1
|
Wang Y, Tu MJ, Yu AM. Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol 2024; 15:1423416. [PMID: 39114355 PMCID: PMC11303158 DOI: 10.3389/fphar.2024.1423416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.
Collapse
Affiliation(s)
| | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
2
|
Bulitta JB, Jiao Y, Landersdorfer CB, Sutaria DS, Tao X, Shin E, Höhl R, Holzgrabe U, Stephan U, Sörgel F. Comparable Bioavailability and Disposition of Pefloxacin in Patients with Cystic Fibrosis and Healthy Volunteers Assessed via Population Pharmacokinetics. Pharmaceutics 2019; 11:pharmaceutics11070323. [PMID: 31295857 PMCID: PMC6681055 DOI: 10.3390/pharmaceutics11070323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022] Open
Abstract
Quinolone antibiotics present an attractive oral treatment option in patients with cystic fibrosis (CF). Prior studies have reported comparable clearances and volumes of distribution in patients with CF and healthy volunteers for primarily renally cleared quinolones. We aimed to provide the first pharmacokinetic comparison for pefloxacin as a predominantly nonrenally cleared quinolone and its two metabolites between both subject groups. Eight patients with CF (fat-free mass [FFM]: 36.3 ± 6.9 kg, average ± SD) and ten healthy volunteers (FFM: 51.7 ± 9.9 kg) received 400 mg pefloxacin as a 30 min intravenous infusion and orally in a randomized, two-way crossover study. All plasma and urine data were simultaneously modelled. Bioavailability was complete in both subject groups. Pefloxacin excretion into urine was approximately 74% higher in patients with CF compared to that in healthy volunteers, whereas the urinary excretion of metabolites was only slightly higher in patients with CF. After accounting for body size and composition via allometric scaling by FFM, pharmacokinetic parameter estimates in patients with CF divided by those in healthy volunteers were 0.912 for total clearance, 0.861 for nonrenal clearance, 1.53 for renal clearance, and 0.916 for volume of distribution. Nonrenal clearance accounted for approximately 90% of total pefloxacin clearance. Overall, bioavailability and disposition were comparable between both subject groups.
Collapse
Affiliation(s)
- Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA.
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia
| | - Dhruvitkumar S Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Rainer Höhl
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, 90419 Nürnberg, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Ulrich Stephan
- IBMP-Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany
- Department of Pharmacology, University of Duisburg, 47057 Essen, Germany
| | - Fritz Sörgel
- IBMP-Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany.
- Department of Pharmacology, University of Duisburg, 47057 Essen, Germany.
| |
Collapse
|
3
|
Jiao Y, Kim TH, Tao X, Kinzig M, Landersdorfer CB, Drescher SK, Sutaria DS, Moya B, Holzgrabe U, Sörgel F, Bulitta JB. First population pharmacokinetic analysis showing increased quinolone metabolite formation and clearance in patients with cystic fibrosis compared to healthy volunteers. Eur J Pharm Sci 2018; 123:416-428. [DOI: 10.1016/j.ejps.2018.07.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 01/29/2023]
|
4
|
Mendes C, Meirelles GC, Silva MA, Ponchel G. Intestinal permeability determinants of norfloxacin in Ussing chamber model. Eur J Pharm Sci 2018; 121:236-242. [DOI: 10.1016/j.ejps.2018.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
|
5
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
6
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
7
|
Fernandez-Teruel C, Mangas-Sanjuan V, Gonzalez-Alvarez I, Ruiz-Garcia A, Casabó VG, Bermejo M. Mathematical modeling of oral absorption and bioavailability of a fluoroquinolone after its precipitation in the gastrointestinal tract. Xenobiotica 2013; 43:745-54. [DOI: 10.3109/00498254.2012.759667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Jin HE, Song B, Kim SB, Shim WS, Kim DD, Chong S, Chung SJ, Shim CK. Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug. Xenobiotica 2012; 43:355-67. [DOI: 10.3109/00498254.2012.720740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Affiliation(s)
- Marta Pinto
- University of Vienna, Department of Medicinal Chemistry , Althanstraße 14, A-1090 Vienna, Austria phone/fax: +431-4277-55110/-9551
| | | | | |
Collapse
|
10
|
Planas JM, Alfaras I, Colom H, Juan ME. The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Arch Biochem Biophys 2012; 527:67-73. [PMID: 22750234 DOI: 10.1016/j.abb.2012.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/05/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
Abstract
The ABC proteins are a family of membrane transporters that mediates the extrusion from cells of a wide variety of structurally unrelated substrates. The current review focuses on the role of these efflux pumps located in the intestine on the low oral bioavailability of trans-resveratrol. The enterocytes hold in the apical membrane three transporters, namely, P-glycoprotein (P-gp), multidrug resistance associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), whereas the basolateral membrane contains multidrug resistance associated protein 3 (MRP3). The use of different specific inhibitors of these transporters as well as knockout mice enabled us to conclude that MRP2 and BCRP are involved in the extrusion of trans-resveratrol glucuronide and sulfate to the intestinal lumen without the participation of P-gp. The role of these transporters as a bottleneck in the absorption of trans-resveratrol cannot be undervalued affecting not only the bioavailability of its glucuronide and sulfate but also their distribution in the different organs.
Collapse
Affiliation(s)
- Joana M Planas
- Departament de Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Joan XXIII s/n, E-08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
11
|
Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One 2012; 7:e30456. [PMID: 22348008 PMCID: PMC3277506 DOI: 10.1371/journal.pone.0030456] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/20/2011] [Indexed: 02/07/2023] Open
Abstract
Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats.
Collapse
|
12
|
Sarti F, Iqbal J, Müller C, Shahnaz G, Rahmat D, Bernkop-Schnürch A. Poly(acrylic acid)–cysteine for oral vitamin B12 delivery. Anal Biochem 2012; 420:13-9. [DOI: 10.1016/j.ab.2011.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
13
|
Shuker N, Bouamar R, Weimar W, van Schaik RHN, van Gelder T, Hesselink DA. ATP-binding cassette transporters as pharmacogenetic biomarkers for kidney transplantation. Clin Chim Acta 2011; 413:1326-37. [PMID: 21996082 DOI: 10.1016/j.cca.2011.09.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/21/2011] [Accepted: 09/27/2011] [Indexed: 01/11/2023]
Abstract
Immunosuppressive drugs used in organ transplantation are highly effective in preventing acute rejection. However, the clinical use of these drugs is complicated by the fact that they display highly variable pharmacokinetics and pharmacodynamics between individual patients. The influence of genetic variation on the interindividual variability in immunosuppressive drug disposition, efficacy, and toxicity has been explored in recent years. The polymorphically-expressed ATP-binding cassette (ABC) transporter proteins, in particular ABCB1 and ABCC2, have been investigated extensively because they play an important role in the absorption, distribution and elimination of many immunosuppressive drugs in use today. From these studies it can be concluded that polymorphisms in ABCB1 and ABCC2 have no consistent effect on immunosuppressant pharmacokinetics and toxicity although polymorphisms in ABCB1 appear to be related to the risk of developing calcineurin inhibitor-related nephrotoxicity. However, the latter needs to be replicated before an individual's ABCB1 genotype can become a useful marker that is applied in clinical practice. Future studies evaluating the influence of ABC transporter gene polymorphisms should explore the relationship with intracellular rather than systemic drug concentrations further in well-designed clinical studies. Until then, single-nucleotide polymorphisms in ABC transporter genes are not suitable to act as biomarkers for solid organ transplantation.
Collapse
Affiliation(s)
- Nauras Shuker
- Department of Hospital Pharmacy, Clinical Pharmacology Unit, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Yamaguchi H, Takeuchi T, Okada M, Kobayashi M, Unno M, Abe T, Goto J, Hishinuma T, Shimada M, Mano N. Screening of Antibiotics That Interact with Organic Anion-Transporting Polypeptides 1B1 and 1B3 Using Fluorescent Probes. Biol Pharm Bull 2011; 34:389-95. [DOI: 10.1248/bpb.34.389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Toshiko Takeuchi
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Masahiro Okada
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Minako Kobayashi
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Michiaki Unno
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Biomedical Engineering
| | - Junichi Goto
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Takanori Hishinuma
- Division of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Miki Shimada
- Department of Pharmaceutical Sciences, Tohoku University Hospital
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
15
|
Naruhashi K, Kurahashi Y, Fujita Y, Kawakita E, Yamasaki Y, Hattori K, Nishimura A, Shibata N. Comparison of the Expression and Function of ATP Binding Cassette Transporters in Caco-2 and T84 cells on Stimulation by Selected Endogenous Compounds and Xenobiotics. Drug Metab Pharmacokinet 2011; 26:145-53. [DOI: 10.2133/dmpk.dmpk-10-rg-075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Pal D, Kwatra D, Minocha M, Paturi DK, Budda B, Mitra AK. Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci 2010; 88:959-71. [PMID: 20932495 DOI: 10.1016/j.lfs.2010.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/26/2010] [Accepted: 08/28/2010] [Indexed: 01/11/2023]
Abstract
Multidrug regimens and corresponding drug interactions cause many adverse reactions and treatment failures. Drug efflux transporters: P-gp, MRP, BCRP in conjunction with metabolizing enzymes (CYPs) are major factors in such interactions. Most effective combination antiretrovirals (ARV) therapy includes a PI or a NNRTI or two NRTI. Coadministration of such ARV may induce efflux transporters and/or CYP3A4 resulting in sub-therapeutic blood levels and therapeutic failure due to reduced absorption and/or increased metabolism. A similar prognosis is true for ARV-compounds and drugs of abuse combinations. Morphine and nicotine enhance CYP3A4 and MDR1 expression in vitro. A 2.5 fold rise of cortisol metabolite was evident in smokers relative to nonsmokers. Altered functions of efflux transporters and CYPs in response to ARV and drugs of abuse may result in altered drug absorption and metabolism. Appropriate in vitro models can be employed to predict such interactions. Influence of genetic polymorphism, SNP and inter-individual variation in drug response has been discussed. Complexity underlying the relationship between efflux transporters and CYP makes it difficult to predict the outcome of HAART as such, particularly when HIV patients taking drugs of abuse do not adhere to HAART regimens. HIV(+) pregnant women on HAART medications, indulging in drugs of abuse, may develop higher viral load due to such interactions and lead to increase in mother to child transmission of HIV. A multidisciplinary approach with clear understanding of mechanism of interactions may allow proper selection of regimens so that desired therapeutic outcome of HAART can be reached without any side effects.
Collapse
Affiliation(s)
- Dhananjay Pal
- Division of Pharmaceutical Sciences, University of Missouri, Kansas City, MO 64108-2718, United States
| | | | | | | | | | | |
Collapse
|
17
|
REAL R, EGIDO E, PÉREZ M, GONZÁLEZ-LOBATO L, BARRERA B, PRIETO JG, ÁLVAREZ AI, MERINO G. Involvement of breast cancer resistance protein (BCRP/ABCG2) in the secretion of danofloxacin into milk: interaction with ivermectin. J Vet Pharmacol Ther 2010; 34:313-21. [DOI: 10.1111/j.1365-2885.2010.01241.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 2010; 42:402-36. [PMID: 20082599 DOI: 10.3109/03602530903491741] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABCC2/Abcc2 (MRP2/Mrp2) is expressed at major physiological barriers, such as the canalicular membrane of liver cells, kidney proximal tubule epithelial cells, enterocytes of the small and large intestine, and syncytiotrophoblast of the placenta. ABCC2/Abcc2 always localizes in the apical membranes. Although ABCC2/Abcc2 transports a variety of amphiphilic anions that belong to different classes of molecules, such as endogenous compounds (e.g., bilirubin-glucuronides), drugs, toxic chemicals, nutraceuticals, and their conjugates, it displays a preference for phase II conjugates. Phenotypically, the most obvious consequence of mutations in ABCC2 that lead to Dubin-Johnson syndrome is conjugate hyperbilirubinemia. ABCC2/Abcc2 harbors multiple binding sites and displays complex transport kinetics.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Chemical Research Center, Institute of Biomolecular Chemistry, HAS, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
19
|
Juan ME, González-Pons E, Planas JM. Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats. J Nutr 2010; 140:489-95. [PMID: 20089784 DOI: 10.3945/jn.109.114959] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
trans-Resveratrol, a natural antioxidant, has been described as a nutraceutic compound with important beneficial effects on health, but its low oral bioavailability hinders its therapeutic activity. Here, we studied the mechanisms of apical transport of trans-resveratrol in enterocytes and the role of ATP-binding cassette (ABC) transporters in the secretion of resveratrol glucuronide and sulfate resulting from the rapid intracellular metabolism. An intestinal perfusion method with recirculation in vivo was used in rats. Jejunal loops were perfused with increasing concentrations of trans-resveratrol and results showed that its uptake occurs by simple diffusion without the participation of a mediated transport. The apparent diffusion constant was 8.1 +/- 0.3 microL/(5 min.mg dry weight). The glycoprotein-P (Pgp, ABCB1), multidrug resistance-associated protein 2 (MRP2, ABCC2), and breast cancer resistance protein (BCRP, ABCG2) located in the apical membrane of enterocytes were investigated using specific inhibitors. The Pgp inhibitors verapamil (5 micromol/L) and cyclosporin A (5 micromol/L) did not affect the efflux of trans-resveratrol and its conjugates. The MRP2 inhibitors probenecid (2 mmol/L) and MK571 (10 micromol/L) reduced the efflux of glucuronide by 61 and 55%, respectively, and of sulfate by 43 and 28%, respectively. The BCRP inhibitor Ko143 (0.5 micromol/L) decreased the secretion of glucuronide by 64% and of sulfate by 46%. Our experiments identify MRP2 and BCRP as the 2 apical transporters involved in the efflux of resveratrol conjugates.
Collapse
Affiliation(s)
- M Emília Juan
- Departament de Fisiologia (Farmàcia) and Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona E-08028, Spain.
| | | | | |
Collapse
|
20
|
|
21
|
In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for MRP2 efflux pump substrates. Eur J Pharm Biopharm 2009; 72:561-6. [DOI: 10.1016/j.ejpb.2009.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/13/2009] [Accepted: 03/24/2009] [Indexed: 01/19/2023]
|
22
|
Xing L, Hu Y, Lai Y. Advancement of structure-activity relationship of multidrug resistance-associated protein 2 interactions. AAPS JOURNAL 2009; 11:406-13. [PMID: 19495992 DOI: 10.1208/s12248-009-9117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/18/2009] [Indexed: 11/30/2022]
Abstract
Multidrug resistance-associated protein 2 (MRP2/ABCC2) is mainly expressed in the apical phase of barrier membranes. It functions as a critical efflux pump in the biliary excretion of endogenous substances, such as conjugated bilirubin and bile salts, as well as many structurally diverse xenobiotics and their metabolites. Due to its important role in defining ADME/Tox properties, efforts have emerged to build the structure-activity relationship (SAR) for MRP2/ABCC2 at early stages of drug discovery process. MRP2/ABCC2 is a member of the integral membrane protein family whose high-resolution crystal structure has not been described. To overcome the obstacle of lacking detailed structural depiction, various molecular modeling approaches have been applied to derive the structural requirements for binding interactions with MRP2/ABCC2 protein, including two-dimensional (2D) and three-dimensional (3D) quantitative SAR (QSAR) analysis, pharmacophore models, and homology modeling of the transporter. Here we summarize recent progresses in understanding the SAR of MRP2/ABCC2 recognition of substrates and/or inhibitors, and describe some of the useful in vitro tools for characterizing the interactions with the transporter.
Collapse
Affiliation(s)
- Li Xing
- St Louis Laboratories, Pfizer Global Research and Development, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | | | | |
Collapse
|
23
|
Ohnishi M, Hitoshi K, Katoh M, Nadai M, Abe F, Kurono S, Saito H, Haniuda M, Hasegawa T. Effect of a Kampo preparation, byakkokaninjinto, on pharmacokinetics of ciprofloxacin and tetracycline. Biol Pharm Bull 2009; 32:1080-4. [PMID: 19483319 DOI: 10.1248/bpb.32.1080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect on the bioavailability of the antimicrobial agents (ciprofloxacin and tetracycline), which are well known to form chelates with cationic metals such as calcium, was evaluated in 20 healthy male volunteers according to an open, random crossover fashion using a Kampo preparation, byakkokaninjinto (TJ-34) which contains various cationic metals including calcium. Each subject received a single oral dose of tetracycline (250 mg) alone or ciprofloxacin (200 mg) alone along with a single coadministration of one pack (3 g) of the Kampo preparation, at one-week intervals. Concentrations of the drugs in plasma and urine were analyzed by HPLC. Concomitant administration of the Kampo preparation significantly decreased the peak plasma concentration (C(max)) and area under the plasma concentration-time curves (AUC), but not time to reach C(max) (T(max)), of ciprofloxacin and tetracycline. However, the decrease in bioavailability of ciprofloxacin was slight (15%) compared with that of tetracycline (30%). The Kampo preparation significantly decreased the urinary recovery of tetracycline, but not ciprofloxacin, and it had no effect on the renal clearance of either ciprofloxacin or tetracycline. These results indicate that the Kampo preparation tested in this study reduces the extent of bioavailability of ciprofloxacin and tetracycline, but not renal excretion, by decreasing the gastrointestinal absorption due to the formation of insoluble chelates with calcium. We recommend that the dose timing of the Kampo preparation should be carefully controlled to avoid therapeutic failure especially for patients receiving the treatment with tetracycline.
Collapse
Affiliation(s)
- Masafumi Ohnishi
- Department of Pharmacy and Pharmacokinetics, Aichi Medical University School of Medicine, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oostendorp RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 2009; 35:137-47. [DOI: 10.1016/j.ctrv.2008.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/17/2008] [Accepted: 09/20/2008] [Indexed: 11/27/2022]
|
25
|
Kato S, Ito K, Kato Y, Wakayama T, Kubo Y, Iseki S, Tsuji A. Involvement of multidrug resistance-associated protein 1 in intestinal toxicity of methotrexate. Pharm Res 2009; 26:1467-76. [PMID: 19288182 DOI: 10.1007/s11095-009-9858-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/17/2009] [Indexed: 12/21/2022]
Abstract
PURPOSE Methotrexate (MTX) causes dose-limiting gastrointestinal toxicity due to exposure of intestinal tissues, and is a substrate of the multidrug resistance-associated protein (MRP) 1. Here we examine the involvement of MRP1, which is reported to be highly expressed in the proliferative crypt compartment of the small intestine, in the gastrointestinal toxicity of MTX. METHODS MTX was intraperitoneally administered to mrp1 gene knockout (mrp1 ((-/-))) and wild-type (mrp1 ((+/+))) mice. Body weight, food and water intake were monitored, intestinal histological studies and pharmacokinetics of MTX were examined. RESULTS mrp1 ((-/-)) mice more severely decreased body weight, food and water intake than mrp1 ((+/+)) mice. Almost complete loss of villi throughout the small intestine in mrp1 ((-/-)) mice was observed, whereas the damage was only partial in mrp1 ((+/+)) mice. Plasma concentration and biliary excretion profiles of MTX were similar in mrp1 ((-/-)) and mrp1 ((+/+)) mice, though accumulation of MTX in immature proliferative cells isolated from mrp1 ((-/-)) mice was much higher compared to mrp1 ((+/+)) mice. Immunostaining revealed localization of Mrp1 in plasma membrane of the intestinal crypt compartment in mrp1 ((+/+)) mice, but not in mrp1 ((-/-)) mice. CONCLUSION Mrp1 determines the exposure of proliferative cells in the small intestine to MTX, followed by gastrointestinal toxicity.
Collapse
Affiliation(s)
- Sayaka Kato
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res 2009; 34:1-9. [PMID: 19172464 DOI: 10.1080/02713680802518251] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Breast Cancer Resistance Protein (BCRP) belongs to the family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify the presence and possible role of BCRP as a barrier for ocular drug resistance. METHODS Transfected human corneal epithelial cells (SV40-HCEC) were selected as an in vitro model for corneal epithelium with MDCKII-BCRP as positive control. [(3)H]-Mitoxantrone ([(3)H]-MTX), which is a proven substrate for organic anion transporter like BCRP, was selected as a model drug for functional expression studies. Fumetremorgin C (FTC), a known specific inhibitor for BCRP and GF120918, an inhibitor for BCRP and P-gp, were added to inhibit BCRP-mediated efflux. PGP-4008, a specific inhibitor of P-gp was used to delineate the contribution of P-gp. The mRNA extracted from cells was used for RT-PCR analysis and gene expression. Membrane fractions of SV40-HCEC and MDCKII-BCRP were used for immunoprecipitation followed by Western blot analysis. RESULTS Efflux was inhibited significantly in the presence of FTC and GF120918. Dose-dependent inhibition of efflux by BCRP was noticed in SV40-HCEC and MDCKII-BCRP in the presence of FTC and GF120918, and the efflux was ATP-dependent. The metabolic inhibitor, 2,4-DNP, significantly inhibited efflux. No pH-dependent efflux was noticed except at pH 5.5. RT-PCR analysis indicated a unique and distinct band at approximately 429 bp, corresponding to BCRP in SV40-HCEC and MDCKII-BCRP cells. Western Blot analysis indicated a specific band at approximately 70 kDa in the membrane fraction of SV40-HCEC and MDCKII-BCRP cells. CONCLUSIONS We have demonstrated the expression of BCRP in human corneal epithelial cells and, for the first time, demonstrated its functional activity leading to drug efflux. RT-PCR and Western blot analysis further confirmed this finding.
Collapse
Affiliation(s)
- Pradeep K Karla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | | | |
Collapse
|
27
|
Daodee S, Wangboonskul J, Jarukamjorn K, Sripanidkulchai BO, Murakami T. Membrane transport of andrographolide in artificial membrane and rat small intestine. Pak J Biol Sci 2009; 10:2078-85. [PMID: 19093450 DOI: 10.3923/pjbs.2007.2078.2085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, the possible drug interactions of andrographolide with co-administering drugs such as acetaminophen, amoxycillin, aspirin, chlorpheniramine and norfloxacin to treat various infectious and inflammatory diseases that may be induced during absorption process were examined using artificial lipophilic membrane and everted rat intestine. The membrane transport of andrographolide across the artificial membrane was not affected by different pH of the medium (simulated gastric and intestinal fluids), different concentrations of andrographolide and co-administered drugs examined. In everted rat intestine, above co-administered drugs examined showed no significant effect on andrographolide membrane transport. The participation of efflux transporters such as P-glycoprotein and MRP2 in andrographolide transport was then examined, since andrographolide is a diterpene compound and some diterpene compounds are known as P-glycoprotein substrates. Cyclosporine, a P-glycoprotein/MRP2 inhibitor, significantly suppressed the efflux transport of andrographolide in distal region of intestine, whereas probenecid, an MRP inhibitor, showed no significant effect in both proximal and distal regions of intestine. These results suggest that P-glycoprotein, but not MRP, is participated in the intestinal absorption of andrographolide and P-glycoprotein-mediated drug interactions occur depending on the co-administered drugs and its concentrations.
Collapse
Affiliation(s)
- Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | |
Collapse
|
28
|
Alvarez AI, Pérez M, Prieto JG, Molina AJ, Real R, Merino G. Fluoroquinolone efflux mediated by ABC transporters. J Pharm Sci 2008; 97:3483-93. [PMID: 18200507 DOI: 10.1002/jps.21233] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quinolones and fluoroquinolones are broad spectrum bactericidal drugs, which are widely used in both human and veterinary medicine. These drugs can quite easily enter cells and are often used to treat intracellular pathogens. Some fluoroquinolones have been reported to undergo efflux, which could explain their low bioavailability. There is a growing need to understand resistance mechanisms to quinolones, involving for instance mutations or the action of efflux pumps. Several members of the ATP-binding cassette (ABC) drug efflux transporter family (MDR, MRP, ABCG2) significantly affect the pharmacokinetic disposition of quinolones. Active secretory mechanisms common to all fluoroquinolones have been suggested, as well as competition between fluoroquinolones at transporter sites. For grepafloxacin and its metabolites, MRP2 has been demonstrated to mediate biliary excretion. However, MDR1 is responsible for grepafloxacin intestinal secretion. Recently it has been shown that ciprofloxacin and enrofloxacin are efficiently transported ABCG2 substrates which are actively secreted into milk. It appears that multiple ABC transporters contribute to the overall secretion of fluoroquinolones. The objective of this work is to review the recent advances in insights into ABC transporters and their effects on fluoroquinolone disposition and resistance including data on drug secretion into milk.
Collapse
Affiliation(s)
- Ana I Alvarez
- Department of Biomedical Sciences, Physiology, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Ohta KY, Imamura Y, Okudaira N, Atsumi R, Inoue K, Yuasa H. Functional characterization of multidrug and toxin extrusion protein 1 as a facilitative transporter for fluoroquinolones. J Pharmacol Exp Ther 2008; 328:628-34. [PMID: 19004926 DOI: 10.1124/jpet.108.142257] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many fluoroquinolones are mainly eliminated by urinary excretion, in which tubular secretion by carrier-mediated transport systems has been suggested to be involved. In the present study, we examined the possibility that multidrug and toxin extrusion protein (MATE) 1, which is abundantly expressed in the kidney, might be involved in that, using rat MATE (rMATE) 1 expressed in MDCKII cells. It was found that rMATE1 can transport fluoroquinolones such as ciprofloxacin, enoxacin, gatifloxacin, levofloxacin, norfloxacin (NFX), pazufloxacin, and tosufloxacin. Although rMATE1 has been known as an apical organic cation/H(+) antiporter, detailed investigation of rMATE1-mediated uptake of NFX has revealed that it is not sensitive to intracellular acidification by treatments using NH(4)Cl or nigericin, suggesting that the transmembrane proton gradient is not involved in its transport as a driving force. However, it was dependent on extracellular pH, being greatest at pH 7.0 and smaller at both acidic and basic pH in agreement with the profile of zwitterionization of NFX. The basal-to-apical transcellular transport of NFX in rMATE1-expressing MDCKII cells was greater than that in mock cells and insensitive to acidification of the apical medium, demonstrating proton gradient-independent functionality of rMATE1 in NFX efflux. Finally, rMATE1-mediated NFX uptake at pH 7.4 was saturable with the Michaelis constant of 55.3 microM and inhibited by cationic compounds, such as TEA and cimetidine. These results suggest that rMATE1 mediates the transport of NFX by a facilitative manner. MATE1 may play a key role in the renal tubular secretion of fluoroquinolones.
Collapse
Affiliation(s)
- Kin-ya Ohta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Hariharan S, Gunda S, Mishra GP, Pal D, Mitra AK. Enhanced corneal absorption of erythromycin by modulating P-glycoprotein and MRP mediated efflux with corticosteroids. Pharm Res 2008; 26:1270-82. [PMID: 18958406 DOI: 10.1007/s11095-008-9741-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/29/2008] [Indexed: 12/17/2022]
Abstract
PURPOSE The objectives were (i) to test in vivo functional activity of MRP2 on rabbit corneal epithelium and (ii) to evaluate modulation of P-gp and MRP2 mediated efflux of erythromycin when co-administered with corticosteroids. METHODS Cultured rabbit primary corneal epithelial cells (rPCECs) was employed as an in vitro model for rabbit cornea. Cellular accumulation and bi-directional transport studies were conducted across Madin-Darby Canine Kidney (MDCK) cells overexpressing MDR1 and MRP2 proteins to delineate transporter specific interaction of steroids. Ocular pharmacokinetic studies were conducted in rabbits following a single-dose infusion of erythromycin in the presence of specific inhibitors and steroids. RESULTS Bi-directional transport of erythromycin across MDCK-MDR1 and MDCK-MRP2 cells showed significant difference between BL-AP and AP-BL permeability, suggesting that erythromycin is a substrate for P-gp and MRP2. Cellular accumulation of erythromycin in rPCEC was inhibited by steroids in a dose dependent manner. MK571, a specific MRP inhibitor, modulated the aqueous humor concentration of erythromycin in vivo. Even, steroids inhibited P-gp and MRP2 mediated efflux with maximum increase in k(a), AUC(0-infinity), C(max) and C(last) values of erythromycin, observed with 6alpha-methyl prednisolone. CONCLUSION MRP2 is functionally active along with P-gp in effluxing drug molecules out of corneal epithelium. Steroids were able to significantly inhibit both P-gp and MRP2 mediated efflux of erythromycin.
Collapse
Affiliation(s)
- Sudharshan Hariharan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
|
33
|
González-Alvarez I, Fernández-Teruel C, Garrigues TM, Casabo VG, Ruiz-García A, Bermejo M. Kinetic modelling of passive transport and active efflux of a fluoroquinolone across Caco-2 cells using a compartmental approach in NONMEM. Xenobiotica 2008; 35:1067-88. [PMID: 16418062 DOI: 10.1080/00498250500354469] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose was to develop a general mathematical model for estimating passive permeability and efflux transport parameters from in vitro cell culture experiments. The procedure is applicable for linear and non-linear transport of drug with time, <10 or >10% of drug transport, negligible or relevant back flow, and would allow the adequate correction in the case of relevant mass balance problems. A compartmental kinetic approach was used and the transport barriers were described quantitatively in terms of apical and basolateral clearances. The method can be applied when sink conditions are not achieved and it allows the evaluation of the location of the transporter and its binding site. In this work it was possible to demonstrate, from a functional point of view, the higher efflux capacity of the TC7 clone and to identify the apical membrane as the main resistance for the xenobiotic transport. This methodology can be extremely useful as a complementary tool for molecular biology approaches in order to establish meaningful hypotheses about transport mechanisms.
Collapse
Affiliation(s)
- I González-Alvarez
- Dipartamento de Farmacia y Tecnología Farmaceutica, Facultad de Farmacia, Universidad de Valencia, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Ujie K, Oda M, Kobayashi M, Saitoh H. Relative contribution of absorptive and secretory transporters to the intestinal absorption of fexofenadine in rats. Int J Pharm 2008; 361:7-11. [DOI: 10.1016/j.ijpharm.2008.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/07/2008] [Accepted: 05/01/2008] [Indexed: 01/25/2023]
|
35
|
HARITOVA AM, SCHRICKX J, LASHEV LD, FINK-GREMMELS J. Expression of MDR1, MRP2 and BCRP mRNA in tissues of turkeys. J Vet Pharmacol Ther 2008; 31:378-85. [DOI: 10.1111/j.1365-2885.2008.00968.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Sun H, Chow EC, Liu S, Du Y, Pang KS. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol 2008; 4:395-411. [PMID: 18433344 DOI: 10.1517/17425255.4.4.395] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The Caco-2 monolayer has been used extensively for the high-throughput screening of drug permeability and identification of substrates, inhibitors, and inducers of intestinal transporters, especially P-glycoprotein (P-gp). Traditionally, the Caco-2 monolayer is viewed as a single barrier rather than a polarized cell monolayer consisting of metabolic enzymes that are sandwiched between two membrane barriers with distinctly different transporters. OBJECTIVE This review addressed the usefulness and limitations of the Caco-2 cell monolayer in drug discovery and mechanistic studies. METHODS This mini-review covered applications of the Caco-2 monolayer, clarified misconceptions, and critically addressed issues on data interpretation. CONCLUSION The catenary model extends the usefulness of Caco-2 monolayer and provides proper mechanistic insight and data interpretation.
Collapse
Affiliation(s)
- Huadong Sun
- University of Toronto, Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Toronto, M5S 3M2, Canada +1 416 978 6164 ; +1 416 978 8511 ;
| | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Intestinal drug metabolism and transport are now well recognized determinants of drug disposition in humans. During the last decade, various animal models lacking drug transporters have been generated in order to investigate the role of transporters for drug absorption, distribution and elimination. OBJECTIVE In this review the use of the animal models for the investigation of intestinal drug transport will be discussed. METHODS Publications describing the use of knockout animals (e.g., P-glycoprotein, Bcrp, and Oct1) regarding intestinal drug transport and animals characterized by mutations in transporters genes (e.g., Mrp2) were mainly considered for this review. RESULTS/CONCLUSION Knockout mouse models for ABC transporters are highly valuable tools to investigate the role of intestinal efflux transporters for the bioavailability of various compounds.
Collapse
Affiliation(s)
- Hartmut Glaeser
- Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Experimental and Clinical Pharmacology and Toxicology, Erlangen, Germany.
| | | |
Collapse
|
38
|
Usansky HH, Hu P, Sinko PJ. Differential Roles of P-Glycoprotein, Multidrug Resistance-Associated Protein 2, and CYP3A on Saquinavir Oral Absorption in Sprague-Dawley Rats. Drug Metab Dispos 2008; 36:863-9. [DOI: 10.1124/dmd.107.017483] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
May K, Minarikova V, Linnemann K, Zygmunt M, Kroemer HK, Fusch C, Siegmund W. Role of the Multidrug Transporter Proteins ABCB1 and ABCC2 in the Diaplacental Transport of Talinolol in the Term Human Placenta. Drug Metab Dispos 2008; 36:740-4. [DOI: 10.1124/dmd.107.019448] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
40
|
Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, Tamai I. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm 2007; 4:85-94. [PMID: 17274666 DOI: 10.1021/mp060082j] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinolone antibacterial agents exhibit high intestinal absorption, selective tissue distribution, and renal and biliary excretion. Several ATP-binding cassette transporters are involved in efflux transport of these agents, but no influx transporters have yet been molecularly identified. In the present study, we aimed to identify the influx transporter(s) of quinolone antibiotics using levofloxacin as a model compound. Several candidate transporter genes were selected based on differential expression of mRNAs among Caco-2 cell subclones that exhibited differential uptake activities for levofloxacin. Based on a functional analysis of each transporter gene for which a good correlation was found between expression level and levofloxacin transport activity in the Caco-2 subclones, organic anion transporting polypeptide 1A2 (OATP1A2 (OATP-A), SLCO1A2) was concluded to transport levofloxacin. When OATP1A2 was expressed in Xenopus oocytes, levofloxacin transport was essentially pH-independent and was not stereoselective. OATP1A2-mediated uptake of levofloxacin showed a K(m) value of 136 microM. Apparent uptake of levofloxacin by Caco-2 cells showed high- and low-affinity components with K(m) values of 0.489 and 14.6 mM, respectively. Accordingly, plural transporters are functional for the transport of levofloxacin in Caco-2 cells, and OATP1A2 is likely to function as a high-affinity transporter. The inhibitory effects and the expression of transport activity of other quinolone antibacterial agents suggested that OATP1A2 commonly transports all the agents tested. In conclusion, this is the first identification of an influx transporter for fluoroquinolones, and the results suggest that active influx transport at least partially explains the high membrane permeability of the quinolone agents in various tissues.
Collapse
|
41
|
Lai Y, Xing L, Poda GI, Hu Y. Structure-Activity Relationships for Interaction with Multidrug Resistance Protein 2 (ABCC2/MRP2): The Role of Torsion Angle for a Series of Biphenyl-Substituted Heterocycles. Drug Metab Dispos 2007; 35:937-45. [PMID: 17371800 DOI: 10.1124/dmd.106.013250] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein 2 (ABCC2/MRP2) is an ATP-binding cassette transporter involved in the absorption, distribution, and excretion of drugs and xenobiotics. Identifying compounds that are ABCC2/MRP2 substrates and/or inhibitors and understanding their structure-activity relationships (SARs) are important considerations in the selection and optimization of drug candidates. In the present study, the interactions between ABCC2/MRP2 and a series of biphenyl-substituted heterocycles were evaluated using Caco-2 cells and human ABCC2/MRP2 gene-transfected Madin-Darby canine kidney cells. It was observed that ABCC2/MRP2 transport and/or inhibition profile, both in nature and in magnitude, depends strongly on the substitution patterns of the biphenyl system. In particular, different ortho-substitutions cause various degrees of twisting between the two-phenyl rings, resulting in changing interactions between the ligands and ABCC2/MRP2. The compounds with small ortho functions (hydrogen, fluorine, and oxygen) and, thus, the ones displaying the smallest torsion angles of biphenyl (37-45 degrees) are neither substrates nor inhibitors of human ABCC2/MRP2. The transporter interactions increase as the steric bulkiness of the ortho-substitutions increase. When the tested compounds are 2-methyl substituted biphenyls, they exhibit moderate torsion angles (54-65 degrees) and behave as ABCC2/MRP2 substrates as well as mild inhibitors [10-40% compared with 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethyl-sulfanyl)methylsulfanyl] propionic acid (MK571)]. For the 2,2'-dimethyl substituted biphenyls, the torsions are enhanced (78-87 degrees) and so is the inhibition of ABCC2/MRP2. This class of compounds behaves as strong inhibitors of ABCC2/MRP2. These results can be used to define the three-dimensional structural requirements of ABCC2/MRP2 interaction with their substrates and inhibitors, as well as to provide SAR guidance to support drug discovery.
Collapse
Affiliation(s)
- Yurong Lai
- Pharmacokinetic, Dynamics, & Metabolism, Pfizer, Inc. St Louis Laboratory, Chesterfield, MO 63017, USA.
| | | | | | | |
Collapse
|
42
|
Schrickx JA, Fink-Gremmels J. Danofloxacin-mesylate is a substrate for ATP-dependent efflux transporters. Br J Pharmacol 2007; 150:463-9. [PMID: 17211460 PMCID: PMC2189727 DOI: 10.1038/sj.bjp.0706974] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/28/2006] [Accepted: 10/16/2006] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Next to its broad antimicrobial spectrum, the therapeutic advantages of the fluoroquinolone antimicrobial drug Danofloxacin-Mesylate (DM) are attributed to its rapid distribution to the major target tissues such as lungs, intestines and the mammary gland in animals. Previous analyses revealed that effective drug concentrations are achieved also in luminal compartments of these organs, suggesting that active transport proteins facilitate excretion into the luminal space. Members of the ATP-Binding Cassette (ABC) superfamily, including P-gp, BCRP and MRP2 are known to be expressed in many tissue barriers and in cell-membranes facing luminal compartments. Hence we hypothesized that DM is a substrate for one of these efflux-transporters. EXPERIMENTAL APPROACH Confluent monolayers of Caco-2 cells, grown on microporous membranes in two-chamber devices were used. DM concentrations were measured by fluorimetric assay after HPLC of the culture media. KEY RESULTS DM transport across Caco-2 cells was asymmetric, with a rate of secretion exceeding that of absorption. The P-gp inhibitors PSC833 and GF120918 and the MRP-inhibitor MK571 partially decreased the secretion of DM and increased its absorption rate. The BCRP inhibitor, Ko143, decreased secretion only at a concentration of 1 microM. When DM was applied together with ciprofloxacin, secretion as well as absorption of DM decreased. CONCLUSIONS AND IMPLICATIONS DM is a substrate for the efflux transporters P-gp and MRP2, whereas the specific role of BCRP in DM transport needs further evaluation. These findings provide a mechanistic basis for the understanding of the pharmacokinetics of DM in healthy and diseased individuals.
Collapse
Affiliation(s)
- J A Schrickx
- Department of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
43
|
Karla PK, Pal D, Quinn T, Mitra AK. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm 2006; 336:12-21. [PMID: 17156953 PMCID: PMC1995119 DOI: 10.1016/j.ijpharm.2006.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 01/12/2023]
Abstract
Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium, thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the P-glycoprotein (P-gp) in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multidrug resistance associated proteins (MRPs) contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40-HCEC and rPCEC were selected for in vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [(3)H]-cyclosporine-A and [(14)C]-erythromycin, which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at approximately 272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC, and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band approximately 181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at approximately 190 kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [(3)H]-cyclosporine-A and [(14)C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40-HCEC and rPCEC. Similarly a significant elevation in (A-->B) permeability of [(3)H]-cyclosporine-A and [(14)C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A-->B transport of [(3)H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding.
Collapse
Affiliation(s)
- Pradeep K. Karla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64110
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64110
| | - Tim Quinn
- University of Missouri at Kansas City, Medical School, MEDLAB-Pulmonary & Infectious Disease Research, Kansas City, Missouri, 64108
| | - Ashim K. Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64110
| |
Collapse
|
44
|
Karla PK, Pal D, Mitra AK. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells. Exp Eye Res 2006; 84:53-60. [PMID: 17083930 DOI: 10.1016/j.exer.2006.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/24/2006] [Accepted: 08/28/2006] [Indexed: 12/21/2022]
Abstract
Multidrug resistance associated protein (MRP) is a major family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify if the role of efflux transporters. MRP-2 is a major homologue of MRP family and found to express on the apical side of cell membrane. Cultured Rabbit Corneal Epithelial Cells (rCEC) were selected as an in vitro model for corneal epithelium. [14C]-erythromycin which is a proven substrate for MRP-2 was selected as a model drug for functional expression studies. MK-571, a known specific and potent inhibitor for MRP-2 was added to inhibit MRP mediated efflux. Membrane fraction of rCEC was used for western blot analysis. Polarized transport of [14C]-erythromycin was observed in rCEC and transport from B-->A was significantly high than from A-->B. Permeability's increased significantly from A-->B in the presence of MK-571 and ketoconozole. Uptake of [14C]-erythromycin in the presence of MK-571 was significantly higher than control in rCEC. RT-PCR analysis indicated a unique and distinct band at approximately 498 bp corresponding to MRP-2 in rCEC and MDCK11-MRP-2 cells. Immunoprecipitation followed by Western Blot analysis indicated a specific band at approximately 190 kDa in membrane fraction of rCEC and MDCK11-MRP-2 cells. For the first time we have demonstrated high expression of MRP-2 in rabbit corneal epithelium and its functional activity causing drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis further confirms the result.
Collapse
Affiliation(s)
- Pradeep K Karla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | | | |
Collapse
|
45
|
Pal D, Mitra AK. MDR- and CYP3A4-Mediated Drug–Drug Interactions. J Neuroimmune Pharmacol 2006; 1:323-39. [DOI: 10.1007/s11481-006-9034-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/16/2006] [Indexed: 11/30/2022]
|
46
|
Yokooji T, Murakami T, Yumoto R, Nagai J, Takano M. Function of multidrug resistance-associated protein 2 in acute hepatic failure rats. Eur J Pharmacol 2006; 546:152-60. [PMID: 16899240 DOI: 10.1016/j.ejphar.2006.06.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 06/08/2006] [Accepted: 06/26/2006] [Indexed: 01/05/2023]
Abstract
The function of multidrug resistance-associated protein 2 (Mrp2) in the intestine and liver, as well as intestinal Mrp2 expression, was analyzed in CCl(4)-induced acute hepatic failure rats with hyperbilirubinemia. The plasma level of bilirubin glucuronides, endogenous Mrp2-substrates, was 26 microM at 24 h after CCl(4) treatment. Mrp2 protein levels in jejunum decreased to 41% of control level. Mrp2-mediated efflux of 2,4-dinitrophenyl-S-glutathione (DNP-GSH), an Mrp2-substrate, in jejunum decreased to 31% of control in vitro, and was almost completely suppressed in vivo to the same level as that in the presence of probenecid, an Mrp2-inhibitor. Biliary excretion of DNP-GSH was suppressed to the same level as that inhibited by intravenous probenecid. The suppression of Mrp2 and the increased plasma bilirubin glucuronides recovered within 24 h thereafter. These results suggest that hyperbilirubinemia in disease states may be related to the systemic suppression of Mrp2 function.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
47
|
Nakayama H, Kitaichi K, Kanazawa H, Ando M, Fujimoto Y, Takagi K, Takagi K, Hasegawa T. Effect of Shiga-like toxin II from Escherichia coli O157:H7 on intestinal clearance of norfloxacin in rats. Life Sci 2006; 78:1967-74. [PMID: 16280134 DOI: 10.1016/j.lfs.2005.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection causes severe clinical symptoms, due to its bacterial toxin, called Shiga-like toxin (SLT). However, little is known about the information to establish a safe and efficient prescription to treat for EHEC O157:H7 patients. Thus, we investigated the effect of SLT-II on intestinal function in rats by using the antibiotic norfloxacin (NFLX) as a model drug. The intestinal clearance (CLi) of NFLX, determined by loop method in the jejunum, was significantly decreased by SLT-II. In histopathological experiment, epithalaxia was observed in SLT-II-treated rats without structural changes of tight junction suggesting the deterioration of active transport systems by SLT-II. CLi of NFLX in normal rats was decreased by carnitine (CAR), suggesting the possible involvement of CAR-sensitive transporter in CLi of NFLX. Taken together, these results suggest that the EHEC O157:H7 infection might affect the intestinal disposition of NFLX due to the changing intestinal expression/function of drug transporters by SLT-II.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Technology, Nagoya University School of Health Sciences, 1-1-20 Daikominami, Nagoya 461-8763, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kikuchi A, Nozawa T, Wakasawa T, Maeda T, Tamai I. Transporter-mediated Intestinal Absorption of Fexofenadine in Rats. Drug Metab Pharmacokinet 2006; 21:308-14. [PMID: 16946558 DOI: 10.2133/dmpk.21.308] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both influx and efflux transporters are thought to be involved in the intestinal absorption of fexofenadine. The present study examined the influx transporter-mediated intestinal absorption of fexofenadine in rats, focusing on the role of rat oatp3 (Oatp1a5). The intestinal permeability of fexofenadine was evaluated by means of the Ussing chamber method in the presence of a P-glycoprotein inhibitor to block efflux transport. The permeability of fexofenadine from the mucosal to the serosal side was higher than that from the serosal side to the mucosal side. Transport of fexofenadine was saturable, and was significantly decreased by an organic anion transporting polypeptide (oatp) inhibitor. Furthermore, uptake of fexofenadine by Xenopus oocytes expressing rat oatp3 was significantly greater than that by water-injected oocytes, and the affinity of oatp3 for fexofenadine (Km) was about 60 microM, which is comparable with the value obtained by the Ussing chamber method using rat intestinal tissues. These results indicate that oatp3 plays a role as an influx transporter in the intestinal absorption of fexofenadine in rats.
Collapse
Affiliation(s)
- Akihiro Kikuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda, Chiba, Japan
| | | | | | | | | |
Collapse
|
49
|
Katragadda S, Budda B, Anand BS, Mitra AK. Role of efflux pumps and metabolising enzymes in drug delivery. Expert Opin Drug Deliv 2005; 2:683-705. [PMID: 16296794 DOI: 10.1517/17425247.2.4.683] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The impact of efflux pumps and metabolic enzymes on the therapeutic activity of various drugs has been well established. The presence of efflux pumps on various tissues and tumours has been shown to regulate the intracellular concentration needed to achieve therapeutic activity. The notable members of efflux proteins include P-glycoprotein, multi-drug resistance protein and breast cancer resistance protein. These efflux pumps play a pivotal role not only in extruding xenobiotics but also in maintaining the body's homeostasis by their ubiquitous presence and ability to coordinate among themselves. In this review, the role of efflux pumps in drug delivery and the importance of their tissue distribution is discussed in detail. To improve pharmacokinetic parameters of substrates, various strategies that modulate the activity of efflux proteins are also described. Drug metabolising enzymes mainly include the cytochrome P450 family of enzymes. Extensive drug metabolism due to the this family of enzymes is the leading cause of therapeutic inactivity. Therefore, the role of metabolising enzymes in drug delivery and disposition is extensively discussed in this review. The synergistic relationship between metabolising enzymes and efflux proteins is also described in detail. In summary, this review emphasises the urgent need to make changes in drug discovery and drug delivery as efflux pumps and metabolising enzymes play an important role in drug delivery and disposition.
Collapse
Affiliation(s)
- Suresh Katragadda
- University of Missouri-Kansas City, Division of Pharmaceutical Sciences, School of Pharmacy, 64110-2499, USA
| | | | | | | |
Collapse
|
50
|
Shoji T, Suzuki H, Kusuhara H, Watanabe Y, Sakamoto S, Sugiyama Y. ATP-dependent transport of organic anions into isolated basolateral membrane vesicles from rat intestine. Am J Physiol Gastrointest Liver Physiol 2004; 287:G749-56. [PMID: 15217779 DOI: 10.1152/ajpgi.00065.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum << colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.
Collapse
Affiliation(s)
- Takahiro Shoji
- Dept. of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|