1
|
Soni D, Bade AN, Gautam N, Herskovitz J, Ibrahim IM, Smith N, Wojtkiewicz MS, Dyavar Shetty BL, Alnouti Y, McMillan J, Gendelman HE, Edagwa BJ. Synthesis of a long acting nanoformulated emtricitabine ProTide. Biomaterials 2019; 222:119441. [PMID: 31472458 DOI: 10.1016/j.biomaterials.2019.119441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/20/2023]
Abstract
While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.
Collapse
Affiliation(s)
- Dhruvkumar Soni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ibrahim M Ibrahim
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Melinda S Wojtkiewicz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Wang Z, Pal D, Mitra AK. Stereoselective Evasion of P-glycoprotein, Cytochrome P450 3A, and Hydrolases by Peptide Prodrug Modification of Saquinavir. J Pharm Sci 2012; 101:3199-213. [DOI: 10.1002/jps.23193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 01/20/2023]
|
3
|
Jia Y, Polunovsky V, Bitterman PB, Wagner CR. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med Res Rev 2012; 32:786-814. [PMID: 22495651 PMCID: PMC7168506 DOI: 10.1002/med.21260] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells tend to be more highly dependent on cap‐dependent translation than normal tissues. Thus, proteins involved in the initiation of cap‐dependent translation have emerged as potential anti‐cancer drug targets. Cap‐dependent translation is initiated by the binding of the factor eIF4E to the cap domain of mRNA. Detailed x‐ray crystal and NMR structures are available for eIF4E in association with cap‐analogs, as well as domains of other initiation factors. This review will summarize efforts to design potential antagonist of eIF4E that could be used as new pharmacological tools and anti‐cancer agents and. Insights drawn from these studies should aid in the design of future inhibitors of eIF4E dependent translation initiation. © 2012 Wiley Periodicals, Inc. Med Res Rev., 32, No. 4, 786‐814, 2012
Collapse
Affiliation(s)
- Yan Jia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
4
|
Dalpiaz A, Paganetto G, Pavan B, Fogagnolo M, Medici A, Beggiato S, Perrone D. Zidovudine and Ursodeoxycholic Acid Conjugation: Design of a New Prodrug Potentially Able To Bypass the Active Efflux Transport Systems of the Central Nervous System. Mol Pharm 2012; 9:957-68. [DOI: 10.1021/mp200565g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alessandro Dalpiaz
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Marco Fogagnolo
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Alessandro Medici
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Daniela Perrone
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Synthesis and anticancer activity of 5′-chloromethylphosphonates of 3′-azido-3′-deoxythymidine (AZT). Bioorg Med Chem 2011; 19:6375-82. [DOI: 10.1016/j.bmc.2011.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 01/02/2023]
|
6
|
Peura L, Malmioja K, Laine K, Leppänen J, Gynther M, Isotalo A, Rautio J. Large Amino Acid Transporter 1 (LAT1) Prodrugs of Valproic Acid: New Prodrug Design Ideas for Central Nervous System Delivery. Mol Pharm 2011; 8:1857-66. [DOI: 10.1021/mp2001878] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lauri Peura
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kalle Malmioja
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Krista Laine
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jukka Leppänen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antti Isotalo
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
7
|
Cheng J, Zhou X, Chou TF, Ghosh B, Liu B, Wagner CR. Identification of the amino acid-AZT-phosphoramidase by affinity T7 phage display selection. Bioorg Med Chem Lett 2009; 19:6379-81. [DOI: 10.1016/j.bmcl.2009.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/17/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
|
8
|
Quevedo MA, Briñón MC. In vitro and in vivo pharmacokinetic characterization of two novel prodrugs of zidovudine. Antiviral Res 2009; 83:103-11. [DOI: 10.1016/j.antiviral.2009.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/18/2009] [Accepted: 03/27/2009] [Indexed: 01/15/2023]
|
9
|
Peterson LW, McKenna CE. Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues. Expert Opin Drug Deliv 2009; 6:405-20. [PMID: 19382883 DOI: 10.1517/17425240902824808] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleotide analogues have been well accepted as therapeutic agents active against a number of viruses. However, their use as antiviral agents is limited by the need for phosphorylation by endogenous enzymes, and if the analogue is orally administered, by low bioavailability due to the presence of an ionizable diacid group. To circumvent these limitations, a number of prodrug approaches have been proposed. The ideal prodrug achieves delivery of a parent drug by attachment of a non-toxic moiety that is stable during transport and delivery, but is readily cleaved to release the parent drug once at the target. Here, a brief overview of several promising prodrug strategies currently under development is given.
Collapse
Affiliation(s)
- Larryn W Peterson
- University of Southern California, Department of Chemistry, Los Angeles, CA 90089-0744, USA.
| | | |
Collapse
|
10
|
Ghosh B, Benyumov AO, Ghosh P, Jia Y, Avdulov S, Dahlberg PS, Peterson M, Smith K, Polunovsky VA, Bitterman PB, Wagner CR. Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation. ACS Chem Biol 2009; 4:367-77. [PMID: 19351181 PMCID: PMC2796976 DOI: 10.1021/cb9000475] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Normal growth and development depends upon high fidelity regulation of cap-dependent translation initiation, a process that is usurped and redirected in cancer to mediate acquisition of malignant properties. The epithelial-to-mesenchymal transition (EMT) is a key translationally regulated step in the development of epithelial cancers and pathological tissue fibrosis. To date, no compounds targeting EMT have been developed. Here we report the synthesis of a novel class of histidine triad nucleotide binding protein (HINT)-dependent pronucleotides that interdict EMT by negatively regulating the association of eIF4E with the mRNA cap. Compound eIF4E inhibitor-1 potently inhibited cap-dependent translation in a dose-dependent manner in zebrafish embryos without causing developmental abnormalities and prevented eIF4E from triggering EMT in zebrafish ectoderm explants without toxicity. Metabolism studies with whole cell lysates demonstrated that the prodrug was rapidly converted into 7-BnGMP. Thus we have successfully developed the first nontoxic small molecule able to inhibit EMT, a key process in the development of epithelial cancer and tissue fibrosis, by targeting the interaction of eIF4E with the mRNA cap and demonstrated the tractability of zebrafish as a model organism for studying agents that modulate EMT. Our work provides strong motivation for the continued development of compounds designed to normalize cap-dependent translation as novel chemo-preventive agents and therapeutics for cancer and fibrosis.
Collapse
Affiliation(s)
- Brahma Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexey O. Benyumov
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Phalguni Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Jia
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Svetlana Avdulov
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter S. Dahlberg
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark Peterson
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Peter B. Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Affiliation(s)
- Scott J. Hecker
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| | - Mark D. Erion
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
12
|
Li DL, Bao HL, Tan QT, Tan YP, You TP. Synthesis and Biological Evaluation of a New Category of Purine-Nucleoside Analogues. CHINESE J CHEM 2005. [DOI: 10.1002/cjoc.200591659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Li D, Bao H, Tan Q, Cai D, You T. Synthesis of Ribavirin Analogues Containing Amino‐Acid Residues. SYNTHETIC COMMUN 2005. [DOI: 10.1081/scc-200054185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daliang Li
- a Chemistry Department , University of Science & Technology of China , Hefei, China
| | - Hongli Bao
- a Chemistry Department , University of Science & Technology of China , Hefei, China
| | - Qitao Tan
- a Chemistry Department , University of Science & Technology of China , Hefei, China
| | - Dongmei Cai
- a Chemistry Department , University of Science & Technology of China , Hefei, China
| | - Tianpa You
- a Chemistry Department , University of Science & Technology of China , Hefei, China
| |
Collapse
|
14
|
Venkatachalam TK, Samuel P, Li G, Qazi S, Mao C, Pendergrass S, Uckun FM. Lipase-mediated stereoselective hydrolysis of stampidine and other phosphoramidate derivatives of stavudine. Bioorg Med Chem 2005; 12:3371-81. [PMID: 15158806 DOI: 10.1016/j.bmc.2004.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Enzymatic hydrolysis of stampidine and other aryl phosphate derivatives of stavudine were investigated using the Candida Antarctica Type B lipase. Modeling studies and comparison of the hydrolysis rate constants revealed a chiral preference of the lipase active site for the putative S-stereoisomer. The in vitro anti-HIV activity of these compounds correlated with their susceptibility to lipase- (but not esterase-) mediated hydrolysis. We propose that stampidine undergoes rapid enzymatic hydrolysis in the presence of lipase according to the following biochemical pathway: During the first step, hydrolysis of the ester group results in the formation of carboxylic acid. Subsequent step involves an intramolecular cyclization at the phosphorous center with simultaneous elimination of the phenoxy group to form a cyclic intermediate. In the presence of water, this intermediate is converted into the active metabolite Ala-d4T-MP. We postulate that the lipase hydrolyzes the methyl ester group of the l-alanine side chain to form the cyclic intermediate in a stereoselective fashion. This hypothesis was supported by experimental data showing that chloroethyl substituted derivatives of stampidine, which possess a chloroethyl linker unit instead of a methyl ester side chain, were resistant to lipase-mediated hydrolysis, which excludes the possibility of a direct hydrolysis of stampidine at the phosphorous center. Thus, our model implies that the lipase-mediated formation of the cyclic intermediate is a key step in metabolism of stampidine and relies on the initial configuration of the stereoisomers.
Collapse
Affiliation(s)
- T K Venkatachalam
- Department of Chemistry, Pharmaceutical Sciences, Bioinformatics, Structural Biology, and Virology, Parker Hughes Institute, 2699 Patton Road, St. Paul, MN 55113, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Song H, Johns R, Griesgraber GW, Wagner CR, Zimmerman CL. Disposition and oral bioavailability in rats of an antiviral and antitumor amino acid phosphoramidate prodrug of AZT-monophosphate. Pharm Res 2003; 20:448-51. [PMID: 12669967 DOI: 10.1023/a:1022616523678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The purpose of this study was to characterize the in vivo disposition of 3'-azido-2'-deoxythymidine-5'-methylamino-L-tryptophanylphosphoramidate (NMe-Trp-AZT), a potential pronucleotide of 3'-azido-2'-deoxythymidine monophosphate (AZT-MP). METHODS The in vitro metabolic stability of NMe-Trp-AZT was evaluated in a wide variety of tissue homogenates. NMe-Trp-AZT was administered orally (n = 3) to female Sprague-Dawley rats. Its biliary excretion and intestinal permeability were also studied. RESULTS Renal excretion of unchanged prodrug (16.4 +/- 5.6% of the total dose administered intravenously), its conversion to AZT (12.1 +/- 5.4% of total dose administered intravenously), and its biliary excretion (54.3 +/- 4.9% of the total dose up to 4 h after intravenous administration) accounted for most of the elimination of NMe-Trp-AZT. Significant amounts of AZT were found in both plasma and urine after oral administration of the prodrug. The prodrug itself was not permeable through the small intestinal wall but was slowly converted to AZT-MP in gastric fluids at low pH. CONCLUSIONS The NMe-Trp-AZT prodrug itself was not orally bioavailable because of poor intestinal permeability; however, AZT was readily available in the systemic circulation after the oral administration of the prodrug. Modification of the phosphoramidate to promote intestinal uptake should lead to enhanced oral bioavailability of this and other nucleoside phosphoramidate monoesters.
Collapse
Affiliation(s)
- Heng Song
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|