycin (MICL=1 μg/ml, MICM=1-2 μg/ml, and MICH=2 μg/ml) and a significant IE for daptomycin (MICL=0.25 μg/ml, MICM=0.25-0.5 μg/ml, and MICH=2 μg/ml). Linezolid exhibited no IE at low and medium inocula (MICL=1 μg/ml and MICM=1-2 μg/ml), but with the high inoculum, concentrations up to 2,048 μg/ml did not fully inhibit visual growth. During cycling, increase of MIC was observed for all antibiotics. At day 15, MICL, MICM, and MICH of vancomycin were 2-4, 4-8, and 4-16 μg/ml and of daptomycin were 0.5-2, 8-128, and 64-256 μg/ml, respectively. MICL and MICM of linezolid were 1 and 2-4 μg/ml, respectively. Conventional MICs showed vancomycin and daptomycin selection of resistance since day 5 depending on the inocula. No selection of linezolid resistance was observed. CONCLUSIONS Our results showed the importance of the inoculum size in the development of resistance. Measures aimed at lowering the inoculum at the site of infection should be used whenever possible in parallel to antimicrobial therapy.
Collapse
Affiliation(s)
- Laura Rio-Marques
- 1 Service of Infectious Diseases, University of Lausanne, University Hospital Center (CHUV) , Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Jennings MC, Buttaro BA, Minbiole KPC, Wuest WM. Bioorganic Investigation of Multicationic Antimicrobials to Combat QAC-Resistant Staphylococcus aureus. ACS Infect Dis 2015; 1:304-9. [PMID: 27622820 DOI: 10.1021/acsinfecdis.5b00032] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quaternary ammonium compounds (QACs) have historically served as a first line of defense against pathogenic bacteria. Recent reports have shown that QAC resistance is increasing at an alarming rate, especially among methicillin-resistant Staphylococcus aureus (MRSA), and preliminary work has suggested that the number of cations present in the QAC scaffold inversely correlates with resistance. Given our interest in multiQACs, we initiated a multipronged approach to investigate their biofilm eradication properties, antimicrobial activity, and the propensity of methicillin-susceptible S. aureus (MSSA) to develop resistance toward these compounds. Through these efforts we identified multiQACs with superior profiles against resistant (MRSA) planktonic bacteria and biofilms. Furthermore, we document the ability of MSSA to develop resistance to several commercial monoQAC disinfectants and a novel aryl bisQAC, yet we observe no resistance to multiQACs. This work provides insight into the mechanism and rate of resistance development of MSSA and MRSA toward a range of QAC structures.
Collapse
Affiliation(s)
- Megan C. Jennings
- Department of Chemistry, Temple University, 1901 N. 13th
Street, Philadelphia, Pennsylvania 19122, United States
| | - Bettina A. Buttaro
- Department of Microbiology and Immunology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Kevin P. C. Minbiole
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - William M. Wuest
- Department of Chemistry, Temple University, 1901 N. 13th
Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
38
|
A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:5366-76. [PMID: 26100694 DOI: 10.1128/aac.00643-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/11/2015] [Indexed: 12/30/2022] Open
Abstract
Recalcitrance of genetically susceptible bacteria to antibiotic killing is a hallmark of bacterial drug tolerance. This phenomenon is prevalent in biofilms, persisters, and also planktonic cells and is associated with chronic or relapsing infections with pathogens such as Staphylococcus aureus. Here we report the in vitro evolution of an S. aureus strain that exhibits a high degree of nonsusceptibility to daptomycin as a result of cyclic challenges with bactericidal concentrations of the drug. This phenotype was attributed to stationary growth phase-dependent drug tolerance and was clearly distinguished from resistance. The underlying genetic basis was revealed to be an adaptive point mutation in the putative inorganic phosphate (Pi) transporter gene pitA. Drug tolerance caused by this allele, termed pitA6, was abrogated when the upstream gene pitR was inactivated. Enhanced tolerance toward daptomycin, as well as the acyldepsipeptide antibiotic ADEP4 and various combinations of other drugs, was accompanied by elevated intracellular concentrations of Pi and polyphosphate, which may reversibly interfere with critical cellular functions. The evolved strain displayed increased rates of survival within human endothelial cells, demonstrating the correlation of intracellular persistence and drug tolerance. These findings will be useful for further investigations of S. aureus drug tolerance, toward the development of additional antipersister compounds and strategies.
Collapse
|
39
|
Kelesidis T. Origin of de novo daptomycin non susceptible enterococci. World J Clin Infect Dis 2015; 5:30-36. [DOI: 10.5495/wjcid.v5.i2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
The emergence of daptomycin non-susceptible enterococci (DNSE) poses both treatment and infection control challenges. Clinicians should be vigilant that DNSE may be isolated from patients with or without (de novo DNSE) prior use of daptomycin. Recent epidemiological data suggest the presence of a community reservoir for DNSE which may be associated with environmental, foodborne and agricultural exposures. The mechanisms of nonsusceptibility to daptomycin have not been well characterized and may not parallel those for Staphylococcus aureus. The identification of daptomycin resistance genes in anaerobes, in farm animals and in an ecosystem that has been isolated for million years, suggest that the environmental reservoir for de novo DNSE may be larger than previously thought. Herein, the limited available scientific evidence regarding the possible origin of de novo DNSE is discussed. The current existing evidence is not sufficient to draw firm conclusions on the origin of DNSE. Further studies to determine the mechanisms of de novo daptomycin nonsusceptibility among enterococci are needed.
Collapse
|
40
|
Spink E, Ding D, Peng Z, Boudreau MA, Leemans E, Lastochkin E, Song W, Lichtenwalter K, O'Daniel PI, Testero SA, Pi H, Schroeder VA, Wolter WR, Antunes NT, Suckow MA, Vakulenko S, Chang M, Mobashery S. Structure-activity relationship for the oxadiazole class of antibiotics. J Med Chem 2015; 58:1380-9. [PMID: 25590813 DOI: 10.1021/jm501661f] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure-activity relationship (SAR) for the newly discovered oxadiazole class of antibiotics is described with evaluation of 120 derivatives of the lead structure. This class of antibiotics was discovered by in silico docking and scoring against the crystal structure of a penicillin-binding protein. They impair cell-wall biosynthesis and exhibit activities against the Gram-positive bacterium Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant and linezolid-resistant S. aureus. 5-(1H-Indol-5-yl)-3-(4-(4-(trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazole (antibiotic 75b) was efficacious in a mouse model of MRSA infection, exhibiting a long half-life, a high volume of distribution, and low clearance. This antibiotic is bactericidal and is orally bioavailable in mice. This class of antibiotics holds great promise in recourse against infections by MRSA.
Collapse
Affiliation(s)
- Edward Spink
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rodriguez R, Barrios Steed D, Kawamata Y, Su S, Smith PA, Steed TC, Romesberg FE, Baran PS. Axinellamines as broad-spectrum antibacterial agents: scalable synthesis and biology. J Am Chem Soc 2014; 136:15403-13. [PMID: 25328977 PMCID: PMC4227811 DOI: 10.1021/ja508632y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 01/17/2023]
Abstract
Antibiotic-resistant bacteria present an ongoing challenge to both chemists and biologists as they seek novel compounds and modes of action to out-maneuver continually evolving resistance pathways, especially against Gram-negative strains. The dimeric pyrrole-imidazole alkaloids represent a unique marine natural product class with diverse primary biological activity and chemical architecture. This full account traces the strategy used to develop a second-generation route to key spirocycle 9, culminating in a practical synthesis of the axinellamines and enabling their discovery as broad-spectrum antibacterial agents, with promising activity against both Gram-positive and Gram-negative bacteria. While their detailed mode of antibacterial action remains unclear, the axinellamines appear to cause secondary membrane destabilization and impart an aberrant cellular morphology consistent with the inhibition of normal septum formation. This study serves as a rare example of a natural product initially reported to be devoid of biological activity surfacing as an active antibacterial agent with an intriguing mode of action.
Collapse
Affiliation(s)
- Rodrigo
A. Rodriguez
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Danielle Barrios Steed
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yu Kawamata
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shun Su
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter A. Smith
- RQx
Pharmaceuticals, Inc., 11099 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tyler C. Steed
- School
of Medicine, University of California, San
Diego, 9500 Gilman Drive, San Diego, California 92093, United States
| | - Floyd E. Romesberg
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
42
|
Mascio CTM, Chesnel L, Thorne G, Silverman JA. Surotomycin demonstrates low in vitro frequency of resistance and rapid bactericidal activity in Clostridium difficile, Enterococcus faecalis, and Enterococcus faecium. Antimicrob Agents Chemother 2014; 58:3976-82. [PMID: 24798273 PMCID: PMC4068600 DOI: 10.1128/aac.00124-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/25/2014] [Indexed: 12/18/2022] Open
Abstract
Surotomycin (CB-183,315) is an orally administered, minimally absorbed, selective bactericidal cyclic lipopeptide in phase 3 development for the treatment of Clostridium difficile-associated diarrhea. The aim of this study was to evaluate the emergence of resistance in C. difficile (ATCC 700057 and three recent clinical isolates from the restriction endonuclease analysis groups BI, BK, and K), vancomycin-susceptible (VS) Enterococcus faecalis (ATCC 49452), vancomycin-resistant (VR) E. faecalis (ATCC 700802), VS Enterococcus faecium (ATCC 6569), and VR E. faecium (ATCC 51559) under anaerobic conditions. The rate of spontaneous resistance was below the limit of detection (<10(-8) to <10(-9)) for surotomycin at 16 and 32× the MIC for all isolates tested. Under selective pressure by serial passage, C. difficile grew in a maximum of 4 μg/ml surotomycin (final MICs of 2 to 8 μg/ml [4- to 16-fold higher than those of the naive control]) at day 15, with the exception of the C. difficile BK strain, which grew in 16 to 32 μg/ml (final MICs of 8 to 32 μg/ml [16- to 64-fold higher than those of the naive control]). Enterococci remained relatively unchanged over 15 days, growing in a maximum of 8 μg/ml surotomycin (final MICs of 2 to 16 μg/ml [8- to 64-fold higher than those of the naive control]). Of the isolates tested, no cross-resistance to vancomycin, rifampin, ampicillin, metronidazole, or moxifloxacin was observed. Surotomycin at 20× MIC demonstrated equally rapid bactericidal activity (≥ 3-log-unit reduction in CFU/ml in ≤ 8 h) against naive and reduced-susceptibility isolates of C. difficile, VS Enterococcus (VSE), and VR Enterococcus (VRE), except for C. difficile BK (2.6-log-unit reductions for both). These results suggest that emergence of resistance to surotomycin against C. difficile, E. faecalis, and E. faecium is likely to be rare.
Collapse
Affiliation(s)
| | | | - Grace Thorne
- Cubist Pharmaceuticals, Lexington, Massachusetts, USA
| | | |
Collapse
|
43
|
O'Daniel PI, Peng Z, Pi H, Testero SA, Ding D, Spink E, Leemans E, Boudreau MA, Yamaguchi T, Schroeder VA, Wolter WR, Llarrull LI, Song W, Lastochkin E, Kumarasiri M, Antunes NT, Espahbodi M, Lichtenwalter K, Suckow MA, Vakulenko S, Mobashery S, Chang M. Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with Gram-positive antibacterial activity. J Am Chem Soc 2014; 136:3664-72. [PMID: 24517363 PMCID: PMC3985699 DOI: 10.1021/ja500053x] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Infections
caused by hard-to-treat methicillin-resistant Staphylococcus
aureus (MRSA) are a serious global
public-health concern, as MRSA has become broadly resistant to many
classes of antibiotics. We disclose herein the discovery of a new
class of non-β-lactam antibiotics, the oxadiazoles, which inhibit
penicillin-binding protein 2a (PBP2a) of MRSA. The oxadiazoles show
bactericidal activity against vancomycin- and linezolid-resistant
MRSA and other Gram-positive bacterial strains, in vivo efficacy in a mouse model of infection, and have 100% oral bioavailability.
Collapse
Affiliation(s)
- Peter I O'Daniel
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li Y, Su T, Zhang Y, Huang X, Li J, Li C. Liposomal co-delivery of daptomycin and clarithromycin at an optimized ratio for treatment of methicillin-resistant Staphylococcus aureus infection. Drug Deliv 2014; 22:627-37. [PMID: 24471983 DOI: 10.3109/10717544.2014.880756] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Pathogen evolution currently outpaces novel drug development, and because development of new antibiotics is pending, combination therapy with existing drugs may provide effective alternative treatments. OBJECTIVE The present study was aimed at evaluating the concurrent use of two antibiotics, daptomycin and clarithromycin, against methicillin-resistant Staphylococcus aureus (MRSA) infections. MATERIALS AND METHODS Polyeythylene glycol (PEGylated liposomes loaded with daptomycin, clarithromycin, or both (PL[CD]) at an optimized mass ratio of 1:32 were generated and characterized using dynamic light scattering and electron microscopy. In vitro and in vivo approaches were used to compare liposome effects on MRSA. RESULTS PL[CD] were stable, with a mean (± SD) vesicle diameter of 98.2 ± 2.21 nm and encapsulation efficiency of 94.71 ± 1.37% (daptomycin) and 92.94 ± 1.21% (clarithromycin). Compared with daptomycin-only liposomes, PL[CD] showed significantly enhanced anti-MRSA activity in vitro and significantly reduced MRSA bacterial load and increased host survival in vivo. DISCUSSION Co-delivery of daptomycin with clarithromycin produced significant anti-MRSA activity in the presence of only one-thirtieth of the concentration required in liposomes containing daptomycin only. CONCLUSION These findings suggested that concurrent liposomal delivery of daptomycin and clarithromycin has the potential to be an effective and less toxic treatment for MRSA infections.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Southwest University , Chongqing , People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Mercier RC, Hrebickova L. Oritavancin: a new avenue for resistant Gram-positive bacteria. Expert Rev Anti Infect Ther 2014; 3:325-32. [PMID: 15954849 DOI: 10.1586/14787210.3.3.325] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oritavancin, a new semisynthetic glycopeptide has a spectrum of activity similar to vancomycin, although it exhibits potent antimicrobial activity against vancomycin-resistant staphylococci and enterococci species. It has a long-terminal half-life of 360 h, is highly protein bound and has been dosed once-daily in clinical trials. Oritavancin has been studied in complicated skin and skin structure infections where it was noninferior to the comparator group of vancomycin/cephalexin. Thus far, oritavancin has a favorable side-effect profile and appears promising in the treatment of multidrug resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Renee-Claude Mercier
- University of New Mexico, College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | |
Collapse
|
46
|
Cattoir V, Giard JC. Antibiotic resistance inEnterococcus faeciumclinical isolates. Expert Rev Anti Infect Ther 2014; 12:239-48. [DOI: 10.1586/14787210.2014.870886] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Marc F, Esquirol C, Papy E, Longuet P, Armand-Lefevre L, Rioux C, Diamantis S, Dumortier C, Bourgeois-Nicolaos N, Lucet JC, Wolff M, Arnaud P. A retrospective study of daptomycin use in a Paris teaching-hospital. Med Mal Infect 2013; 44:25-31. [PMID: 24332833 DOI: 10.1016/j.medmal.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 09/29/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We retrospectively studied daptomycin use during 2010 at the Bichat-Claude-Bernard teaching-hospital (Paris) to observe the evolution of daptomycin prescriptions. PATIENTS AND METHODS Twenty-one patients were included and several parameters were documented: site of infection, bacterial species involved, reason for daptomycin use, dose and clinical outcome. RESULTS Ninety-five percent of daptomycin prescritions were off-label and most did not comply with local guidelines. Fifteen of the 21 patients were cured (71%), including 9 patients of the 12 with off-label and off-local recommendation prescriptions (75%). Osteitis and Enterococcus spp endocarditis were the new indications. Daptomycin was increasingly used at higher doses: 52% of our patients were given doses above 6mg/kg. Staphylococcus spp. was the most frequent pathogen responsible for infection is our patients, followed by Enterococcus spp. CONCLUSION Daptomycin use is likely to evolve because of its effectiveness in the treatment of osteitis, left-sided and Enterococcus spp. infective endocarditis. It is generally used at higher doses, which are well tolerated. However, therapeutic monitoring needs to be developed. The antibiotic commission of our hospital gave new recommendations for daptomycin use in 2011.
Collapse
Affiliation(s)
- F Marc
- Service de pharmacie clinique et des biomatériaux, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | - C Esquirol
- Service de pharmacie clinique et des biomatériaux, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | - E Papy
- Service de pharmacie clinique et des biomatériaux, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France.
| | - P Longuet
- Service des maladies infectieuses, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | - L Armand-Lefevre
- Service de bactériologie, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | - C Rioux
- Service des maladies infectieuses, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | - S Diamantis
- Unité d'hygiène et de lutte contre les infections nosocomiales, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France
| | - C Dumortier
- Service des maladies infectieuses, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | - N Bourgeois-Nicolaos
- Service de bactériologie, hôpital Antoine-Béclère, 157, rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - J-C Lucet
- Unité d'hygiène et de lutte contre les infections nosocomiales, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France
| | - M Wolff
- Service de réanimation médicale et des maladies infectieuses, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | - P Arnaud
- Service de pharmacie clinique et des biomatériaux, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| |
Collapse
|
48
|
Steed ME, Hall AD, Salimnia H, Kaatz GW, Kaye KS, Rybak MJ. Evaluation of Daptomycin Non-Susceptible Staphylococcus aureus for Stability, Population Profiles, mprF Mutations, and Daptomycin Activity. Infect Dis Ther 2013; 2:187-200. [PMID: 25134481 PMCID: PMC4108102 DOI: 10.1007/s40121-013-0021-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
Introduction Despite studies examining daptomycin non-susceptible (DNS) Staphylococcus aureus, examination of the stability and population profiles is limited. The objective was to evaluate the stability, population profiles, and daptomycin activity against DNS isolates. Methods The stability of 12 consecutive clinical DNS strains was evaluated by minimum inhibitory concentration (MICs) and population analysis profiles before and after 5 days of serial passage. Two pairs of DNS S. aureus having the same daptomycin MIC but different daptomycin population profiles were evaluated via an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations for 96 h against daptomycin 6 and 10 mg/kg/day. The sequence of mprF was determined for these isolates before and after 96 h of daptomycin exposure in the in vitro PK/PD model. Results Daptomycin MIC values were 2–4 mg/L (via Microscan) for the 12 clinical isolates; 9 were confirmed DNS and 3 were within 1 tube dilution of Microscan (daptomycin MIC 1 mg/L). All were stable to serial passage. There was variation in the isolates susceptibility to daptomycin on population analysis (daptomycin population AUC 14.01–26.85). The killing patterns of daptomycin 6 and 10 mg/kg/day differed between isolates with a left-shift and right-shift population profile to daptomycin. Two strains developed additional mprF mutations during daptomycin exposure in the in vitro PK/PD model resulting in P314L, L826F, S337L and a novel Q326Stop mutation. Conclusions The collection of DNS isolates was stable and displayed variation in susceptibility to daptomycin on population profile. Further research examining this clinical relevance is warranted. Electronic supplementary material The online version of this article (doi:10.1007/s40121-013-0021-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Molly E Steed
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | | | | | | | | | | |
Collapse
|
49
|
Yabuno K, Seki M, Miyawaki K, Miwa Y, Tomono K. High-dose, short-interval daptomycin regimen was safe and well tolerated in three patients with chronic renal failure. Clin Pharmacol 2013; 5:161-6. [PMID: 24235850 PMCID: PMC3821543 DOI: 10.2147/cpaa.s53681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The recommended daptomycin dosage is 4 or 6 mg/kg/day for the treatment of complicated skin and soft tissue infections or for Staphylococcus aureus bacteremia, endocarditis, and osteomyelitis. Every other day administration is usually recommended for patients with mild to moderate renal impairment. Higher doses (>6 mg/kg/day) have been explored as a possible alternative. Daptomycin is considered a safe anti-methicillin-resistant S. aureus (MRSA) drug, although renal dysfunction may be worsened. In this paper we report on three patients with chronic renal failure who received a higher dose of daptomycin daily for successful treatment for MRSA bacteremia, MRSA osteomyelitis, and methicillin-resistant S. epidermidis (MRSE) endocarditis. RESULTS Previous administration of other drugs, including vancomycin, teicoplanin, and linezolid, had failed. In spite of daily treatment with daptomycin instead of the recommended alternate day regimen, adverse effects, such as elevation of creatinine and creatine phosphokinase, did not occur. CONCLUSION These experiences suggest that administration of high-dose/short-interval daptomycin can be efficient and safe even in the setting of renal dysfunction, and should be considered for the treatment of severe MRSA/MRSE infections in these patients.
Collapse
Affiliation(s)
- Kaori Yabuno
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan ; Department of Pharmacy, Osaka University Hospital, Osaka, Japan
| | | | | | | | | |
Collapse
|
50
|
Cafiso V, Bertuccio T, Purrello S, Campanile F, Mammina C, Sartor A, Raglio A, Stefani S. dltA overexpression: A strain-independent keystone of daptomycin resistance in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2013; 43:26-31. [PMID: 24183798 DOI: 10.1016/j.ijantimicag.2013.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/04/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
The mechanisms leading to reduced susceptibility to daptomycin (DAP) are multifactorial and have not been fully elucidated. We analysed, by sequencing and expression studies, the role of the major molecular targets (cell-envelope charge genes, dltA, mprF, cls2; cell-wall turnover and autolysis genes, sceD, atl) involved in the emergence of DAP resistance in three series of isogenic clinical methicillin-resistant Staphylococcus aureus (MRSA) in which DAP resistance emerged after a heterogeneous glycopeptide-intermediate S. aureus (hGISA) step under teicoplanin and DAP therapy. All of the isolates had different genotypes and were δ-haemolysin negative, reflecting a strain proclivity to acquire DAP/glycopeptide non-susceptibility under antibiotic pressure. DAP exposure led to the emergence of DAP resistance after an hGISA step probably in parallel with the timing of the two antimicrobial administrations and, in two of three cases, in conditions of DAP underdosage. Real-time qPCR data revealed that all DAP-resistant (DAP-R) isolates had dltA overexpression, whereas mprF upregulation was found only in DAP-R strains with the S295L and T345I amino acid substitutions. Strains that were heteroresistant to DAP did not possess DAP-R-like characteristics. DAP-R strains presented high cls2 expression and no known cls2 mutations, and moreover exhibited sceD and atl upregulation. In conclusion, these findings highlight that dltA overexpression is the common pathway of resistance among genotypically different series of isolates and may represent the keystone of DAP resistance in MRSA, leading to electrostatic repulsion and, indirectly, to a reduction of autolysin activity. mprF mutations related to increased transcription may play a role in this complex phenomenon.
Collapse
Affiliation(s)
- Viviana Cafiso
- Department of Biomedical Sciences-Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Taschia Bertuccio
- Department of Biomedical Sciences-Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Simona Purrello
- Department of Biomedical Sciences-Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Floriana Campanile
- Department of Biomedical Sciences-Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Caterina Mammina
- Department of Sciences for Healthy Promotion 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Assunta Sartor
- Microbiology Unit, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Annibale Raglio
- USC Microbiologia e Virologia, AO Ospedali Riuniti, Bergamo, Italy
| | - Stefania Stefani
- Department of Biomedical Sciences-Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy.
| |
Collapse
|