1
|
Empitu MA, Kadariswantiningsih IN, Shakri NM. Pharmacological strategies for targeting biofilms in otorhinolaryngologic infections and overcoming antimicrobial resistance (Review). Biomed Rep 2025; 22:95. [PMID: 40247931 PMCID: PMC12001231 DOI: 10.3892/br.2025.1973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Biofilm formation is a key factor in the persistence and recurrence of otorhinolaryngology (ORL) infections, driving antimicrobial resistance and treatment failure. Chronic conditions, such as rhinosinusitis, otitis media and tonsillitis, are linked to biofilm-producing pathogens, forming protective extracellular matrices that shield bacteria from immune defenses and antibiotics. The present review explores emerging pharmacological strategies to disrupt biofilm integrity and improve treatment outcomes. Strategies such as quorum sensing inhibitors, antibiofilm peptides, enzymatic dispersal agents, and drug repurposing can potentially disrupt biofilms and counter-resistance mechanisms. Furthermore, novel therapies (including nanotechnology-based drug delivery systems, phage therapy and immunomodulation) offer innovative alternatives for managing biofilm-associated infections. However, clinical implementation remains challenging. Future research should prioritize optimizing drug formulations, refining delivery techniques, and exploring synergistic combinations to enhance biofilm eradication. Implementing these innovative strategies can improve the management of chronic ORL infections, reducing recurrence rates and enhancing patient outcomes.
Collapse
Affiliation(s)
- Maulana A. Empitu
- Division of Pharmacology, Faculty of Medicine, Airlangga University, Surabaya, East Java 60131, Indonesia
- Faculty of Health, Medicine and Natural Sciences (FIKKIA), Airlangga University, Banyuwangi 68425, Indonesia
| | - Ika N. Kadariswantiningsih
- Department of Medical Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
- Clinical Microbiology Residency Program, Dr. Soetomo Regional Hospital/Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
| | - Nadhirah Mohd Shakri
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
2
|
Nazari MJ, Anwary MT, Ghazanfar K, Amiri ME, Hafid SY, Jawad MJ, Mosawi SH. Inhibition of acyl-homoserine-lactone synthase in Pseudomonas aeruginosa biofilms by 7-O-methyl-aromadendrin by using molecular docking and molecular dynamics simulation. In Silico Pharmacol 2025; 13:56. [PMID: 40226106 PMCID: PMC11982000 DOI: 10.1007/s40203-025-00350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
This study investigates the potential of 7-O-methyl aromadendrin (7-OMA), a naturally occurring flavonoid-glycoside, as an inhibitor of acyl-homoserine-lactone (AHL) synthase in Pseudomonas aeruginosa, a key enzyme in quorum sensing and biofilm formation. Using molecular docking and molecular dynamics simulations, we evaluated the binding interactions and inhibitory effects of 7-OMA on AHL synthase. Molecular docking revealed a suitable binding affinity (-6.66 kcal/mol) between 7-OMA and the enzyme, with interactions at critical active site residues. Molecular dynamics simulations demonstrated that 7-OMA stabilizes the enzyme through hydrogen bonds and van der Waals interactions while enhancing its structural flexibility. The average RMSD of AHL synthase increased slightly in the presence of 7-OMA, indicating partial instability of the enzyme. Additionally, the average Rg value increased, suggesting that 7-OMA may expand the enzyme structure or reduce its compactness. MM-PBSA analysis confirmed the strength of these interactions, with favorable van der Waals and electrostatic contributions to the binding energy. These results suggest that 7-OMA disrupts the structural dynamics of AHL synthase, potentially inhibiting biofilm formation and reducing the virulence of Pseudomonas aeruginosa. The findings highlight the therapeutic potential of 7-OMA as a novel inhibitor of AHL synthase, offering a promising strategy to combat biofilm-associated infections. Future studies should focus on evaluating the bioavailability, in vivo efficacy, and clinical applicability of 7-OMA, as well as its broader activity against other multidrug-resistant pathogens. Graphical abstract
Collapse
Affiliation(s)
- Mohammad Jalal Nazari
- Department of Internal Medicine, Faculty of Medicine, Khatam Al-Nabieen University, Kabul, Afghanistan
- Medical Research and Technology Center, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Mohammad Tariq Anwary
- Department of Internal Medicine, Faculty of Medicine, Khatam Al-Nabieen University, Kabul, Afghanistan
- Medical Research and Technology Center, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Khanbaba Ghazanfar
- Department of Internal Medicine, Faculty of Medicine, Khatam Al-Nabieen University, Kabul, Afghanistan
- Medical Research and Technology Center, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Mohammad Edris Amiri
- Department of Internal Medicine, Faculty of Medicine, Khatam Al-Nabieen University, Kabul, Afghanistan
- Medical Research and Technology Center, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Sayed Yahya Hafid
- Department of Internal Medicine, Faculty of Medicine, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Mohammad Jawad Jawad
- Department of Internal Medicine, Faculty of Medicine, Khatam Al-Nabieen University, Kabul, Afghanistan
| | | |
Collapse
|
3
|
Cholo MC, Feldman C, Anderson R, Sekalo L, Moloko N, Richards GA. Effects of Anti-Pseudomonal Agents, Individually and in Combination, With or Without Clarithromycin, on Growth and Biofilm Formation by Antibiotic-Susceptible and -Resistant Strains of Pseudomonas aeruginosa, and the Impact of Exposure to Cigarette Smoke Condensate. Antibiotics (Basel) 2025; 14:325. [PMID: 40149135 PMCID: PMC11939616 DOI: 10.3390/antibiotics14030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Pseudomonas aeruginosa (Psa) can circumvent antimicrobial chemotherapy, an ability enhanced by cigarette smoking (CS). This study probed potential benefits of combinations of anti-pseudomonal agents, and potential augmentation by a macrolide, in the absence or presence of cigarette smoke condensate (CSC). Methods: Two susceptible (WT: wild-type and DS: drug-sensitive) and one multidrug-resistant (MDR) strains of Psa were treated with amikacin, cefepime, and ciprofloxacin, individually and in combination, and with and without clarithromycin, followed by the measurement of planktonic growth and biofilm formation by spectrophotometry. Antibiotic interactions were determined using the fractional inhibitory concentration index (FICI) method. Effects on preformed biofilm density were measured following the addition of antibiotics: all procedures were performed in the absence and presence of CSC. Results: The minimal inhibitory concentrations (MICs) of the three agents ranged from 0.125 mg/L to 1 mg/L (WT and DS strains) and 16 mg/L to 64 mg/L (MDR strain), with all resistant to clarithromycin (125 mg/L). MIC values closely correlated with the antibiotic concentrations required to inhibit biofilm formation. FICI revealed synergism between most combinations, with augmentation by clarithromycin. Amikacin had the greatest effect on biofilm density, which was potentiated by combination with the other antibiotics, particularly clarithromycin. Exposure to CSC had variable, albeit modest, effects on bacterial growth and biofilm formation, but low concentrations increased biofilm mass and attenuated synergistic antimicrobial interactions and effects on biofilm density. Conclusions: Amikacin, cefepime, and ciprofloxacin, especially with clarithromycin, exhibit synergistic anti-pseudomonal activity and decrease preformed biofilm density. CSC attenuated these effects, illustrating the pro-infective potential of CS.
Collapse
Affiliation(s)
- Moloko C. Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (N.M.)
- Basic and Translational Research Unit, Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (N.M.)
| | - Lebogang Sekalo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (N.M.)
| | - Naledi Moloko
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (N.M.)
| | - Guy A. Richards
- Department of Surgery, Division of Critical Care, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
4
|
Hickson SM, Ledger EL, Wells TJ. Emerging antimicrobial therapies for Gram-negative infections in human clinical use. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:16. [PMID: 40016340 PMCID: PMC11868545 DOI: 10.1038/s44259-025-00087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
The growing problem of multi-drug resistance (MDR) is prevalent in Gram-negative infections, and the significant decline in antibiotic development poses a critical threat to global public health. Many emerging non-antibiotic therapies have been proposed, including phage therapy, anti-virulence agents, antimicrobial peptides, plasmapheresis, and immunotherapy options. To identify the therapies most likely to be the next immediate step in treatment for MDR Gram-negative infections, this review highlights emerging therapeutics that have either been successfully used for compassionate care or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Sarah M Hickson
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Emma L Ledger
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Suzaki I. The role of macrolides in chronic rhinosinusitis and nasal polyps. Curr Opin Allergy Clin Immunol 2025; 25:19-26. [PMID: 39584537 DOI: 10.1097/aci.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a heterogeneous condition, so personalized treatment based on each patient's pathophysiology is essential, rather than a one-size-fits-all approach. Drug therapy for CRS has evolved significantly in recent years with the introduction of biologics, necessitating a reconsideration of the role of low-dose and long-term administration of a 14-membered ring macrolide (macrolide therapy) in the treatment of CRS. Recent research on the mechanisms of macrolide therapy and its proper use may assist physicians in improving patients' quality of life and reducing disease burden. RECENT FINDINGS A classification of the pathogenesis of CRS based on endotype has been proposed, with type 2 inflammation playing a particularly important role as a refractory factor. Macrolide therapy improves CRS via immunomodulatory and anti-inflammatory effects rather than antimicrobial action, and it is expected to be effective in patients with neutrophil-dominant inflammation. SUMMARY Understanding the effectiveness and limitations of macrolide therapy is critical for making the best treatment decisions, especially when combined with surgery and other pharmacologic therapies. Therefore, selecting appropriate patients for macrolide therapy is critical for achieving adequate therapeutic efficacy.
Collapse
Affiliation(s)
- Isao Suzaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Showa University, School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Naga NG, Shaaban MI, El-Metwally MM. An insight on the powerful of bacterial quorum sensing inhibition. Eur J Clin Microbiol Infect Dis 2024; 43:2071-2081. [PMID: 39158799 PMCID: PMC11534983 DOI: 10.1007/s10096-024-04920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Bacteria have their own language through which they communicate with one another like all higher organisms. So, many researchers are working hard to identify and comprehend the components of this bacterial communication, known as quorum sensing (QS). In quorum sensing, bacteria use signaling molecules called autoinducers (AIs) to exchange information. Many natural compounds and extraction techniques have been intensively studied to disrupt bacterial signaling and examine their effectiveness for bacterial pathogenesis control. Quorum sensing inhibitors can interfere with QS and block the action of AI signaling molecules. Recent research indicates that quorum sensing inhibitors (QSIs) and quorum quenching enzymes (QQEs) show great promise in reducing the pathogenicity of bacteria and inhibiting biofilm synthesis. In addition, the effectiveness of QQEs and QSIs in experimental animal models was demonstrated. These are taken into account in the development of innovative medical devices, such as dressings and catheters, to prevent bacterial infections. The present review highlights this aspect with a prospective vision for its development and application.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
7
|
D’Aquila P, De Rose E, Sena G, Scorza A, Cretella B, Passarino G, Bellizzi D. Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance. Antibiotics (Basel) 2024; 13:619. [PMID: 39061301 PMCID: PMC11273524 DOI: 10.3390/antibiotics13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
With the widespread phenomenon of antibiotic resistance and the diffusion of multiple drug-resistant bacterial strains, enormous efforts are being conducted to identify suitable alternative agents against pathogenic microorganisms. Since an association between biofilm formation and antibiotic resistance phenotype has been observed, a promising strategy pursued in recent years focuses on controlling and preventing this formation by targeting and inhibiting the Quorum Sensing (QS) system, whose central role in biofilm has been extensively demonstrated. Therefore, the research and development of Quorum Quenching (QQ) compounds, which inhibit QS, has gradually attracted the attention of researchers and has become a new strategy for controlling harmful microorganisms. Among these, a number of both natural and synthetic compounds have been progressively identified as able to interrupt the intercellular communication within a microbial community and the adhesion to a surface, thus disintegrating mature/preformed biofilms. This review describes the role played by QS in the formation of bacterial biofilms and then focuses on the mechanisms of different natural and synthetic QS inhibitors (QSIs) exhibiting promising antibiofilm ability against Gram-positive and Gram-negative bacterial pathogens and on their applications as biocontrol strategies in various fields.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Angelo Scorza
- Villa Ermelinda, Progetto Terza Età, 88842 Cutro, Italy; (A.S.); (B.C.)
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| |
Collapse
|
8
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Suzuki S, Morita Y, Ishige S, Kai K, Kawasaki K, Matsushita K, Ogura K, Miyoshi-Akiyama† T, Shimizu T. Effects of quorum sensing-interfering agents, including macrolides and furanone C-30, and an efflux pump inhibitor on nitrosative stress sensitivity in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001464. [PMID: 38900549 PMCID: PMC11263931 DOI: 10.1099/mic.0.001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Shin Suzuki
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shota Ishige
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kiyohiro Kai
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kohei Ogura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 6110011, Japan
| | - Tohru Miyoshi-Akiyama†
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| |
Collapse
|
10
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
11
|
Sonomura Y, Yokoi N, Komuro A, Kato H, Sotozono C. The Features and Treatment Effects on Keratoepitheliopathy for Meibomitis-Related Keratoconjunctivitis. Diagnostics (Basel) 2024; 14:487. [PMID: 38472959 DOI: 10.3390/diagnostics14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Meibomitis-related keratoconjunctivitis (MRKC) is characterized by meibomitis with corneal epithelial abnormalities, and can be divided into two types: MRKC accompanied with phlyctenular keratitis, and MRKC accompanied with keratoepitheliopathy that is similar to superficial punctate keratopathy (SPK). The purpose of this retrospective study was to investigate the characteristic features of keratoepitheliopathy and treatment outcomes for MRKC. This study involved 27 eyes of 18 MRKC patients (3 males and 15 females). National Eye Institute (NEI) scores and visual acuity were compared at pre and post treatment. All subjects were treated with a small-dose administration of clarithromycin. Keratoepitheliopathy characteristic to MRKC, yet different in appearance from SPK, was noted in 24 of the 27 eyes. Fluorescein staining revealed granular epithelial lesions generally larger than SPK that coexisted with small dark spots. In 17 eyes, keratoepitheliopathy was located within the pupillary zone, and the visual acuity in 12 eyes was less than 1.0. Our findings showed significant improvement in the NEI score in MRKC (p < 0.0001) and in visual acuity (p = 0.0157) post treatment, and the characteristic features of keratoepitheliopathy in MRKC that are often associated with decreased visual acuity were elucidated. The treatment of clarithromycin was found to be effective for MRKC with keratoepitheliopathy.
Collapse
Affiliation(s)
- Yukiko Sonomura
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Aoi Komuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroaki Kato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
12
|
Taylor SL, Crabbé A, Hoffman LR, Chalmers JD, Rogers GB. Understanding the clinical implications of the "non-classical" microbiome in chronic lung disease: a viewpoint. Eur Respir J 2024; 63:2302281. [PMID: 38387999 DOI: 10.1183/13993003.02281-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Steven L Taylor
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Luke R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
13
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
De R, Whiteley M, Azad RK. A gene network-driven approach to infer novel pathogenicity-associated genes: application to Pseudomonas aeruginosa PAO1. mSystems 2023; 8:e0047323. [PMID: 37921470 PMCID: PMC10734507 DOI: 10.1128/msystems.00473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE We present here a new systems-level approach to decipher genetic factors and biological pathways associated with virulence and/or antibiotic treatment of bacterial pathogens. The power of this approach was demonstrated by application to a well-studied pathogen Pseudomonas aeruginosa PAO1. Our gene co-expression network-based approach unraveled known and unknown genes and their networks associated with pathogenicity in P. aeruginosa PAO1. The systems-level investigation of P. aeruginosa PAO1 helped identify putative pathogenicity and resistance-associated genetic factors that could not otherwise be detected by conventional approaches of differential gene expression analysis. The network-based analysis uncovered modules that harbor genes not previously reported by several original studies on P. aeruginosa virulence and resistance. These could potentially act as molecular determinants of P. aeruginosa PAO1 pathogenicity and responses to antibiotics.
Collapse
Affiliation(s)
- Ronika De
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
- Department of Mathematics, University of North Texas, Denton, Texas, USA
| |
Collapse
|
15
|
Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol 2023; 49:786-804. [PMID: 36334083 DOI: 10.1080/1040841x.2022.2142089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Our environment is heavily contaminated by anthropogenic compounds, and this issue constitutes a significant threat to all life forms, including biofilm-forming microorganisms. Cell-cell interactions shape microbial community structures and functions, and pollutants that affect intercellular communications impact biofilm functions and ecological roles. There is a growing interest in environmental science fields for evaluating how anthropogenic pollutants impact cell-cell interactions. In this review, we synthesize existing literature that evaluates the impacts of quorum sensing (QS), which is a widespread density-dependent communication system occurring within many bacterial groups forming biofilms. First, we examine the perturbating effects of environmental contaminants on QS circuits; and our findings reveal that QS is an essential yet underexplored mechanism affected by pollutants. Second, our work highlights that QS is an unsuspected and key resistance mechanism that assists bacteria in dealing with environmental contamination (caused by metals or organic pollutants) and that favors bacterial growth in unfavourable environments. We emphasize the value of considering QS a critical mechanism for monitoring microbial responses in ecotoxicology. Ultimately, we determine that QS circuits constitute promising targets for innovative biotechnological approaches with major perspectives for applications in the field of environmental science.
Collapse
Affiliation(s)
- Raphaël Lami
- Sorbonne Université, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
- Centre National de la Recherche Scientifique, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Maëlle Molmeret
- Université de Toulon, Laboratoire MAPIEM, EA4323, Avenue de l'université, BP 20132, La Garde Cedex, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
16
|
Thereza Fiori-Duarte A, Bitencourt de Souza Ferreira L, Sanches Ascencio A, Fábio Kawano D. Modulation of Pseudomonas aeruginosa quorum sensing by ajoene through direct competition with small RNAs for binding at the proximal site of Hfq - a structure-based perspective. Gene 2023:147506. [PMID: 37224934 DOI: 10.1016/j.gene.2023.147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Bacteria can communicate to each other via quorum sensing, a cell density-dependent gene regulation system that stimulates the expression of virulence factors in the neighboring cells. Although the interaction of the natural product ajoene with the Hfq protein has been associated with the disruption of the quorum sensing system in Pseudomonas aeruginosa, there is no information concerning the corresponding ligand-target interaction process. Herein we observed a strong correlation (p < 0.00001) between the estimated affinities for the binding of 23 ajoene analogues at the proximal site of the Hfq protein of P. aeruginosa and their corresponding IC50 values, which reflect the reduction in the transcription of a virulence factor after quorum sensing inhibition. In this concern, our analyses reinforces previous propositions suggesting that ajoene could target the Hfq protein and affects its interaction with RNAs. Based on docking simulations, we tried to elucidate the binding mode of ajoene into the proximal Hfq site and the also to established the minimum set of groups that would be necessary for a good interaction at this site, which includes a single hydrogen bond acceptor feature surrounded by groups that interact via π-sulfur (i.e., disulfide sulfurs) and/or π-alkyl/π-π stacking interactions (e.g., vinyl or small aryl/heteroaryl/heterocyclic groups). Because of the widespread role of Hfq as a matchmaker between messenger and small regulatory RNAs in Gram-negatives, we believe the discussion here provided for P. aeruginosa could be extrapolated for Gram-negatives in general, while the interaction of ajoene over the Hfq protein of Gram-positives would still remain more controversial.
Collapse
Affiliation(s)
- Ana Thereza Fiori-Duarte
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil
| | - Luciana Bitencourt de Souza Ferreira
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil
| | - Amanda Sanches Ascencio
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil
| | - Daniel Fábio Kawano
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil.
| |
Collapse
|
17
|
Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti- Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms 2023; 11:916. [PMID: 37110338 PMCID: PMC10144840 DOI: 10.3390/microorganisms11040916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jane A. Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael J. San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Honors College, Texas Tech University, Lubbock, TX 79409, USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
18
|
Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel) 2023; 12:antibiotics12030499. [PMID: 36978366 PMCID: PMC10044227 DOI: 10.3390/antibiotics12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.
Collapse
|
19
|
Hijazi DM, Dahabiyeh LA, Abdelrazig S, Alqudah DA, Al-Bakri AG. Micafungin effect on Pseudomonas aeruginosa metabolome, virulence and biofilm: potential quorum sensing inhibitor. AMB Express 2023; 13:20. [PMID: 36807839 PMCID: PMC9941417 DOI: 10.1186/s13568-023-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of antibiotic resistance in Pseudomonas aeruginosa places a heavy burden on the health care sectors urging the need to find alternative, non-antibiotic strategies. The interference with the P. aeruginosa quorum sensing (QS) system represents a promising alternative strategy to attenuate the bacterial virulency and its ability to form biofilms. Micafungin has been reported to impede the pseudomonal biofilm formation. However, the influences of micafungin on the biochemical composition and metabolites levels of P. aeruginosa have not been explored. In this study, the effect of micafungin (100 µg/mL) on the virulence factors, QS signal molecules and the metabolome of P. aeruginosa was studied using exofactor assay and mass spectrometry-based metabolomics approaches. Furthermore, confocal laser scanning microscopy (CLSM) using the fluorescent dyes ConA-FITC and SYPRO® Ruby was used to visualize micafungin disturbing effects on the pseudomonal glycocalyx and protein biofilm-constituents, respectively. Our findings showed that micafungin significantly decreased the production of various QS-controlled virulence factors (pyocyanin, pyoverdine, pyochelin and rhamnolipid), along with a dysregulation in the level of various metabolites involved in QS system, lysine degradation, tryptophan biosynthesis, TCA cycle, and biotin metabolism. In addition, the CLSM examination showed an altered matrix distribution. The presented findings highlight the promising role of micafungin as a potential quorum sensing inhibitor (QSI) and anti-biofilm agent to attenuate P. aeruginosa pathogenicity. In addition, they point to the promising role of metabolomics study in investigating the altered biochemical pathways in P. aeruginosa.
Collapse
Affiliation(s)
- Duaa M. Hijazi
- grid.9670.80000 0001 2174 4509Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, 11942 Jordan
| | - Lina A. Dahabiyeh
- grid.9670.80000 0001 2174 4509Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, 11942 Jordan
| | - Salah Abdelrazig
- grid.9763.b0000 0001 0674 6207Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, 1996, 11115 Khartoum, Sudan ,grid.4563.40000 0004 1936 8868Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Dana A. Alqudah
- grid.9670.80000 0001 2174 4509Cell Therapy Center, The University of Jordan, Amman, 11942 Jordan
| | - Amal G. Al-Bakri
- grid.9670.80000 0001 2174 4509Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942 Jordan
| |
Collapse
|
20
|
Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020310. [PMID: 36830221 PMCID: PMC9952333 DOI: 10.3390/antibiotics12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.
Collapse
|
21
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
22
|
Ring HC, Zachariae C, Thomsen SF, Thyssen JP, Egeberg A. Severe papulopustular rosacea successfully treated with a combination of oral azithromycin and isotretinoin. J DERMATOL TREAT 2022; 33:3205-3207. [PMID: 36165496 DOI: 10.1080/09546634.2022.2129953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Hans Christian Ring
- Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Claus Zachariae
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Simon Francis Thomsen
- Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob P Thyssen
- Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark
| | - Alexander Egeberg
- Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
23
|
Gao J, Hu X, Xu C, Guo M, Li S, Yang F, Pan X, Zhou F, Jin Y, Bai F, Cheng Z, Wu Z, Chen S, Huang X, Wu W. Neutrophil-mediated delivery of the combination of colistin and azithromycin for the treatment of bacterial infection. iScience 2022; 25:105035. [PMID: 36117992 PMCID: PMC9474925 DOI: 10.1016/j.isci.2022.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Novel treatment strategies are in urgent need to deal with the rapid development of antibiotic-resistant superbugs. Combination therapies and targeted drug delivery have been exploited to promote treatment efficacies. In this study, we loaded neutrophils with azithromycin and colistin to combine the advantages of antibiotic combinations, targeted delivery, and immunomodulatory effect of azithromycin to treat infections caused by Gram-negative pathogens. Delivery of colistin into neutrophils was mediated by fusogenic liposome, while azithromycin was directly taken up by neutrophils. Neutrophils loaded with the drugs maintained the abilitity to generate reactive oxygen species and migrate. In vitro assays demonstrated enhanced bactericidal activity against multidrug-resistant pathogens and reduced inflammatory cytokine production by the drug-loaded neutrophils. A single intravenous administration of the drug-loaded neutrophils effectively protected mice from Pseudomonas aeruginosa infection in an acute pneumonia model. This study provides a potential effective therapeutic approach for the treatment of bacterial infections. Neutrophils are loaded with colistin and azithromycin in vitro The loaded drugs enhance the bactericidal effect and reduce the inflammatory response Drug-loaded neutrophils conferred effective protection against bacterial infection
Collapse
Affiliation(s)
- Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fangyu Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic Dispersion of Biofilms: An Emerging Biocatalytic Avenue to Combat Biofilm-Mediated Microbial Infections. J Biol Chem 2022; 298:102352. [PMID: 35940306 PMCID: PMC9478923 DOI: 10.1016/j.jbc.2022.102352] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Drug resistance by pathogenic microbes has emerged as a matter of great concern to mankind. Microorganisms such as bacteria and fungi employ multiple defense mechanisms against drugs and the host immune system. A major line of microbial defense is the biofilm, which comprises extracellular polymeric substances that are produced by the population of microorganisms. Around 80% of chronic bacterial infections are associated with biofilms. The presence of biofilms can increase the necessity of doses of certain antibiotics up to 1000-fold to combat infection. Thus, there is an urgent need for strategies to eradicate biofilms. Although a few physicochemical methods have been developed to prevent and treat biofilms, these methods have poor efficacy and biocompatibility. In this review, we discuss the existing strategies to combat biofilms and their challenges. Subsequently, we spotlight the potential of enzymes, in particular, polysaccharide degrading enzymes, for biofilm dispersion, which might lead to facile antimicrobial treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Simran Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
25
|
Smith SS, Kim R, Douglas R. Is there a role for antibiotics in the treatment of chronic rhinosinusitis? J Allergy Clin Immunol 2022; 149:1504-1512. [PMID: 35217148 PMCID: PMC11185277 DOI: 10.1016/j.jaci.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
Rhinosinusitis is one of the most common reasons for adult outpatient antibiotic prescriptions, though there is little clinical evidence to support this practice, especially for chronic rhinosinusitis. Despite considerable research, the etiology of chronic rhinosinusitis, including the pathogenic role of microbes, remains poorly understood. Rigorous studies of the efficacy of antibiotic treatment of chronic sinusitis are surprisingly few in number and the results are somewhat conflicting. This review article will review the rationales for and against the treatment of chronic rhinosinusitis with antibiotics, based on current evidence and understanding of pathophysiology, and will also summarize the current guidelines.
Collapse
Affiliation(s)
- Stephanie Shintani Smith
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Health Services and Outcomes Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Raymond Kim
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Richard Douglas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Mangal S, Singh V, Chhibber S, Harjai K. Natural bioactives versus synthetic antibiotics for the attenuation of quorum sensing-regulated virulence factors of Pseudomonas aeruginosa. Future Microbiol 2022; 17:773-787. [PMID: 35450448 DOI: 10.2217/fmb-2021-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To study the influence of plant volatiles, bioactives and synthetic antibiotics on the attenuation of the quorum sensing (QS)-regulated virulence factors of Pseudomonas aeruginosa. Materials & methods: QS inhibition; the QS-regulated virulence factors pyocyanin, hemolysin, elastase, protease, alginate and pyochelin; and motility phenotypes were performed at sub-MIC to check the attenuation effect of 24 agents on the virulence of P. aeruginosa. Results: Eighteen out of 24 assayed compounds exhibited anti-QS activity and reduced the production of all virulence factors. Cinnamaldehyde, zingerone and lavender oil exhibited a significant reduction in motility phenotypes. Conclusion: Natural phytomolecules as a whole or their bioactives could be used to develop antivirulence drugs after in vivo evaluation.
Collapse
Affiliation(s)
- Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (deemed to be university), Chandigarh, 160012, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| |
Collapse
|
27
|
Wen Y, Song Z, Xu H, Feng S, Zhu L, Teng F, Feng R. Azithromycin-loaded linolenic acid-modified methoxy poly(ethylene glycol) micelles for bacterial infection treatment. Drug Deliv Transl Res 2022; 12:550-561. [PMID: 33718980 DOI: 10.1007/s13346-021-00953-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 01/10/2023]
Abstract
In the study, new polymeric micelles loaded with azithromycin were prepared to enhance azithromycin's solubility and evaluate its in vitro/in vivo antibacterial activity against Staphylococcus aureus. Amphiphilic α-Linolenic acid-methoxy poly (ethylene glycol) polymer (MPEG-LNA) was synthesized through DCC-DMAP esterification procedure. Through thin-film hydration method, optimized azithromycin-loaded micelles (AZI-M) were prepared with 87.15% of encapsulation efficiency and 11.07% of drug loading capacity when the ratio of LNA to MPEG was 4. Azithromycin's water-solubility was obviously enhanced due to its loading into the polymeric micelles. The azithromycin-loaded micelles were characterized in terms of x-ray diffraction, Fourier transform infrared spectroscopy, in vitro release, and in vitro/in vivo antibacterial experiments. Although the drug-loaded micelles provided a slow and continuous azithromycin's release in comparison with free azithromycin, in vitro antibacterial activity results confirmed that its effect on the inhibition of bacterial growth and biofilm formation was similar to free azithromycin. It is more interesting that the azithromycin-loaded micelles achieved good in vivo antibacterial therapeutic effect like QiXian® (azithromycin lactobionate injection) in mouse model of intraperitoneal infection. AZI-M can be considered as a potential candidate for in vivo antibiotic therapy of Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Yi Wen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan, 250022, Shandong Province, People's Republic of China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan, 250022, Shandong Province, People's Republic of China
| | - Hongmei Xu
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan, 250022, Shandong Province, People's Republic of China
| | - Sijia Feng
- School of Basic Medical Sciences, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Li Zhu
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan, 250022, Shandong Province, People's Republic of China
| | - Fangfang Teng
- The People's Hospital of Guangrao, Guangrao, 257300, Shandong Province, People's Republic of China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan, 250022, Shandong Province, People's Republic of China.
| |
Collapse
|
28
|
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022; 11:pathogens11030300. [PMID: 35335624 PMCID: PMC8950561 DOI: 10.3390/pathogens11030300] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms.
Collapse
|
29
|
Flourensia fiebrigii S.F. Blake in combination with Lactobacillus paracasei subsp. paracasei CE75. A novel anti-pathogenic and detoxifying strategy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Miranda SW, Asfahl KL, Dandekar AA, Greenberg EP. Pseudomonas aeruginosa Quorum Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:95-115. [PMID: 36258070 PMCID: PMC9942581 DOI: 10.1007/978-3-031-08491-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.
Collapse
Affiliation(s)
| | - Kyle L Asfahl
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - E P Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
31
|
Abe M, Murakami K, Hiroshima Y, Amoh T, Sebe M, Kataoka K, Fujii H. Autoinducer Analogs Can Provide Bactericidal Activity to Macrolides in Pseudomonas aeruginosa through Antibiotic Tolerance Reduction. Antibiotics (Basel) 2021; 11:antibiotics11010010. [PMID: 35052885 PMCID: PMC8772842 DOI: 10.3390/antibiotics11010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Macrolide antibiotics are used in treating Pseudomonas aeruginosa chronic biofilm infections despite their unsatisfactory antibacterial activity, because they display several special activities, such as modulation of the bacterial quorum sensing and immunomodulatory effects on the host. In this study, we investigated the effects of the newly synthesized P. aeruginosa quorum-sensing autoinducer analogs (AIA-1, -2) on the activity of azithromycin and clarithromycin against P. aeruginosa. In the killing assay of planktonic cells, AIA-1 and -2 enhanced the bactericidal ability of macrolides against P. aeruginosa PAO1; however, they did not affect the minimum inhibitory concentrations of macrolides. In addition, AIA-1 and -2 considerably improved the killing activity of azithromycin and clarithromycin in biofilm cells. The results indicated that AIA-1 and -2 could affect antibiotic tolerance. Moreover, the results of hydrocarbon adherence and cell membrane permeability assays suggested that AIA-1 and -2 changed bacterial cell surface hydrophobicity and accelerated the outer membrane permeability of the hydrophobic antibiotics such as azithromycin and clarithromycin. Our study demonstrated that the new combination therapy of macrolides and AIA-1 and -2 may improve the therapeutic efficacy of macrolides in the treatment of chronic P. aeruginosa biofilm infections.
Collapse
Affiliation(s)
- Mizuki Abe
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
- Department of Microbiology and Genetic Analysis, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan;
| | - Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan;
- Correspondence: ; Tel.: +81-86-462-1111 (ext. 55074); Fax: +81-86-463-3508
| | - Yuka Hiroshima
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
| | - Takashi Amoh
- Department of Dental Hygiene, Mejiro University College, Tokyo 161-8539, Japan;
| | - Mayu Sebe
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan;
| | - Keiko Kataoka
- Department of Microbiology and Genetic Analysis, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan;
| | - Hideki Fujii
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
| |
Collapse
|
32
|
Wang X, Yu D, Chen G, Liu C, Xu A, Tang Z. Effects of interactions between quorum sensing and quorum quenching on microbial aggregation characteristics in wastewater treatment: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2883-2902. [PMID: 34719836 DOI: 10.1002/wer.1657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Due to the increasingly urgent demand for effective wastewater denitrification and dephosphorization systems, there is a need to improve the performance of existing biological treatment technologies. As a bacteria-level communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. On this basis, the QS-based bacterial communication mechanism and environmental factors affecting QS are discussed. This paper reviews the influence of QS on sludge granulation, biofilm formation, emerging contaminants (ECs) removal, and horizontal gene transfer in sewage treatment system. Furthermore, the QS inhibition strategies are compared. Based on the coexistence and balance of QQ and QS in the long-term operation system, QQ, as an effective tool to regulate the growth density of microorganisms, provides a promising exogenous regulation strategy for residual sludge reduction and biofilm pollution control. This paper reviews the potential of improving wastewater treatment efficiency based on QS theory and points out the feasibility and prospect of exogenous regulation strategy. PRACTITIONER POINTS: The mechanism of bacterial communication based on QS and the environmental factors affecting QS were discussed. The application of QS and QQ in improving the sludge performance of biological treatment systems was described. The significance of QS and QQ coexistence in sewage treatment process was described.
Collapse
Affiliation(s)
- Xueping Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Chengju Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Zhihao Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 2021; 15:1695-1718. [PMID: 34843159 PMCID: PMC9151347 DOI: 10.1111/1751-7915.13981] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Unregulated consumption and overexploitation of antibiotics have paved the way for emergence of antibiotic‐resistant strains and ‘superbugs’. Pseudomonas aeruginosa is among the opportunistic nosocomial pathogens causing devastating infections in clinical set‐ups globally. Its artillery equipped with diversified virulence elements, extensive antibiotic resistance and biofilms has made it a ‘hard‐to‐treat’ pathogen. The pathogenicity of P. aeruginosa is modulated by an intricate cell density‐dependent mechanism called quorum sensing (QS). The virulence artillery of P. aeruginosa is firmly controlled by QS genes, and their expression drives the aggressiveness of the infection. Attempts to identify and develop novel antimicrobials have seen a sharp rise in the past decade. Among different proposed mechanisms, a novel anti‐virulence approach to target pseudomonal infections by virtue of anti‐QS and anti‐biofilm drugs appears to occupy the centre stage. In this respect, bioactive phytochemicals have gained prominence among the scientific community owing to their significant quorum quenching (QQ) properties. Recent studies have shed light on the QQ activities of various phytochemicals and other drugs in perturbing the QS‐dependent virulence in P. aeruginosa. This review highlights the recent evidences that reinforce the application of plant bioactives for combating pseudomonal infections, their advantages and shortcomings in anti‐virulence therapy.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
34
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
35
|
Adaptive responses of Pseudomonas aeruginosa to treatment with antibiotics. Antimicrob Agents Chemother 2021; 66:e0087821. [PMID: 34748386 DOI: 10.1128/aac.00878-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is among the highest priority pathogens for drug development, because of its resistance to antibiotics, extraordinary adaptability, and persistence. Anti-pseudomonal research is strongly encouraged to address the acute scarcity of innovative antimicrobial lead structures. In an effort to understand the physiological response of P. aeruginosa to clinically relevant antibiotics, we investigated the proteome after exposure to ciprofloxacin, levofloxacin, rifampicin, gentamicin, tobramycin, azithromycin, tigecycline, polymyxin B, colistin, ceftazidime, meropenem, and piperacillin/tazobactam. We further investigated the response to CHIR-90, which represents a promising class of lipopolysaccharide biosynthesis inhibitors currently under evaluation. Radioactive pulse-labeling of newly synthesized proteins followed by 2D-PAGE was used to monitor the acute response of P. aeruginosa to antibiotic treatment. The proteomic profiles provide insights into the cellular defense strategies for each antibiotic. A mathematical comparison of these response profiles based on upregulated marker proteins revealed similarities of responses to antibiotics acting on the same target area. This study provides insights into the effects of commonly used antibiotics on P. aeruginosa and lays the foundation for the comparative analysis of the impact of novel compounds with precedented and unprecedented modes of action.
Collapse
|
36
|
Naga NG, El-Badan DE, Rateb HS, Ghanem KM, Shaaban MI. Quorum Sensing Inhibiting Activity of Cefoperazone and Its Metallic Derivatives on Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:716789. [PMID: 34660340 PMCID: PMC8515130 DOI: 10.3389/fcimb.2021.716789] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed a massive increase in the rate of mortalities caused by multidrug-resistant Pseudomonas aeruginosa. Therefore, developing new strategies to control virulence factors and pathogenicity has received much attention. One of these strategies is quorum sensing inhibition (QSI) which was developed to control Pseudomonas infection. This study aims to validate the effect of one of the most used β-lactam antibiotics; cefoperazone (CFP) and its metallic-derivatives on quorum sensing (QS) and virulence factors of P. aeruginosa. Assessment of quorum sensing inhibitory activity of CFP, cefoperazone Iron complex (CFPF) and cefoperazone Cobalt complex (CFPC) was performed by using reporter strain Chromobacterium violaceum ATCC 12472. Minimal inhibitory concentration (MIC) was carried out by the microbroth dilution method. The influence of sub-MICs (1/4 and 1/2 MICs) of CFP, CFPF and CFPC on virulence factors of P. aeruginosa was evaluated. Data was confirmed on the molecular level by RT-PCR. Also, molecular docking analysis was conducted to figure out the possible mechanisms of QSI. CFP, CFPF, and CFPC inhibited violacein pigment production of C. violaceum ATCC 12472. Sub-MICs of CFP (128- 256 μg/mL), and significantly low concentrations of CFPC (0.5- 16 μg/mL) and CFPF (0.5- 64 μg/mL) reduced the production of QS related virulence factors such as pyocyanin, protease, hemolysin and eliminated biofilm assembly by P. aeruginosa standard strains PAO1 and PA14, and P. aeruginosa clinical isolates Ps1, Ps2, and Ps3, without affecting bacterial viability. In addition, CFP, CFPF, and CFPC significantly reduced the expression of lasI and rhlI genes. The molecular docking analysis elucidated that the QS inhibitory effect was possibly caused by the interaction with QS receptors. Both CFPF and CFPC interacted strongly with LasI, LasR and PqsR receptors with a much high ICM scores compared to CFP that could be the cause of elimination of natural ligand binding. Therefore, CFPC and CFPF are potent inhibitors of quorum sensing signaling and virulence factors of P. aeruginosa.
Collapse
Affiliation(s)
- Nourhan G Naga
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Dalia E El-Badan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba S Rateb
- Department of Pharmaceutical and Medicinal Chemistry, Pharmacy College, Misr University for Science and Technology, Cairo, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
37
|
Yamabe K, Arakawa Y, Shoji M, Onda M, Miyamoto K, Tsuchiya T, Akeda Y, Terada K, Tomono K. Direct anti-biofilm effects of macrolides on Acinetobacter baumannii: comprehensive and comparative demonstration by a simple assay using microtiter plate combined with peg-lid. Biomed Res 2021; 41:259-268. [PMID: 33268670 DOI: 10.2220/biomedres.41.259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, opportunistic nosocomial infections caused by Acinetobacter baumannii have become increasingly prevalent worldwide. The pathogen often establishes biofilms that adhere to medical devices, causing chronic infections refractory to antimicrobial therapy. Clinical reports have indicated that some macrolide antibiotics are effective against chronic biofilm-related infections. In this study, we examined the direct anti-biofilm effects of seven macrolides (azithromycin, clarithromycin, erythromycin, josamycin, spiramycin, fidaxomicin, and ivermectin) on A. baumannii using a simple and newly established in vitro assay system for the swift and serial spectrophotometric determinations of two biofilm-amount indexes of viability and biomass. These macrolides were found to possess direct anti-biofilm effects exerting specific anti-biofilm effects not exclusively depending on their bacteriostatic/bactericidal effects. The anti-biofilm effect of azithromycin was found to be the strongest, while those of fidaxomicin and ivermectin were weak and limited. These results provide insights into possible adjunctive chemotherapy with macrolides for A. baumannii infection. Common five macrolides also interfered with the Agrobacterium tumefaciens NTL(pCF218) (pCF372) bioassay system of N-acyl homoserine lactones, providing insights into sample preparation for the bioassay, and putatively suggesting the actions of macrolides as remote signals in bacterial quorum sensing systems.
Collapse
Affiliation(s)
- Kaoru Yamabe
- Graduate School of Public Policy, The University of Tokyo
| | - Yukio Arakawa
- Department of Social and Administrative Pharmacy, Osaka University of Pharmaceutical Sciences
| | - Masaki Shoji
- Department of Social and Administrative Pharmacy, Osaka University of Pharmaceutical Sciences
| | - Mitsuko Onda
- Department of Social and Administrative Pharmacy, Osaka University of Pharmaceutical Sciences
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Osaka University of Pharmaceutical Sciences
| | - Takahiro Tsuchiya
- Department of Microbiology and Infection Control, Osaka University of Pharmaceutical Sciences
| | - Yukihiro Akeda
- Division of Infection Control and Prevention, Graduate School of Medicine, Osaka University
| | | | - Kazunori Tomono
- Division of Infection Control and Prevention, Graduate School of Medicine, Osaka University
| |
Collapse
|
38
|
Tajani AS, Jangi E, Davodi M, Golmakaniyoon S, Ghodsi R, Soheili V, Fazly Bazzaz BS. Anti-quorum sensing potential of ketoprofen and its derivatives against Pseudomonas aeruginosa: insights to in silico and in vitro studies. Arch Microbiol 2021; 203:5123-5132. [PMID: 34319419 DOI: 10.1007/s00203-021-02499-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Antibiotics are usually used for the treatment of bacterial infections, but multidrug-resistant strains are a phenomenon that has been growing at an increasing rate worldwide. Thus, there is an increasing need for novel strategies for combatting infectious diseases. Many pathogenic bacteria apply quorum sensing (QS) to regulate their pathogenicity and virulence factors production. This circuit makes the QS system an attractive target for antibacterial therapy. In the present study, an important member of non-steroidal anti-inflammatory drugs (NSAIDs), by reducing the biofilm and producing QS-regulated virulence factors, ketoprofen and its synthetic derivatives were screened against the Pseudomonas aeruginosa PAO1. All compounds showed anti-biofilm activity (16-79%) and most of them presented anti-virulence activity. In the co-treatment of ketoprofen, G20, G21, or G77 with tobramycin, biofilm is significantly reduced (potentiated to > 50%) in the number of cells protected inside the impermeable matrix. The in silico studies in addition to the similarities between the chemical structures of PqsR natural ligands and ketoprofen derivatives reinforce the possibility that the mechanism of action is through PqsR inhibition. Based on the results, the anti-pathogenic effect was more appreciable in ketoprofen, G77, and G20.
Collapse
Affiliation(s)
- Amineh Sadat Tajani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Jangi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Davodi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Golmakaniyoon
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Konikkat S, Scribner MR, Eutsey R, Hiller NL, Cooper VS, McManus J. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genet 2021; 17:e1009634. [PMID: 34252072 PMCID: PMC8297930 DOI: 10.1371/journal.pgen.1009634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including patients with cystic fibrosis. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and quorum sensing (QS). The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using a fast, cost-effective genome-wide approach to quantitate RNA 3’ ends (3pMap). We also identified hundreds of P. aeruginosa genes with high incidence of premature 3’ end formation indicative of riboregulation in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’ ends indicating premature transcription termination, transcriptional pausing, or accumulation of stable intermediates resulting from the action of nucleases. Reciprocally, AZM reduced premature intragenic 3’ end termini in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced changes in 3’ end formation alter the expression of central regulators which in turn impairs the expression of QS, biofilm formation and stress response genes, while upregulating genes associated with persistence. Pseudomonas aeruginosa is a common source of hospital-acquired infections and causes prolonged illness in patients with cystic fibrosis. P. aeruginosa infections are often treated with the macrolide antibiotic azithromycin, which changes the expression of many genes involved in infection. By examining such expression changes at nucleotide resolution, we found azithromycin treatment alters the locations of mRNA 3’ ends suggesting most downregulated genes are subject to premature 3’ end formation. We further identified candidate RNA regulatory elements that P. aeruginosa may use to control gene expression. Our work provides new insights in P. aeruginosa gene regulation and its response to antibiotics.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Dhungel L, Burcham L, Park JY, Sampathkumar HD, Cudjoe A, Seo KS, Jordan H. Responses to chemical cross-talk between the Mycobacterium ulcerans toxin, mycolactone, and Staphylococcus aureus. Sci Rep 2021; 11:11746. [PMID: 34083568 PMCID: PMC8175560 DOI: 10.1038/s41598-021-89177-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 02/01/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease caused by the environmental pathogen, Mycobacterium ulcerans whose major virulence factor is mycolactone, a lipid cytotoxic molecule. Buruli ulcer has high morbidity, particularly in rural West Africa where the disease is endemic. Data have shown that infected lesions of Buruli ulcer patients can be colonized by quorum sensing bacteria such as Staphylococcus aureus, S. epidermidis, and Pseudomonas aeruginosa, but without typical pathology associated with those pathogens' colonization. M. ulcerans pathogenesis may not only be an individual act but may also be dependent on synergistic or antagonistic mechanisms within a polymicrobial network. Furthermore, co-colonization by these pathogens may promote delayed wound healing, especially after the initiation of antibiotic therapy. Hence, it is important to understand the interaction of M. ulcerans with other bacteria encountered during skin infection. We added mycolactone to S. aureus and incubated for 3, 6 and 24 h. At each timepoint, S. aureus growth and hemolytic activity was measured, and RNA was isolated to measure virulence gene expression through qPCR and RNASeq analyses. Results showed that mycolactone reduced S. aureus hemolytic activity, suppressed hla promoter activity, and attenuated virulence genes, but did not affect S. aureus growth. RNASeq data showed mycolactone greatly impacted S. aureus metabolism. These data are relevant and significant as mycolactone and S. aureus sensing and response at the transcriptional, translational and regulation levels will provide insight into biological mechanisms of interspecific interactions that may play a role in regulation of responses such as effects between M. ulcerans, mycolactone, and S. aureus virulence that will be useful for treatment and prevention.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Lindsey Burcham
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Joo Youn Park
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Harshini Devi Sampathkumar
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | | | - Keun Seok Seo
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA.
| |
Collapse
|
41
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
42
|
Leroy AG, Caillon J, Caroff N, Broquet A, Corvec S, Asehnoune K, Roquilly A, Crémet L. Could Azithromycin Be Part of Pseudomonas aeruginosa Acute Pneumonia Treatment? Front Microbiol 2021; 12:642541. [PMID: 33796090 PMCID: PMC8008145 DOI: 10.3389/fmicb.2021.642541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/29/2022] Open
Abstract
Azithromycin (AZM) is a 15-membered-ring macrolide that presents a broad-spectrum antimicrobial activity against Gram-positive bacteria and atypical microorganisms but suffers from a poor diffusion across the outer-membrane of Gram-negative bacilli, including Pseudomonas aeruginosa (PA). However, AZM has demonstrated clinical benefits in patients suffering from chronic PA respiratory infections, especially cystic fibrosis patients. Since the rise of multidrug-resistant PA has led to a growing need for new therapeutic options, this macrolide has been proposed as an adjunctive therapy. Clinical trials assessing AZM in PA acute pneumonia are scarce. However, a careful examination of the available literature provides good rationales for its use in that context. In fact, 14- and 15-membered-ring macrolides have demonstrated immunomodulatory and immunosuppressive effects that could be of major interest in the management of acute illness. Furthermore, growing evidence supports a downregulation of PA virulence dependent on direct interaction with the ribosomes, and based on the modulation of several key regulators from the Quorum Sensing network. First highlighted in vitro, these interesting properties of AZM have subsequently been confirmed in the animal models. In this review, we systematically analyzed the literature regarding AZM immunomodulatory and anti-PA effects. In vitro and in vivo studies, as well as clinical trials were reviewed, looking for rationales for AZM use in PA acute pneumonia.
Collapse
Affiliation(s)
- Anne-Gaëlle Leroy
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Jocelyne Caillon
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Nathalie Caroff
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Alexis Broquet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Stéphane Corvec
- CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France.,CRCINA, U1232, CHU Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Antoine Roquilly
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Lise Crémet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| |
Collapse
|
43
|
Mandru R, Zhou CY, Pauley R, Burkes RM. Considerations for and Mechanisms of Adjunct Therapy in COPD. J Clin Med 2021; 10:jcm10061225. [PMID: 33809583 PMCID: PMC7999347 DOI: 10.3390/jcm10061225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Inhaled bronchodilators and corticosteroids, when indicated, form the backbone of COPD therapy. However, over the last decade there has been an emergence of adjunct therapies in oral or inhaled form that are now part of the therapeutic approach to COPD. While these therapies have shown to be beneficial when used in the appropriate instances, there are particular considerations that need to be minded when using these therapies. This review article discussed the mechanism of roflumilast, macrolide antibiotics, other chronic antibiotic regimens, vitamin D supplementation, oral corticosteroids, n-acetylcysteine, and nebulized hypertonic saline, the clinical data behind each of these therapies, adverse events associated with therapy, and the expert recommendations for their utilization. Our goal is to provide a brief but informative and clinically useful review of commonly encountered therapies used in advanced COPD.
Collapse
Affiliation(s)
- Rachana Mandru
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Christine Y. Zhou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (C.Y.Z.); (R.P.)
| | - Rachel Pauley
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (C.Y.Z.); (R.P.)
| | - Robert M. Burkes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Correspondence:
| |
Collapse
|
44
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
45
|
Al-Hasan MN, Al-Jaghbeer MJ. Use of Antibiotics in Chronic Obstructive Pulmonary Disease: What is Their Current Role in Older Patients? Drugs Aging 2020; 37:627-633. [PMID: 32691330 DOI: 10.1007/s40266-020-00786-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has considerable morbidity and mortality in the older adult population. The role of antibiotics in the management of acute exacerbations of COPD (AECOPD) is currently evolving. Despite only mild benefits, most patients with AECOPD in ambulatory settings receive antibiotics based on clinical criteria. Utilization of point-of-care C-reactive protein (CRP) has reduced antibiotic prescriptions by 20% without compromising clinical outcomes. A strict protocol allowing antibiotic use only in patients with clinical criteria and CRP ≥ 20 mg/L has the potential to reduce antibiotic prescriptions for AECOPD in ambulatory settings by nearly 50%. Amoxicillin and doxycycline are commonly prescribed for AECOPD based on a favorable benefit-to-risk ratio. Prophylactic antibiotics have also been used in selected patients with severe COPD and frequent exacerbations. The use of continuous or intermittent azithromycin has demonstrated efficacy in reducing the frequency of AECOPD in this population; however, this approach has potential for the development of antibiotic resistance and adverse effects. The use of azithromycin prophylaxis in older patients with frequent AECOPD should be determined on a case-by-case basis after careful review, discussion, and counseling of the potential benefits and risks. The role of continuous doxycycline and pulsed moxifloxacin prophylaxis for frequent AECOPD remains controversial.
Collapse
Affiliation(s)
- Majdi N Al-Hasan
- Department of Medicine, Division of Infectious Diseases, University of South Carolina School of Medicine, Columbia, SC, USA. .,Prisma Health University of South Carolina Medical Group, Columbia, SC, USA.
| | | |
Collapse
|
46
|
Pishchany G, Kolter R. On the possible ecological roles of antimicrobials. Mol Microbiol 2020; 113:580-587. [PMID: 31975454 DOI: 10.1111/mmi.14471] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
The Introduction of antibiotics into the clinical use in the middle of the 20th century had a profound impact on modern medicine and human wellbeing. The contribution of these wonder molecules to public health and science is hard to overestimate. Much research has informed our understanding of antibiotic mechanisms of action and resistance at inhibitory concentrations in the lab and in the clinic. Antibiotics, however, are not a human invention as most of them are either natural products produced by soil microorganisms or semisynthetic derivatives of natural products. Because we use antibiotics to inhibit the bacterial growth, it is generally assumed that growth inhibition is also their primary ecological function in the environment. Nevertheless, multiple studies point to diverse nonlethal effects that are exhibited at lower levels of antibiotics. Here we review accumulating evidence of antibiosis and of alternative functions of antibiotics exhibited at subinhibitory concentrations. We also speculate on how these effects might alter phenotypes, fitness, and community composition of microbes in the context of the environment and suggest directions for future research.
Collapse
Affiliation(s)
- Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Structure-activity relationships of furanones, dihydropyrrolones and thiophenones as potential quorum sensing inhibitors. Future Med Chem 2020; 12:1925-1943. [PMID: 33094640 DOI: 10.4155/fmc-2020-0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since their initial isolation from the marine alga Delisea pulchra, bromofuranones have been investigated as potential inhibitors of quorum sensing (QS) in various bacterial strains. QS is an important mechanism by which bacteria co-ordinate their molecular response to the environment. QS is intrinsically linked to bacterial antibiotic resistance. Inspired by nature, chemists have developed a wide variety of synthetic analogs in an effort to elucidate the structure-activity relationships of these compounds, and to ultimately develop novel antimicrobial agents. In this work, we describe advances in this field while paying particular attention to apparent structure-activity relationships. This review is organized according to the main ring systems under investigation, namely furanones, dihydropyrrolones and thiophenones.
Collapse
|
48
|
Ibrahim YM, Abouwarda AM, Omar FA. Effect of kitasamycin and nitrofurantoin at subinhibitory concentrations on quorum sensing regulated traits of Chromobacterium violaceum. Antonie van Leeuwenhoek 2020; 113:1601-1615. [PMID: 32889593 DOI: 10.1007/s10482-020-01467-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Quorum sensing (QS) is a mechanism of intercellular communication in bacteria that received substantial attention as alternate strategy for combating bacterial resistance and the development of new anti-infective agents. The present investigation reports on the assessment of using subinhibitory concentrations of antibiotics for the inhibition of QS-regulated phenotypes in Chromobacterium violaceum. Primarily, the minimum inhibitory concentrations of a series of antibiotics were determined by a microdilution method. Subsequently, the inhibitory effects of selected antibiotics on QS-regulated traits, namely violacein and chitinase production, biofilm formation and motility were evaluated using C. violaceum CV026 and C. violaceum ATCC 12472. Results revealed that kitasamycin and nitrofurantoin exhibited the highest quorum sensing inhibitory (QSI) activity. The amount of violacein produced by C. violaceum was significantly reduced in the presence of either kitasamycin or nitrofurantoin. Moreover, the chitinolytic activity, biofilm formation, and motility were also impaired in kitasamycin or nitrofurantoin-treated cultures. We further confirmed QSI effects at the molecular level using molecular docking and real-time quantitative polymerase chain reaction (RT-qPCR). Results of molecular docking suggested that both antibiotics can interact with CviR transcriptional regulator of C. violaceum. Furthermore, RT-qPCR revealed the suppressive effect of kitasamycin and nitrofurantoin on five genes under the control of the CviI/CviR system: cviI, cviR, vioB, vioC, and vioD. Giving that kitasamycin and nitrofurantoin are being safely used for decades, this study emphasizes their potential application as antivirulence agents to disarm resistant bacterial strains, making their removal an easier task for the immune system or for another antibacterial agent.
Collapse
Affiliation(s)
- Yasser Musa Ibrahim
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, 12611, Egypt.
| | - Ahmed Megahed Abouwarda
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, 12611, Egypt
| | | |
Collapse
|
49
|
Hemmati F, Salehi R, Ghotaslou R, Samadi Kafil H, Hasani A, Gholizadeh P, Nouri R, Ahangarzadeh Rezaee M. Quorum Quenching: A Potential Target for Antipseudomonal Therapy. Infect Drug Resist 2020; 13:2989-3005. [PMID: 32922047 PMCID: PMC7457774 DOI: 10.2147/idr.s263196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
There has been excessive rate of use of antibiotics to fight Pseudomonas aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding some novel alternative therapeutic methods are necessary for the treatment of infections. The P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic resistance and mortality rate among the patients. In this regard, there are no approaches that can efficiently manage these infections; therefore, novel and effective antimicrobial and antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic alternatives and/or adjuvants to the current failing antibiotics, which can control the virulence traits of the pathogens, so as a result, the host immune system can quickly eliminate bacteria. Thus, the aims of this review article were presenting a brief explanation of the research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Di Pasquale M, Aliberti S, Mantero M, Gramegna A, Blasi F. Pharmacotherapeutic management of bronchial infections in adults: non-cystic fibrosis bronchiectasis and chronic obstructive pulmonary disease. Expert Opin Pharmacother 2020; 21:1975-1990. [PMID: 32808825 DOI: 10.1080/14656566.2020.1793958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Effective management of both acute and chronic bronchial infections is mandatory due to their high frequency rate, the relevant morbidity and mortality and the significant burden to health care systems, especially with the aging of population. Bacteria are the main causative pathogens, followed by viruses, and less commonly by fungi. The clinical evaluation of new therapeutic associations is mandatory to cope with the increases in resistance, in association with better infection control and antimicrobial policies. AREAS COVERED The authors searched Medline for any article published in English language up until March 1, 2020 that concerns the treatment of acute exacerbations and chronic infections in chronic obstructive respiratory disease and bronchiectasis. EXPERT OPINION As acute exacerbations are a main common and detrimental event in patients with COPD and bronchiectasis, effective antimicrobial therapies and regimens should be optimized. The development of new molecules or combination regimens is vital to patients with severe and/or difficult-to-treat infections. Moreover, chronic infection control is mandatory in these patients to their improve quality of life, respiratory function and prognosis as well as for reducing health care costs.
Collapse
Affiliation(s)
- Marta Di Pasquale
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan, Italy
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan, Italy
| | - Marco Mantero
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan, Italy
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan, Italy
| |
Collapse
|