1
|
Kong P, Rosnan SM, Enomae T. Carboxymethyl cellulose-chitosan edible films for food packaging: A review of recent advances. Carbohydr Polym 2024; 346:122612. [PMID: 39245494 DOI: 10.1016/j.carbpol.2024.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Polysaccharide-based edible films have been widely developed as food packaging materials in response to the rising environmental concerns caused by the extensive use of plastic packaging. In recent years, the integration of carboxymethyl cellulose (CMC) and chitosan (CS) for a binary edible film has received considerable interest because this binary edible film can retain the advantages of both constituents (e.g., the great oxygen barrier ability of CMC and moderate antimicrobial activity of CS) while mitigating their respective disadvantages (e.g., the low water resistance of CMC and poor mechanical strength of CS). This review aims to present the latest advancements in CMC-CS edible films. The preparation methods and properties of CMC-CS edible films are comprehensively introduced. Potential additives and technologies utilized to enhance the properties are discussed. The applications of CMC-CS edible films on food products are summarized. Literature shows that the current preparation methods for CMC-CS edible film are solvent-casting (main) and thermo-mechanical methods. The CMC-CS binary films have superior properties compared to films made from a single constituent. Moreover, some properties, such as physical strength, antibacterial ability, and antioxidant activity, can be greatly enhanced via the incorporation of some bioactive substances (e.g. essential oils and nanomaterials). To date, several applications of CMC-CS edible films in vegetables, fruits, dry foods, dairy products, and meats have been studied. Overall, CMC-CS edible films are highly promising as food packaging materials.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Shalida Mohd Rosnan
- College of Creative Arts, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Toshiharu Enomae
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
2
|
Chatterjee S, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Roy D, Ganguly A, Nanda S, Rajak P. Parabens as the double-edged sword: Understanding the benefits and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176547. [PMID: 39357765 DOI: 10.1016/j.scitotenv.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Parabens are globally employed as important preservatives in pharmaceutical, food, and personal care products. Nonetheless, improper disposal of commercial products comprising parabens can potentially contaminate various environmental components, including the soil and water. Residues of parabens have been detected in surface water, ground water, packaged food materials, and other consumer items. Long-term exposure to parabens through numerous consumer products and contaminated water can harm human health. Paraben can modulate the hormonal and immune orchestra of the body. Recent findings have correlated paraben use with hypersensitivity, obesity, and infertility. Notably, parabens have also been detected in the samples of breast cancer patients, suggesting a potential cross-talk between parabens and carcinogenesis. Therefore, the present article aims to dissect the significance of parabens as a preservative in several consumer products and their impact of chronic exposure to human health. This review encompasses various facets of paraben, including its sources, mechanism of action at the molecular level, and sheds light on its toxicological implications on human health.
Collapse
Affiliation(s)
- Sovona Chatterjee
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Aritra Chakraborty
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sohini Dutta
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Dipsikha Roy
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
3
|
Hosseini Goki N, Saberi MR, Amin M, Fazly Bazzaz BS, Khameneh B. Novel antimicrobial peptides based on Protegrin-1: In silico and in vitro assessments. Microb Pathog 2024; 196:106931. [PMID: 39288825 DOI: 10.1016/j.micpath.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The development of antibiotic resistance has caused significant health problems. Antimicrobial peptides (AMPs) are considered next-generation antibiotics. Protegrin-1 (PG-1) is a β-hairpin AMP with a membrane-binding capacity. This study used twelve PG-1 analogs with different amino acid substitutions. Coarse-grained molecular dynamics (MD) simulations were used to assess these analogs, and their physicochemical properties were computed using the Antimicrobial Peptide Database. Three AMPs, PEP-D, PEP-C, and PEP-H, were chosen and synthesized for antibacterial testing. The microbroth dilution technique and hemolytic assays evaluated the antimicrobial efficacy and cellular toxicity. The checkerboard method was used to test the combined activity of AMP and standard antibiotics. Cell membrane permeability and electron microscopy were used to evaluate the mode of action. The chemical stability of the selective AMP, PEP-D, was assessed by a validated HPLC method. PEP-D consists of 16-18 amino acid residues and has a charge of +7 and a hydrophobicity of 44 %, similar to PG-1. It can efficiently inactivate bacteria by disrupting cell membranes and significantly reducing hemolytic activity. Chemical stability studies indicated that AMP was stable at 40 °C for six months under autoclave conditions. This study could introduce the potential therapeutic application of selective AMP as an anti-infective agent.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Imam MW, Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: from ancient wisdom to modern science. Arch Microbiol 2024; 206:347. [PMID: 38985339 DOI: 10.1007/s00203-024-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/11/2024]
Abstract
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Collapse
Affiliation(s)
- Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India.
| |
Collapse
|
5
|
de Magalhães Silveira CF, da Silveira Bueno CE, Schreiber AZ. Cytocompatibility and Antibiofilm Activity of Calcium Hydroxide Mixed with Cyperus articulatus Essential Oil and Bio-C Temp Bioceramic Intracanal Medicament. Antibiotics (Basel) 2024; 13:637. [PMID: 39061319 PMCID: PMC11274325 DOI: 10.3390/antibiotics13070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Calcium hydroxide represents the most commonly used intracanal dressing between sessions; however, it may not be effective against all types of microorganisms. Several compounds of plant origin have attracted increasing attention from researchers in recent years. The objective of this study was to evaluate the cytocompatibility and antimicrobial activity of calcium hydroxide associated with the essential oil of Cyperus articulatus and the new bioceramic intracanal medicament Bio-C Temp®. Five experimental groups were designed: group Ca-C. articulatus essential oil; group CHPG-calcium hydroxide associated with propylene glycol; group CHCa-essential oil of C. articulatus associated with calcium hydroxide; and group U-UltraCal® XS; group BCT-Bio-C Temp®. The control group was a culture medium. Cytocompatibility was assessed by the methyltetrazolium (MTT) assay after exposure of the Saos-2 human osteoblast-like cell line to dilutions of commercial products/associations for 24 h and 72 h. The antimicrobial activity against mature Enterococcus faecalis biofilm was evaluated by the crystal violet assay. All commercial products/associations showed a cell viability similar to or even higher than the control group (p > 0.05) for both periods evaluated. C. articulatus essential oil associated or not with calcium hydroxide showed better antibiofilm capacity. C. articulatus associated or not with calcium hydroxide showed superior cytocompatibility and antimicrobial capacity, representing a promissory intracanal medicament.
Collapse
Affiliation(s)
| | - Carlos Eduardo da Silveira Bueno
- Department of Endodontics, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas 13045-755, SP, Brazil;
| | | |
Collapse
|
6
|
Dziągwa-Becker M, Oleszek M. Is the Biopesticide from Tea Tree Oil an Effective and Low-Risk Alternative to Chemical Pesticides? A Critical Review. Molecules 2024; 29:3248. [PMID: 39064827 PMCID: PMC11278977 DOI: 10.3390/molecules29143248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The use of chemical pesticides in agriculture contributes to soil, water and air pollution, biodiversity loss, and injury to non-target species. The European Commission has already established a Harmonized Risk Indicator to quantify the progress in reducing the risks linked to pesticides. Therefore, there is an increasing need to promote biopesticides, or so-called low-risk pesticides (LRP). Tea tree oil (TTO) is known for its antiseptic, antimicrobial, antiviral, antifungal, and anti-inflammatory properties. TTO has been extensively studied in pest management as well as in the pharmaceutical and cosmetic industry; there are already products based on its active substances on the market. This review focuses on the overall evaluation of TTO in terms of effectiveness and safety as a biopesticide for the first time. The collected data can be an added value for further evaluation of TTO in terms of the authorization extension as a fungicide in 2026.
Collapse
Affiliation(s)
- Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation, State Research Institute, Wrocław ul. Orzechowa 61, 50-540 Wrocław, Poland
| | - Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
7
|
Visan AI, Negut I. Coatings Based on Essential Oils for Combating Antibiotic Resistance. Antibiotics (Basel) 2024; 13:625. [PMID: 39061307 PMCID: PMC11273621 DOI: 10.3390/antibiotics13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In the current era of widespread antimicrobial resistance, the utilization of essential oils (EOs) derived from plants has emerged as a promising alternative in combating pathogens that have developed resistance to antibiotics. This review explores the therapeutic potential of essential oils as valuable tools in restoring the efficacy of antibiotics, highlighting their unique ability to affect bacteria in multiple ways and target various cellular systems. Despite the challenge of elucidating their precise mode of action, EOs have shown remarkable results in rigorous testing against a diverse range of bacteria. This review explores the multifaceted role of EOs in combating bacterial microorganisms, emphasizing their extraction methods, mechanisms of action, and comparative efficacy against synthetic antibiotics. Key findings underscore the unique strategies EOs deploy to counter bacteria, highlighting significant differences from conventional antibiotics. The review extends to advanced coating solutions for medical devices, exploring the integration of EO formulations into these coatings. Challenges in developing effective EO coatings are addressed, along with various innovative approaches for their implementation. An evaluation of these EO coatings reveals their potential as formidable alternatives to traditional antibacterial agents in medical device applications. This renaissance in exploring natural remedies emphasizes the need to combine traditional wisdom with modern scientific advancements to address the urgent need for effective antimicrobial solutions in the post-antibiotic era.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
8
|
Zych S, Adaszyńska-Skwirzyńska M, Szewczuk MA, Szczerbińska D. Interaction between Enrofloxacin and Three Essential Oils (Cinnamon Bark, Clove Bud and Lavender Flower)-A Study on Multidrug-Resistant Escherichia coli Strains Isolated from 1-Day-Old Broiler Chickens. Int J Mol Sci 2024; 25:5220. [PMID: 38791259 PMCID: PMC11121375 DOI: 10.3390/ijms25105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes a variety of infections outside the intestine. The treatment of these infections is becoming increasingly difficult due to the emergence of multi-drug resistant (MDR) strains, which can also be a direct or indirect threat to humans as consumers of poultry products. Therefore, alternative antimicrobial agents are being sought, which could be essential oils, either administered individually or in interaction with antibiotics. Sixteen field isolates of E. coli (originating from 1-day-old broilers) and the ATCC 25922 reference strain were tested. Commercial cinnamon bark, clove bud, lavender flower essential oils (EOs) and enrofloxacin were selected to assess the sensitivity of the selected E. coli strains to antimicrobial agents. The checkerboard method was used to estimate the individual minimum inhibitory concentration (MIC) for each antimicrobial agent as well as to determine the interactions between the selected essential oil and enrofloxacin. In the case of enrofloxacin, ten isolates were resistant at MIC ≥ 2 μg/mL, three were classified as intermediate (0.5-1 μg/mL) and three as sensitive at ≤0.25 μg/mL. Regardless of the sensitivity to enrofloxacin, the MIC for cinnamon EO was 0.25% v/v and for clove EO was 0.125% v/v. All MDR strains had MIC values for lavender EO of 1% v/v, while drug-sensitive isolates had MIC of 0.5% v/v. Synergism between enrofloxacin and EO was noted more frequently in lavender EO (82.35%), followed by cinnamon EO (64.7%), than in clove EO (47.1%). The remaining cases exhibited additive effects. Owing to synergy, the isolates became susceptible to enrofloxacin at an MIC of ≤8 µg/mL. A time-kill study supports these observations. Cinnamon and clove EOs required for up to 1 h and lavender EO for up to 4 h to completely kill a multidrug-resistant strain as well as the ATCC 25922 reference strain of E. coli. Through synergistic or additive effects, blends with a lower than MIC concentration of enrofloxacin mixed with a lower EO content required 6 ± 2 h to achieve a similar effect.
Collapse
Affiliation(s)
- Sławomir Zych
- Laboratory of Chromatography and Mass Spectrometry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland
| | - Michalina Adaszyńska-Skwirzyńska
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.A.-S.); (M.A.S.); (D.S.)
| | - Małgorzata Anna Szewczuk
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.A.-S.); (M.A.S.); (D.S.)
| | - Danuta Szczerbińska
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.A.-S.); (M.A.S.); (D.S.)
| |
Collapse
|
9
|
Ghosh S, Sen S, Jash M, Ghosh S, Jana A, Roy R, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Synergistic Augmentation of Beta-Lactams: Exploring Quinoline-Derived Amphipathic Small Molecules as Antimicrobial Potentiators against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:1267-1285. [PMID: 38442370 DOI: 10.1021/acsinfecdis.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.
Collapse
Affiliation(s)
- Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
10
|
Girard C, Chabrillat T, Kerros S, Fravalo P, Thibodeau A. Essential oils mix effect on chicks ileal and caecal microbiota modulation: a metagenomics sequencing approach. Front Vet Sci 2024; 11:1350151. [PMID: 38638639 PMCID: PMC11025455 DOI: 10.3389/fvets.2024.1350151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Microbiota plays a pivotal role in promoting the health and wellbeing of poultry. Essential oils (EOs) serve as an alternative solution for modulating poultry microbiota. This study aimed to investigate, using amplicon sequencing, the effect of a complex and well-defined combination of EOs feed supplement on both ileal and caecal broiler microbiota, within the context of Salmonella and Campylobacter intestinal colonization. Material and methods For this experiment, 150-day-old Ross chicks were randomly allocated to two groups: T+ (feed supplementation with EO mix 500 g/t) and T- (non-supplemented). At day 7, 30 birds from each group were orally inoculated with 106 CFU/bird of a Salmonella enteritidis and transferred to the second room, forming the following groups: TS+ (30 challenged birds receiving infeed EO mix at 500g/t) and TS- (30 challenged birds receiving a non-supplemented control feed). At day 14, the remaining birds in the first room were orally inoculated with 103 CFU/bird of two strains of Campylobacter jejuni, resulting in the formation of groups T+C+ and T-C+. Birds were sacrificed at day 7, D10, D14, D17, and D21. Ileal and caecal microbiota samples were analyzed using Illumina MiSeq sequencing. At D7 and D14, ileal alpha diversity was higher for treated birds (p <0.05). Results and discussion No significant differences between groups were observed in caecal alpha diversity (p>0.05). The ileal beta diversity exhibited differences between groups at D7 (p < 0.008), D10 (p = 0.029), D14 (p = 0.001) and D17 (p = 0.018), but not at D21 (p = 0.54). For all time points, the analysis indicated that 6 biomarkers were negatively impacted, while 10 biomarkers were positively impacted. Sellimonas and Weissella returned the lowest (negative) and highest (positive) coefficient, respectively. At each time point, treatments influenced caecal microbiota beta diversity (p < 0.001); 31 genera were associated with T+: 10 Ruminoccocaceae genera were alternatively more abundant and less abundant from D7, 7 Lachnospiraceae genera were alternatively more and less abundant from D10, 6 Oscillospiraceae genera were variable depending on the date and 4 Enterobacteriaceae differed from D7. During all the experiment, Campylobacter decreased in treated birds (p < 0.05). This study showed that EO mix modulates ileal and caecal microbiota composition both before and during challenge conditions, increasing alpha diversity, especially in ileum during the early stages of chick life.
Collapse
Affiliation(s)
| | | | | | - Philippe Fravalo
- Faculty of Veterinary Medicine, Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- Faculty of Veterinary Medicine, Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
11
|
Rambo MKD, Lins RF, Silva FLN, Alonso A, Rambo MCD, Leal JEC, Sousa-Neto DD. Effect of cationic surfactant on the physicochemical and antibacterial properties of colloidal systems (emulsions and microemulsions). BRAZ J BIOL 2024; 84:e278013. [PMID: 38422288 DOI: 10.1590/1519-6984.278013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
Colloidal systems have been used to encapsulate, protect and release essential oils in mouthwashes. In this study, we investigated the effect of cetylpyridinium chloride (CPC) on the physicochemical properties and antimicrobial activity of oil-in-water colloidal systems containing tea tree oil (TTO) and the nonionic surfactant polysorbate 80. Our main aim was to evaluate whether CPC could improve the antimicrobial activity of TTO, since this activity is impaired when this essential oil is encapsulated with polysorbate 80. These systems were prepared with different amounts of TTO (0-0.5% w/w) and CPC (0-0.5% w/w), at a final concentration of 2% (w/w) polysorbate 80. Dynamic light scattering (DLS) results revealed the formation of oil-swollen micelles and oil droplets as a function of TTO concentration. Increases in CPC concentrations led to a reduction of around 88% in the mean diameter of oil-swollen micelles. Although this variation was of only 20% for the oil droplets, the samples appearance changed from turbid to transparent. The surface charge of colloidal structures was also markedly affected by the CPC as demonstrated by the transition in zeta potential from slightly negative to highly positive values. Electron paramagnetic resonance (EPR) studies showed that this transition is followed by significant increases in the fluidity of surfactant monolayer of both colloidal structures. The antimicrobial activity of colloidal systems was tested against a Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureaus) bacteria. Our results revealed that the inhibition of bacterial growth is observed for the same CPC concentration (0.05% w/w for E. coli and 0.3% w/w for S. aureus) regardless of TTO content. These findings suggest that TTO may not act as an active ingredient in polysorbate 80 containing mouthwashes.
Collapse
Affiliation(s)
- M K D Rambo
- Universidade Federal do Tocantins - UFT, Laboratório de Química, Programa de Pós-graduação em Ciências do Ambiente - Ciamb, Palmas, TO, Brasil
| | - R F Lins
- Universidade Federal do Norte do Tocantins - UFNT, Colegiado de Química, Araguaína, TO, Brasil
| | - F L N Silva
- Universidade Federal do Norte do Tocantins - UFNT, Colegiado de Química, Araguaína, TO, Brasil
| | - A Alonso
- Universidade Federal de Goiás - UFG, Instituto de Física, Goiânia, GO, Brasil
| | - M C D Rambo
- Instituto de Educação, Ciência e Tecnologia do Tocantins - IFTO, Colegiado de Matemática, Palmas, TO, Brasil
| | - J E C Leal
- Instituto de Educação, Ciência e Tecnologia do Tocantins - IFTO, Colegiado de Agronegócio, Palmas, TO, Brasil
| | - D de Sousa-Neto
- Universidade Federal do Norte do Tocantins - UFNT, Faculdade de Ciências da Saúde, Araguaína, TO, Brasil
| |
Collapse
|
12
|
Yu B, Li J, Moussa MG, Wang W, Song S, Xu Z, Shao H, Huang W, Yang Y, Han D, Dang B, Xu J, Jia W. Molybdenum inhibited the growth of Phytophthora nicotiana and improved the resistance of Nicotiana tabacum L. against tobacco black shank. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105803. [PMID: 38458661 DOI: 10.1016/j.pestbp.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Tobacco black shank (TBS) is a soil-borne fungal disease caused by Phytophthora nicotiana (P. nicotianae), significantly impeding the production of high-quality tobacco. Molybdenum (Mo), a crucial trace element for both plants and animals, plays a vital role in promoting plant growth, enhancing photosynthesis, bolstering antioxidant capacity, and maintaining ultrastructural integrity. However, the positive effect of Mo on plant biotic stress is little understood. This study delves into the inhibitory effects of Mo on P. nicotianae and seeks to unravel the underlying mechanisms. The results showed that 16.32 mg/L of Mo significantly inhibited mycelial growth, altered mycelial morphological structure, damaged mycelial cell membrane, and ultimately led to the leakage of cell inclusions. In addition, 0.6 mg/kg Mo applied in soil significantly reduced the severity of TBS. Mo increased photosynthetic parameters and photosynthetic pigment contents of tobacco leaves, upregulated expression of NtPAL and NtPPO resistance genes, as well as improved activities of SOD, POD, CAT, PPO, and PAL in tobacco plants. Furthermore, Mo could regulate nitrogen metabolism and amino acids metabolism to protect tobacco plants against P. nicotianae infection. These findings not only present an ecologically sound approach to control TBS but also contribute valuable insights to the broader exploration of the role of microelements in plant disease management.
Collapse
Affiliation(s)
- Bingjie Yu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Junling Li
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Mohamed G Moussa
- International Center for Biosaline Agriculture, ICBA, Dubai, P.O. Box 14660, United Arab Emirates; Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Wenchao Wang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Shaosen Song
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Huifang Shao
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Yongxia Yang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan agricultural university, Zhengzhou, Henan, China.
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Lavekar AG, Thakare R, Saima, Equbal D, Chopra S, Sinha AK. Indole-based aryl sulfides target the cell wall of Staphylococcus aureus without detectable resistance. Drug Dev Res 2024; 85:e22123. [PMID: 37840429 DOI: 10.1002/ddr.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Sulfur-containing classes of the scaffold "Arylthioindoles" have been evaluated for antibacterial activity; they demonstrated excellent potency against methicillin-resistant Staphylococcus aureus (MRSA) as well as against vancomycin-resistant strains and a panel of clinical isolates of resistant strains. In this study, we have elucidated the mechanism of action of lead compounds, wherein they target the cell wall of S. aureus. Further, S. aureus failed to develop resistance against two lead compounds tested in a serial passage experiment in the presence of the compounds over a period of 40 days. Both the compounds demonstrated comparable in vivo efficacy with vancomycin in a neutropenic mice thigh infection model. The results of these antibacterial activities emphasize the excellent potential of thioethers for developing novel antibiotics and may fill in as a target for the adjustment of accessible molecules to develop new powerful antibacterial agents with fewer side effects.
Collapse
Affiliation(s)
- Aditya G Lavekar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ritesh Thakare
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Department of Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saima
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- School of Advanced Chemical Sciences, Solan, Himachal Pradesh, India
| | - Danish Equbal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
14
|
Alabrahim OAA, Alwahibi S, Azzazy HMES. Improved antimicrobial activities of Boswellia sacra essential oils nanoencapsulated into hydroxypropyl-beta-cyclodextrins. NANOSCALE ADVANCES 2024; 6:910-924. [PMID: 38298595 PMCID: PMC10825941 DOI: 10.1039/d3na00882g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Natural antimicrobials have recently gained increasing interest over synthetic antimicrobials to overcome foodborne pathogens and food microbial contamination. Essential oils (EOs) obtained from Boswellia sacra resins (BO) were utilized for respiratory disorders, rheumatoid arthritis, malignant tumors, and viral infections. Like other EOs, the therapeutic potential of BO is hindered by its low solubility and bioavailability, poor stability, and high volatility. Several studies have shown excellent physicochemical properties and outstanding therapeutic capabilities of EOs encapsulated into various nanocarriers. This study extracted BO from B. sacra resins via hydrodistillation and encapsulated it into hydroxypropyl-beta-cyclodextrins (HPβCD) using the freeze-drying method. The developed inclusion complexes of BO (BO-ICs) had high encapsulation efficiency (96.79 ± 1.17%) and a polydispersity index of 0.1045 ± 0.0006. BO-ICs showed presumably spherical vesicles (38.5 to 59.9 nm) forming multiple agglomerations (136.9 to 336.8 nm), as determined by UHR-TEM. Also, the formation and stability of BO-ICs were investigated using DSC, FTIR, FE-SEM, UHR-TEM, 1H NMR, and 2D HNMR (NOESY). BO-ICs showed greater thermal stability (362.7 °C). Moreover, compared to free BO, a remarkable enhancement in the antimicrobial activities of BO-ICs was shown against three different bacteria: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. BO-ICs displayed significant antibacterial activity against Pseudomonas aeruginosa with an MIC90 of 3.93 mg mL-1 and an MIC50 of 0.57 mg mL-1. Also, BO-ICs showed an increase in BO activity against Escherichia coli with an MIC95 of 3.97 mg mL-1, compared to free BO, which failed to show an MIC95. Additionally, BO-ICs showed a more significant activity against Staphylococcus aureus with an MIC95 of 3.92 mg mL-1. BO encapsulation showed significantly improved antimicrobial activities owing to the better stability, bioavailability, and penetration ability imparted by encapsulation into HPβCD.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
| | | | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena Germany
| |
Collapse
|
15
|
Nefzi K, Charfi K, Maaroufi A, Hosni K, Msaada K, Baraket M, Nasr Z. Biological activities and determination of the mode of action of Tunisian Globularia alypum and Cistus monspeliensis ethanolic extracts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:127-137. [PMID: 36242557 DOI: 10.1080/09603123.2022.2133096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
This study was designed to evaluate the antioxidant and antimicrobial activity of ethanolic extracts (EEs) of Cistus monspeliensis and Globularia alypum. C. monspeliensis showed the highest values of phenolic compounds. Further, it was shown that EE of C. monspeliensis displayed the highest DPPH (IC50 = 8.3 ± 1.08 mg/mL). The chemical profiles demonstrated a total of 12 and 13 phenolic compounds for C. monspeliensis and G. alypum, respectively. EEs of both plants possessed broad-spectrum antimicrobial activity when tested against Escherichia coli and Staphylococcus aureus. Treatment of studied strains with these extracts at their MICs reduced considerably the bacterial viability. The extracts did not induce total bacterial lysis, as determined by the measurement of optical density at 620 nm. Strains treated with EEs at Minimum Inhibitory Concentrations showed significant loss of tolerance to NaCl. Our results contribute to understanding the antibacterial mechanism of ethanolic extracts of the studied medicinal plants.
Collapse
Affiliation(s)
- Khaoula Nefzi
- National Research Institute of Rural Engineering, Water and Forests (INRGREF), LR11INRGREF0 Laboratory of Management and Valorization of Forest Resources, Carthage University, Ariana, Tunisia
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Institut Pasteur de Tunis, Belvédère, Tunis
| | - Karama Charfi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Institut Pasteur de Tunis, Belvédère, Tunis
| | - Abderrazek Maaroufi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Institut Pasteur de Tunis, Belvédère, Tunis
| | - Karim Hosni
- Laboratoire des substances naturelles, Institut National de Reherche et d'Analyse Physico-chimiques (IRAP), Sidi Thabet, Tunisia
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants (LPAM), Biotechnology Center in Borj Cedria Technopole, Hammam-lif, Tunisia
| | - Mokhtar Baraket
- National Research Institute of Rural Engineering, Water and Forests (INRGREF), LR11INRGREF0 Laboratory of Management and Valorization of Forest Resources, Carthage University, Ariana, Tunisia
| | - Zouhaeir Nasr
- National Research Institute of Rural Engineering, Water and Forests (INRGREF), LR11INRGREF0 Laboratory of Management and Valorization of Forest Resources, Carthage University, Ariana, Tunisia
| |
Collapse
|
16
|
Rubio Ortega A, Guinoiseau E, Poli JP, Quilichini Y, de Rocca Serra D, del Carmen Travieso Novelles M, Espinosa Castaño I, Pino Pérez O, Berti L, Lorenzi V. The Primary Mode of Action of Lippia graveolens Essential Oil on Salmonella enterica subsp. Enterica Serovar Typhimurium. Microorganisms 2023; 11:2943. [PMID: 38138087 PMCID: PMC10745793 DOI: 10.3390/microorganisms11122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Essential oils are known to exhibit diverse antimicrobial properties, showing their value as a natural resource. Our work aimed to investigate the primary mode of action of Cuban Lippia graveolens (Kunth) essential oil (EO) against Salmonella enterica subsp. enterica serovar Typhimurium (S. enterica ser. Typhimurium). We assessed cell integrity through various assays, including time-kill bacteriolysis, loss of cell material with absorption at 260 and 280 nm, total protein leakage, and transmission electron microscopy (TEM). The impact of L. graveolens EO on membrane depolarization was monitored and levels of intracellular and extracellular ATP were measured by fluorescence intensity. The minimum inhibitory and bactericidal concentrations (MIC and MBC) of L. graveolens EO were 0.4 and 0.8 mg/mL, respectively. This EO exhibited notable bactericidal effects on treated cells within 15 min without lysis or leakage of cellular material. TEM showed distinct alterations in cellular ultrastructure, including membrane shrinkage and cytoplasmic content redistribution. We also observed disruption of the membrane potential along with reduced intracellular and extracellular ATP concentrations. These findings show that L. graveolens EO induces the death of S. enterica ser. Typhimurium, important information that can be used to combat this foodborne disease-causing agent.
Collapse
Affiliation(s)
- Annie Rubio Ortega
- Laboratory of Chemical Ecology, Agricultural Pest Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba; (A.R.O.); (M.d.C.T.N.); (O.P.P.)
| | - Elodie Guinoiseau
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Jean-Pierre Poli
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Yann Quilichini
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Dominique de Rocca Serra
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Maria del Carmen Travieso Novelles
- Laboratory of Chemical Ecology, Agricultural Pest Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba; (A.R.O.); (M.d.C.T.N.); (O.P.P.)
| | - Ivette Espinosa Castaño
- Laboratory of Bacteriology, Microbiology Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba;
| | - Oriela Pino Pérez
- Laboratory of Chemical Ecology, Agricultural Pest Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba; (A.R.O.); (M.d.C.T.N.); (O.P.P.)
| | - Liliane Berti
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Vannina Lorenzi
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| |
Collapse
|
17
|
de Oliveira BIC, Martinez JL, de Souza FAF, Weber SH, Rosa EAR, Birgel EH, Daniel Ollhoff R. Utilizing intramammary Melaleuca alternifolia as an organic internal sealant for dry-off therapy in Murrah buffaloes. Trop Anim Health Prod 2023; 55:381. [PMID: 37884761 DOI: 10.1007/s11250-023-03797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The effects of intramammary dry cow therapy based on the administration of 5% Melaleuca alternifolia tea tree essential oil (TTO) as an internal teat sealant to Murrah cows were evaluated. A longitudinal prospective and retrospective negative control study was performed using 12 buffaloes from a total of 20 Murrah buffaloes on an organic farm, with the cow used as a control for herself. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for treatments with pure oil (TTO) and medication containing 5% TTO (O5) were determined. The buffaloes were clinically examined, and the teats were evaluated using thermography and ultrasound. Udder health was monitored during the first 100 days in milk (DIM) using milk somatic cell count (SCC) and California mastitis test (CMT). Laboratory tests against standard strains Staphylococcus aureus ATCC®25,923™, Escherichia coli ATCC®25,922™, and wild bacterial strains showed maximum MIC values of 50 µL/mL for the TTO and O5 treatments. One wild-type S. aureus strain showed no MBC. No adverse effects were observed after the intramammary application of TTO. The CMT and SCC values were similar (P > 0.05) for all observations. The medication containing 5% TTO was effective in vitro and compatible with the intramammary tissue in vivo of Murrah buffaloes. TTO was safe, not inducing inflammatory processes or other modifications of the teat detectable by thermography or ultrasound. It was able to protect buffaloes during the dry period under field conditions, demonstrating potential use as a teat sealant for organic farms.
Collapse
Affiliation(s)
- Bruno I C de Oliveira
- Programa de Pós-Graduação Em Ciência Animal, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil
- Faculdade de Ciências Sociais E Agrárias de Itapeva, Itapeva, São Paulo, Brazil
| | | | - Francinea A F de Souza
- Programa de Pós-Graduação Em Ciência Animal, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil
- Universidade Cesumar, Curitiba, Paraná, Brazil
| | - Saulo H Weber
- Programa de Pós-Graduação Em Ciência Animal, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil
| | - Edvaldo A R Rosa
- Programa de Pós-Graduação Em Ciência Animal, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil
| | - Eduardo H Birgel
- Faculdade de Zootecnia E Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - R Daniel Ollhoff
- Programa de Pós-Graduação Em Ciência Animal, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
18
|
Filatov VA, Ilin EA, Kulyak OY, Kalenikova EI. Development and Validation of a Gas Chromatography-Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity. Antibiotics (Basel) 2023; 12:1558. [PMID: 37887259 PMCID: PMC10603869 DOI: 10.3390/antibiotics12101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The research into new pharmaceutical substances based on essential oils, individual biologically active phytochemicals, and plant extracts is a priority in field of pharmaceutical sciences. A novel multicomponent substance based on Melaleuca alternifolia (M. alternifolia) leaf oil (TTO), 1,8-cineole (eucalyptol), and (-)-α-bisabolol with potent synergetic antimicrobial activity was investigated and suggested for the treatment of seborrheic dermatitis (SD) and dandruff. The objective of this research was to establish and validate a specific, accurate, and precise gas chromatography-mass spectrometry (GC-MS) method for further quantitative and qualitative analysis in order to ensure quality control. The main parameters of validation were suitability, specificity, linearity, accuracy, and intermediate precision according to the European Pharmacopoeia (XI edition), Russian Pharmacopoeia (XIV edition), and some parameters of ICH requirements. The peaks of fifteen chemical phytoconstituents were identified in the test sample solution with the prevalence of (-)-α-bisabolol (27.67%), 1,8-cineole (25.63%), and terpinen-4-ol (16.98%). These phytochemicals in the novel substance were chosen for standardization and validation of the GC-MS method. The chosen chromatographic conditions were confirmed for testing of the plant-based substance in a suitability test. It was established that the GC-MS method provides a significant separation, symmetry of peaks and resolution between phytochemicals. The calibration curves of each phytochemical had good linearity (R2 > 0.999) in five concentrations. In the same concertation range, the accuracy of terpinen-4-ol, 1,8-cineol, and (-)-α-bisabolol determination using the method of additives was 98.3-101.60%; the relative standard deviation (RSD) ranged from 0.89% to 1.51% and corresponded to requirements. The intraday and interday precision was ≤2.56%. Thus, the GC-MS method was validated to be specific, sensitive, linear, accurate, and precise. This GC-MS method could be recommended as a routine analytic technique for multicomponent plant-based substances-enriched terpenes.
Collapse
Affiliation(s)
- Viktor A. Filatov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.Y.K.); (E.I.K.)
- Science Center, SkyLab AG, 1066 Lausanne, Switzerland
| | - Egor A. Ilin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Olesya Yu. Kulyak
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.Y.K.); (E.I.K.)
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia
| | - Elena I. Kalenikova
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.Y.K.); (E.I.K.)
| |
Collapse
|
19
|
Ghanbari H, Ghanbari R, Delazar A, Ebrahimi SN, Memar MY, Moghadam SB, Hamedeyazdan S, Nazemiyeh H. Caccinia macranthera Brand var. macranthera: Phytochemical analysis, phytotoxicity and antimicrobial investigations of essential oils with concomitant in silico molecular docking based on OPLS force-field. Toxicon 2023; 234:107291. [PMID: 37734456 DOI: 10.1016/j.toxicon.2023.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
This study was conducted to extract the essential oils (EOs) of Caccinia macranthera identify their phytochemicals, evaluate their phytotoxicity, antimicrobial activity and enzyme inhibition effects using in silico molecular docking technique. EOs of aerial parts, seeds, and roots of C. macranthera were extracted and analyzed via Gas chromatography-Mass Spectrometry. The antibacterial activity of EOs were determined on nine microorganisms via disk diffusion and microbroth dilution assays. In addition, the allelopathic properties of EOs were investigated by calculating the IC50s for inhibition of germination, seedling length and seedling weight growth of Cuscuta campestris seeds. In order to assess the possible inhibitory effect of major components of C. macranthera EOs on enzymes inhibiting germination and plant growth, molecular docking was employed against the glutamine synthetase (GS), acetohydroxyacid synthetase (AHAS), and 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzymes. The main compounds of EOs from aerial parts, seeds, and roots EOs were dihydrocarveol (29.5%), Trimethyl-2-Pentadecanone (13.6%), and Palmitic acid (16.8%), respectively. The maximum antibacterial effect was related to the aerial parts EO against Staphylococcus epidermidis. Phytotoxicity analysis exhibited a concentration-dependent increase (p ≤ 0.05) activity. The aerial parts EO demonstrated a substantial allelopathy effect, with IC50 values of 0.22 ± 0.026, 0.39 ± 0.021, and 0.20 ± 0.025 mg/mL, respectively, on inhibitory germination, seedling length and seedling weight growth of Cuscuta campestris seeds. Molecular docking analyzes showed that Oleic acid was suitable for dynamic stabilization of HPPD (-6.552 kJ/mol) and GS (-7.265 kJ/mol) and Eupatoriochromene had the inhibitory potential against AHAS, with docking score of -4.189 kJ/mol. The current research demonstrated that C. macranthera EOs from its aerial parts have an acceptable phytotoxic activity against Cuscuta campestris weed. The major components of EOs, Oleic acid and Eupatoriochromene, presented the strongest binding with HPPD, GS, and AHAS active sites causing disturbance in germination, photosynthesis and weed growth suggesting it as a natural herbicide for controlling the weeds.
Collapse
Affiliation(s)
- Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghanbari
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Abbas Delazar
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Butzge JC, Pivotto C, Mezzomo L, Ferrão SK, Picanço JMA, Mezzari A, Calil LN, Limberger RP, Apel MA. Antifungal Properties of Essential Oils Derived from the Genus Cymbopogon: A Systematic Review. Chem Biodivers 2023; 20:e202300663. [PMID: 37574454 DOI: 10.1002/cbdv.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Essential oils (EOs) are products of secondary metabolism with recognized organoleptic characteristics and biological properties. Recently, there has been a growing demand for EOs in the national and international market, mainly due to the recognition of their use as complementary medicine practices, and the increased use in the industries of pharmaceutics, cosmetics, well-being, veterinary and agroecology, boosting the productive sector. In this context, EOs from grasses of the Cymbopogon (Poaceae) are promising sources of bioactive compounds, due to their recognized biological properties, such as anti-inflammatory, antibacterial, antifungal, antidiabetic, repellent, and larvicide. Thus, the present study aims to carry out a review of the scientific literature of the main works related to the evaluation of the antifungal action of essential oils extracted from plants of the Cymbopogon genus, compiling the species that showed the best results and relating them to their main chemical constituents. This review covers the following species: C. citratus, C. flexuosus, C. winterianus, C. martinii, C. nardus, C. giganteus, C. schoenanthus, C. khasans, and C. proximus. Among them, C. citratus was the most assessed, being associated with the vast majority of studies (61.9 %), and it was also the species that showed the best results in terms of MIC.
Collapse
Affiliation(s)
- Juliana Caroline Butzge
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Christiane Pivotto
- Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leticia Mezzomo
- Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Simone Krause Ferrão
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João Marcelo Astolfi Picanço
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adelina Mezzari
- Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luciane Noal Calil
- Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata Pereira Limberger
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Miriam A Apel
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Salem N, Boulares M, Zarrouk Y, Kammoun S, Essid R, Jemai M, Djebbi S, Belloumi S, Jalouli S, Limam F, Sriti J. Preservation of poultry meat using Tetraclinis articulata essential oil during refrigerated storage. FOOD SCI TECHNOL INT 2023; 29:696-709. [PMID: 35726169 DOI: 10.1177/10820132221108710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Current study aims to evaluate the effect of essential oil on the conservation of chicken fillets. Following a screening, Tetraclinis articulata was selected for its antimicrobial (Enterococcus feacalis ATCC 29212, MIC < 0.031 mg/mL) and antioxidant (IC50 = 1000 µg/mL) potentials with no cytotoxicity effect towards murine macrophage cells. The treatment of chicken fillets, especially with 200 ppm of T. articulata essential oil per 100 g of product reduced significantly (p < 0.05) lipid oxidation during 12 days of refrigerated storage. Microbial flora charges decreased significantly (p < 0.05) with a rate of 50.31% for 200 ppm of essential oil from the 6th day of storage. The acidity of treated fillets was lower than control samples (1.3 g/kg) from the 3rd day of storage. In addition, a clear effect was recorded by reducing water losses during cooking under the tested doses of essential oil. Withall, findings encouraged the use of T. articulata to extend poultry meat product shelf life.
Collapse
Affiliation(s)
- Nidhal Salem
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| | - Mouna Boulares
- Carthage University, Research Laboratory: "Technological Innovation and Food Safety LR22-AGR 01", Higher Institute of Food Industries of Tunisia (ESIAT) 58 Alain Savary Street, Tunis, Tunisia
| | - Youkabed Zarrouk
- Carthage University, Research Laboratory: "Technological Innovation and Food Safety LR22-AGR 01", Higher Institute of Food Industries of Tunisia (ESIAT) 58 Alain Savary Street, Tunis, Tunisia
| | - Salma Kammoun
- Carthage University, Research Laboratory: "Technological Innovation and Food Safety LR22-AGR 01", Higher Institute of Food Industries of Tunisia (ESIAT) 58 Alain Savary Street, Tunis, Tunisia
- Laboratory of Structural Organic Chemistry: Synthesis and Physicochemical Study-Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Rim Essid
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| | - Mohamed Jemai
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| | - Saida Djebbi
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| | - Souhir Belloumi
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| | - Selim Jalouli
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| | - Jezia Sriti
- Laboratory of Bioactive Substances, Biotechnology Center at the Technopole of Borj Cedria, Hammam Lif, Tunisia
| |
Collapse
|
22
|
Bungau AF, Radu AF, Bungau SG, Vesa CM, Tit DM, Purza AL, Endres LM. Emerging Insights into the Applicability of Essential Oils in the Management of Acne Vulgaris. Molecules 2023; 28:6395. [PMID: 37687224 PMCID: PMC10489792 DOI: 10.3390/molecules28176395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The occurrence of pustules, comedones, nodules, and cysts defines acne vulgaris, a prevalent chronic inflammatory dermatological condition. In the past few decades, essential oils extracted from varied natural sources have acquired recognition due to their potential medicinal applications in acne therapy. However, there is not yet sufficient medical data to fully characterize this interaction. Multiple factors contribute to the development of acne vulgaris, including excessive sebaceous production, inflammatory processes, hyperkeratinization, and infection with Cutibacterium acnes. Essential oils, including oregano, lavender, lemon grass, myrtle, lemon, thyme, eucalyptus, rosemary, and tea tree, have been found to possess anti-inflammatory, antioxidant, and antimicrobial properties, which may target the multifactorial causes of acne. Analytical methods for determining antioxidant potential (i.e., total phenolic content, diphenyl-1-picrylhydrazyl free radical scavenging assay, reducing power assay, ferrous ion chelating activity, thiobarbituric acid reactive species assay, β-carotene bleaching assay, etc.) are essential for the evaluation of these essential oils, and their method optimization is crucial. Further studies could include the development of novel acne treatments incorporating essential oils and an assessment of their efficacy in large clinical trials. In addition, further research is necessary to ascertain the mechanisms of action of essential oils and their optimal doses and safety profiles for optimal implementation in the management of acne vulgaris.
Collapse
Affiliation(s)
- Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Laura Maria Endres
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
23
|
Grigor’eva AE, Bardasheva AV, Ryabova ES, Tupitsyna AV, Zadvornykh DA, Koroleva LS, Silnikov VN, Tikunova NV, Ryabchikova EI. Changes in the Ultrastructure of Staphylococcus aureus Cells Make It Possible to Identify and Analyze the Injuring Effects of Ciprofloxacin, Polycationic Amphiphile and Their Hybrid. Microorganisms 2023; 11:2192. [PMID: 37764036 PMCID: PMC10537381 DOI: 10.3390/microorganisms11092192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The purposeful development of synthetic antibacterial compounds requires an understanding of the relationship between effects of compounds and their chemical structure. This knowledge can be obtained by studying changes in bacteria ultrastructure under the action of antibacterial compounds of a certain chemical structure. Our study was aimed at examination of ultrastructural changes in S. aureus cells caused by polycationic amphiphile based on 1,4‒diazabicyclo[2.2.2]octane (DL412), ciprofloxacin and their hybrid (DL5Cip6); the samples were incubated for 15 and 45 min. DL412 first directly interacted with bacterial cell wall, damaging it, then penetrated into the cell and disrupted cytoplasm. Ciprofloxacin penetrated into cell without visually damaging the cell wall, but altered the cell membrane and cytoplasm, and inhibited the division of bacteria. The ultrastructural characteristics of S. aureus cells damaged by the hybrid clearly differed from those under ciprofloxacin or DL412 action. Signs associated with ciprofloxacin predominated in cell damage patterns from the hybrid. We studied the effect of ciprofloxacin, DL412 and their hybrid on S. aureus biofilm morphology using paraffin sections. Clear differences in compound effects on S. aureus biofilm (45 min incubation) were observed. The results obtained allow us to recommend this simple and cheap approach for the initial assessment of antibiofilm properties of synthesized compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elena I. Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Lavrent’ev av., 8, 630090 Novosibirsk, Russia; (A.E.G.); (A.V.B.); (E.S.R.); (A.V.T.); (D.A.Z.); (L.S.K.); (V.N.S.); (N.V.T.)
| |
Collapse
|
24
|
Iacovelli F, Romeo A, Lattanzio P, Ammendola S, Battistoni A, La Frazia S, Vindigni G, Unida V, Biocca S, Gaziano R, Divizia M, Falconi M. Deciphering the Broad Antimicrobial Activity of Melaleuca alternifolia Tea Tree Oil by Combining Experimental and Computational Investigations. Int J Mol Sci 2023; 24:12432. [PMID: 37569803 PMCID: PMC10420022 DOI: 10.3390/ijms241512432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Tea Tree Oil (TTO) is an essential oil obtained from the distillation of Melaleuca alternifolia leaves and branches. Due to its beneficial properties, TTO is widely used as an active ingredient in antimicrobial preparations for topical use or in cosmetic products and contains about 100 different compounds, with terpinen-4-ol, γ-terpinene and 1,8-cineole (or eucalyptol) being the molecules most responsible for its biological activities. In this work, the antimicrobial activity of whole TTO and these three major components was evaluated in vitro against fungi, bacteria and viruses. Molecular dynamics simulations were carried out on a bacterial membrane model and a Coxsackievirus B4 viral capsid, to propose an atomistic explanation of their mechanism of action. The obtained results indicate that the strong antimicrobial activity of TTO is attributable to the induction of an altered membrane functionality, mediated by the incorporation of its components within the lipid bilayer, and to a possible ability of the compounds to bind and alter the structural properties of the viral capsid.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Patrizio Lattanzio
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Giulia Vindigni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Valeria Unida
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1–00133 Rome, Italy;
| | - Maurizio Divizia
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| |
Collapse
|
25
|
da S Ferreira G, da Silva DJ, Souza AG, Yudice EDC, de Campos IB, Col RD, Mourão A, Martinho HS, Rosa DS. Eco-friendly and effective antimicrobial Melaleuca alternifolia essential oil Pickering emulsions stabilized with cellulose nanofibrils against bacteria and SARS-CoV-2. Int J Biol Macromol 2023:125228. [PMID: 37290544 DOI: 10.1016/j.ijbiomac.2023.125228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/23/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.
Collapse
Affiliation(s)
- Greiciele da S Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Alana G Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Eliana D C Yudice
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Ivana B de Campos
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Rute Dal Col
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Andre Mourão
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Herculano S Martinho
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil.
| |
Collapse
|
26
|
Jindal DA, Leier HC, Salazar G, Foden AJ, Seitz EA, Wilkov AJ, Coutinho-Budd JC, Broihier HT. Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe. Front Cell Neurosci 2023; 17:1166199. [PMID: 37333889 PMCID: PMC10272751 DOI: 10.3389/fncel.2023.1166199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations. The antennal lobe interacts extensively with two glial subtypes: ensheathing glia wrap individual glomeruli, while astrocytes ramify considerably within them. Phagocytic roles for glia in the uninjured antennal lobe are largely unknown. Thus, we tested whether Draper regulates ORN terminal arbor size, shape, or presynaptic content in two representative glomeruli: VC1 and VM7. We find that glial Draper limits the size of individual glomeruli and restrains their presynaptic content. Moreover, glial refinement is apparent in young adults, a period of rapid terminal arbor and synapse growth, indicating that synapse addition and elimination occur simultaneously. Draper has been shown to be expressed in ensheathing glia; unexpectedly, we find it expressed at high levels in late pupal antennal lobe astrocytes. Surprisingly, Draper plays differential roles in ensheathing glia and astrocytes in VC1 and VM7. In VC1, ensheathing glial Draper plays a more significant role in shaping glomerular size and presynaptic content; while in VM7, astrocytic Draper plays the larger role. Together, these data indicate that astrocytes and ensheathing glia employ Draper to refine circuitry in the antennal lobe before the terminal arbors reach their mature form and argue for local heterogeneity of neuron-glia interactions.
Collapse
Affiliation(s)
- Darren A. Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Hans C. Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Gabriela Salazar
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander J. Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth A. Seitz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Abigail J. Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jaeda C. Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather T. Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
27
|
Das G, Patra JK. Evaluation of Antibacterial Mechanism of Action, Tyrosinase Inhibition, and Photocatalytic Degradation Potential of Sericin-Based Gold Nanoparticles. Int J Mol Sci 2023; 24:ijms24119477. [PMID: 37298428 DOI: 10.3390/ijms24119477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In recent times, numerous natural materials have been used for the fabrication of gold nanoparticles (AuNPs). Natural resources used for the synthesis of AuNPs are more environment friendly than chemical resources. Sericin is a silk protein that is discarded during the degumming process for obtaining silk. The current research used sericin silk protein waste materials as the reducing agent for the manufacture of gold nanoparticles (SGNPs) by a one-pot green synthesis method. Further, the antibacterial effect and antibacterial mechanism of action, tyrosinase inhibition, and photocatalytic degradation potential of these SGNPs were evaluated. The SGNPs displayed positive antibacterial activity (8.45-9.58 mm zone of inhibition at 50 μg/disc) against all six tested foodborne pathogenic bacteria, namely, Enterococcus feacium DB01, Staphylococcus aureus ATCC 13565, Listeria monocytogenes ATCC 33090, Escherichia coli O157:H7 ATCC 23514, Aeromonas hydrophila ATCC 7966, and Pseudomonas aeruginosa ATCC 27583. The SGNPs also exhibited promising tyrosinase inhibition potential, with 32.83% inhibition at 100 μg/mL concentration as compared to 52.4% by Kojic acid, taken as a reference standard compound. The SGNPs also displayed significant photocatalytic degradation effects, with 44.87% methylene blue dye degradation after 5 h of incubation. Moreover, the antibacterial mode of action of the SGNPs was also investigated against E. coli and E. feacium, and the results show that due to the small size of the nanomaterials, they could have adhered to the surface of the bacterial pathogens, and could have released more ions and dispersed in the bacterial cell wall surrounding environment, thereby disrupting the cell membrane and ROS production, and subsequently penetrating the bacterial cells, resulting in lysis or damage to the cell by the process of structural damage to the membrane, oxidative stress, and damage to the DNA and bacterial proteins. The overall outcome of the current investigation concludes the positive effects of the obtained SGNPs and their prospective applications as a natural antibacterial agent in cosmetics, environmental, and foodstuff industries, and for the management of environmental contagion.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| |
Collapse
|
28
|
Szewczuk MA, Zych S, Oster N, Karakulska J. Activity of Patchouli and Tea Tree Essential Oils against Staphylococci Isolated from Pyoderma in Dogs and Their Synergistic Potential with Gentamicin and Enrofloxacin. Animals (Basel) 2023; 13:ani13081279. [PMID: 37106842 PMCID: PMC10134980 DOI: 10.3390/ani13081279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, we show the effect of some essential oils (EOs) on staphylococci, including multidrug-resistant strains isolated from pyoderma in dogs. A total of 13 Staphylococcus pseudintermedius and 8 Staphylococcus aureus strains were studied. To assess the sensitivity of each strain to the antimicrobial agents, two commercial EOs from patchouli (Pogostemon cablin; PcEO) and tea tree (Melaleuca alternifolia; MaEO) as well as two antibiotics (gentamicin and enrofloxacin) were used. The minimum inhibitory concentration (MIC) followed by checkerboards in the combination of EO-antibiotic were performed. Finally, fractional inhibitory concentrations were calculated to determine possible interactions between these antimicrobial agents. PcEO MIC ranged from 0.125 to 0.5 % v/v (1.2-4.8 mg/mL), whereas MaEO MIC was tenfold higher (0.625-5% v/v or 5.6-44.8 mg/mL). Gentamicin appeared to be highly prone to interacting with EOs. Dual synergy (38.1% of cases) and PcEO additive/MaEO synergism (53.4%) were predominantly observed. On the contrary, usually, no interactions between enrofloxacin and EOs were observed (57.1%). Both commercial EOs were characterized by natural composition without artificial adulteration. Patchouli and tea tree oils can be good alternatives for treating severe cases of pyoderma in dogs, especially when dealing with multidrug-resistant strains.
Collapse
Affiliation(s)
- Małgorzata Anna Szewczuk
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland
| | - Sławomir Zych
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Nicola Oster
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland
| | - Jolanta Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| |
Collapse
|
29
|
Pimchan T, Tian F, Thumanu K, Rodtong S, Yongsawatdigul J. Isolation, identification, and mode of action of antibacterial peptides derived from egg yolk hydrolysate. Poult Sci 2023; 102:102695. [PMID: 37120868 PMCID: PMC10172704 DOI: 10.1016/j.psj.2023.102695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Egg yolk is a coproduct of egg white processing. The protein hydrolysis of egg yolks to exhibit antimicrobial activity is a strategy for its valorization. The objective of this study is to fractionate antibacterial peptides from pepsin-hydrolyzed egg yolks using flash chromatography. In addition, the mode of actions of the fractionated peptides were elucidated and plausible antibacterial peptides were reported. The fraction 6 (F6) obtained from a C18-flash column exhibited antibacterial activity against Staphylococcus aureus ATCC 29213 and Salmonella typhimurium TISTR 292 at minimal inhibitory concentration (MIC) values of 0.5 to 1 mmol/L (Leucine equivalent). The fractionated peptides induced DNA leakage as monitored by 260 nm. Propidium iodide and SYTO9 staining observed under a confocal microscope suggested the disintegration of cell membranes. Synchrotron-based Fourier-transform infrared spectroscopy analysis revealed that the egg yolk peptides at 1 × MIC induced an alteration of phospholipids at cell membranes and modified conformation of intracellular proteins and nucleic acids. Scanning electron microscopy revealed obvious cell ruptures when S. aureus was treated at 1 × MIC for 4 h, whereas damage of cell membranes and leakage of intracellular components were also observed for the transmission electron microscopy. Egg yolk peptides showed no hemolytic activity in human erythrocytes at concentrations up to 4 mmol/L. Peptide identification by LC-MS/MS revealed 3 cationic and 10 anionic peptides with 100% sequence similarity to apolipoprotein-B of Gallus gallus with hydrophobicity ranging from 27 to 75%. The identified peptide KGGDLGLFEPTL exhibited the highest antibacterial activity toward S. aureus at MIC of 2 mmol/L. Peptides derived from egg yolk hydrolysate present significant potential as antistaphylococcal agents for food and/or pharmaceutical application.
Collapse
|
30
|
Comprehensive Study of Components and Antimicrobial Properties of Essential Oil Extracted from Carum carvi L. Seeds. Antibiotics (Basel) 2023; 12:antibiotics12030591. [PMID: 36978458 PMCID: PMC10045241 DOI: 10.3390/antibiotics12030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Carum carvi L. belongs to the Apiaceae family and is widely used as a vegetable, food spice, preservative, and herbal medicine. This study investigated the impact of essential oil extracted from Carum carvi L. seeds (CEO) on methicillin-resistant Staphylococcus aureus (MRSA) and its possible action mechanism. The dominant chemical components of CEO determined by GC-MS were carvone and limonene. It was observed that CEO had a considerable inhibitory effect against the growth of planktonic bacteria and biofilm in MRSA cells. Untargeted metabolomics based on GC-Q-TOF-MS was used to analyze the possible mechanism of the interaction of MRSA with CEO. It was determined that there were 63 different metabolites based on fold change values greater than 1.5 or less than 1.5, p < 0.05, VIP > 1, which demonstrated amino acid metabolism in MRSA was significantly affected by CEO. In conclusion, CEO has a potent antimicrobial property and has promising potential for use in food and drugs.
Collapse
|
31
|
Fontana R, Mattioli LB, Biotti G, Budriesi R, Gotti R, Micucci M, Corazza I, Marconi P, Frosini M, Manfredini S, Buzzi R, Vertuani S. Magnolia officinalis L. bark extract and respiratory diseases: From traditional Chinese medicine to western medicine via network target. Phytother Res 2023. [PMID: 36879409 DOI: 10.1002/ptr.7786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/08/2023]
Abstract
The understanding of the use of Magnolia officinalis L. (Magnoliaceae) as a possible dietary supplement for supporting the treatment of airway pathologies might be of clinical interest. Two commercially available bark extracts (M. officinalis extract [MOE]) were characterized by quantitation in honokiol and magnolol content by means of high-performance liquid chromatography with UV detection. MOE effects, as well as those of the reference compounds per se, on some targets connected to airway pathologies (antibacterial- and lung and trachea relaxing- activities) were investigated. Results showed that MOE possessed interesting antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This was accompanied by a spasmolytic and antispasmodic activity, possibly owing to its ability to concurrently modulate different targets such as H1 -, β2 - and muscarinic receptors and l-type calcium channels involved in bronchodilation. All these effects were directly related to the MOE content in honokiol and magnolol. In conclusion, the properties of MOE highlighted here strongly encourage its application as dietary supplement in the treatment of airway diseases.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giulia Biotti
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences - DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| |
Collapse
|
32
|
Chowdhury S, Ghosh S, Gond SK. Anti-MRSA and clot lysis activities of Pestalotiopsis microspora isolated from Dillenia pentagyna Roxb. J Basic Microbiol 2023; 63:340-358. [PMID: 36002312 DOI: 10.1002/jobm.202200294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
There is an urgent call to search for novel natural compounds against developing multidrug-resistant microorganisms. The present work focuses on the characterization of a plant-associated fungus having bioactivity against methicillin-resistant Staphylococcus aureus (MRSA) strains. A fungal strain P31 was isolated from bark of Dillenia pentagyna and identified as Pestalotiopsis microspora. The maximum anti-MRSA activity was observed from extract of P31 grown in sabouraud dextrose broth. The minimum inhibitory concentrations (MIC) values of P31 extract were 14 μg/ml for methicillin-sensitive S. aureus (MSSA) and 32 μg/ml for MRSA strain, respectively. A crude P31 extract showed strong bactericidal activity by killing all treated MRSA cells within 24 h of treatment at their respective MIC value. A scanning electron microscopic study visualized morphological damage of MRSA cells. The membrane permeability of P31 extract-treated MRSA cells gradually increased which caused release of internal cytoplasmic nucleic acids, proteins and potassium ions (K+ ) from cells suggesting cell lysis or leakage from cells. A very low concentration of P31 extract was able to inhibit biofilm formed by MRSA cells. Thin layer chromatographic separation followed by gas chromatography-mass spectrometry analysis of the P31 extract revealed a number of antimicrobial compounds along with an anti-MRSA compound 2,4-di-tert-butylphenol. In addition, the P31 extract also showed in-vitro human blood clot lysis activity at various concentrations. The clot lysis activity of P31 extract was found maximum at 500 µg/ml. These findings suggest that fungal isolate P31 has potential as a source of anti-MRSA compounds useful in staph infections.
Collapse
Affiliation(s)
- Sandip Chowdhury
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India.,Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Surendra K Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Phytochemical Composition and Insight into Antibacterial Potential of Origanum vulgare Essential Oil from Saudi Arabia Using In Vitro and In Silico Approaches. Processes (Basel) 2023. [DOI: 10.3390/pr11030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
In Saudi Arabia, Origanum vulgare is widely disseminated. In the present work, we used GC-MS analysis to identify the components of Origanum vulgare essential oil. The disc diffusion assay was used to assess the essential oil’s in vitro antibacterial efficacy against Gram-positive and Gram-negative Staphylococcus aureus and Escherichia coli. The antimicrobial efficacy against many microbial proteins, including tyrosyl-tRNA synthetase (TyrRS), DNA gyrase, and dihydrofolate reductase (DHFR), was further evaluated using molecular docking. Eighteen compounds were identified using GC-MS analysis, which constituted 99.81% of the total essential oil content. Terpinen-4-ol (34.3%), Beta-Terpineol (16.96%), 3-Epimoretenol (11.84%), and Alpha-Terpineol (3.86%) were the main substances identified. According to the antibacterial investigation, the inhibition zone against Staphylococcus aureus was 8 mm and 6 mm against Escherichia coli. High affinities were found between 3-Epimoretenol and tyrosyl-tRNA synthetase (TyrRS) and dihydrofolate reductase (DHFR) compared to positive controls (Clorobiocin, SCHEMBL2181345); the affinity values were −8.3 Kcal/mol and −9.2, respectively. The results of the present study indicate that Origanum vulgare essential oil can be used as a nutraceutical to treat infectious diseases.
Collapse
|
34
|
Filatov VA, Kulyak OY, Kalenikova EI. Chemical Composition and Antimicrobial Potential of a Plant-Based Substance for the Treatment of Seborrheic Dermatitis. Pharmaceuticals (Basel) 2023; 16:ph16030328. [PMID: 36986428 PMCID: PMC10053605 DOI: 10.3390/ph16030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Seborrheic dermatitis (SD) is the most prevalent dermatological disease, occurring in up to 50% of newborns, children, and adults around the world. The antibacterial and antifungal resistance contributed to the search for new natural substances and the development of a novel substance based on Melaleuca alternifolia (M. alternifolia) leaf oil (TTO), 1,8-cineole (eucalyptol), and α-(-)-bisabolol. Thus, this work aimed to determine the chemical composition of the novel plant-based substance and to evaluate its antimicrobial activity against standard microorganisms involved in the pathogenesis of SD. Moreover, the chemical composition of the substance was analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), Micrococcus luteus (M. luteus), and Candida albicans (C. albicans) were used for antimicrobial and antifungal assays by means of the broth microdilution method to determine the minimal inhibitory concentration (MIC). Finally, the substance’s ability to inhibit Malassezia furfur (M. furfur) was evaluated. Eighteen compounds from different chemical groups were identified by GC/MS. The major biologically active compounds of the substance were terpinen-4-ol (20.88%), 1,8-cineole (22.28%), (-)-α-bisabolol (25.73%), and o-cymene (8.16%). The results showed that the substance has a synergistic antimicrobial and antifungal activity, while S. epidermidis and C. albicans strains were the most susceptible. Furthermore, the substance inhibited M. furfur, which is a main pathogen involved in the pathogenesis of SD and clinical manifestations. It can be concluded that the novel plant-based substance has a promising potential against M. furfur and scalp commensal bacteria and may be helpful for the development of new drugs for treatment of dandruff and SD.
Collapse
Affiliation(s)
- Viktor A. Filatov
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
- SkyLab AG, 1066 Lausanne, Switzerland
- Correspondence:
| | - Olesya Yu. Kulyak
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia
| | - Elena I. Kalenikova
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
| |
Collapse
|
35
|
Thebti A, Meddeb A, Ben Salem I, Bakary C, Ayari S, Rezgui F, Essafi-Benkhadir K, Boudabous A, Ouzari HI. Antimicrobial Activities and Mode of Flavonoid Actions. Antibiotics (Basel) 2023; 12:225. [PMID: 36830135 PMCID: PMC9952116 DOI: 10.3390/antibiotics12020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The emergence of antibiotics-resistant bacteria has been a serious concern for medical professionals over the last decade. Therefore, developing new and effective antimicrobials with modified or different modes of action is a continuing imperative. In this context, our study focuses on evaluating the antimicrobial activity of different chemically synthesized flavonoids (FLAV) to guide the chemical synthesis of effective antimicrobial molecules. A set of 12 synthesized molecules (4 chalcones, 4 flavones and 4 flavanones), bearing substitutions with chlorine and bromine groups at the C6' position and methoxy group at the C4' position of the B-ring were evaluated for antimicrobial activity toward 9 strains of Gram-positive and Gram-negative bacteria and 3 fungal strains. Our findings showed that most tested FLAV exhibited moderate to high antibacterial activity, particularly against Staphylococcus aureus with minimum inhibitory concentrations (MIC) between the range of 31.25 and 125 μg/mL and that chalcones were more efficient than flavones and flavanones. The examined compounds were also active against the tested fungi with a strong structure-activity relationship (SAR). Interestingly, leakage measurements of the absorbent material at 260 nm and scanning electron microscopy (SEM) demonstrated that the brominated chalcone induced a significant membrane permeabilization of S. aureus.
Collapse
Affiliation(s)
- Amal Thebti
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| | - Ahmed Meddeb
- Laboratory of Structural Organic Chemistry and Macromolecular, LR99ES14, University of Tunis-El Manar, El-Manar I, Tunis 2092, Tunisia
| | - Issam Ben Salem
- Laboratory of Microbiology and LNR-Mycology, University Hospital of Abderahman Mami, Ariana 2038, Tunisia
| | - Coulibaly Bakary
- Environment and Agrifood Laboratory (ENVAL), Contaminant Group, Abidjan 21 BP 950, Côte d’Ivoire
| | - Sami Ayari
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| | - Farhat Rezgui
- Laboratory of Structural Organic Chemistry and Macromolecular, LR99ES14, University of Tunis-El Manar, El-Manar I, Tunis 2092, Tunisia
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Pasteur Institute of Tunis, University of Tunis El-Manar, Tunis 1002, Tunisia
| | - Abdellatif Boudabous
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| |
Collapse
|
36
|
Rashidi MJ, Nasiraie LR, Zomorrodi S, Jafarian S. Development and characterization of novel active opopanax gum and gelatin bio-nanocomposite film containing zinc oxide nanoparticles and peppermint essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Perigo CV, Haber LL, Facanali R, Vieira MAR, Torres RB, Bernacci LC, Guimarães EF, Baitello JB, Sobral MEG, Quecini V, Marques MOM. Essential Oils of Aromatic Plant Species from the Atlantic Rainforest Exhibit Extensive Chemical Diversity and Antimicrobial Activity. Antibiotics (Basel) 2022; 11:antibiotics11121844. [PMID: 36551501 PMCID: PMC9774909 DOI: 10.3390/antibiotics11121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial resistance, caused by the overuse or inadequate application of antibiotics, is a worldwide crisis, increasing the risk of treatment failure and healthcare costs. Plant essential oils (EOs) consist of hydrophobic metabolites with antimicrobial activity. The antimicrobial potential of the chemical diversity of plants from the Atlantic Rainforest remains scarcely characterized. In the current work, we determined the metabolite profile of the EOs from aromatic plants from nine locations and accessed their antimicrobial and biocidal activity by agar diffusion assays, minimum inhibitory concentration, time-kill and cell-component leakage assays. The pharmacokinetic properties of the EO compounds were investigated by in silico tools. More than a hundred metabolites were identified, mainly consisting of sesqui and monoterpenes. Individual plants and botanical families exhibited extensive chemical variations in their EO composition. Probabilistic models demonstrated that qualitative and quantitative differences contribute to chemical diversity, depending on the botanical family. The EOs exhibited antimicrobial biocidal activity against pathogenic bacteria, fungi and multiple predicted pharmacological targets. Our results demonstrate the antimicrobial potential of EOs from rainforest plants, indicate novel macromolecular targets, and contribute to highlighting the chemical diversity of native species.
Collapse
Affiliation(s)
| | - Lenita L. Haber
- Vegetables Research Center, Brazilian Agricultural Research Corporation, Brasília 70351-970, Brazil
| | | | | | | | | | - Elsie F. Guimarães
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - João B. Baitello
- Instituto Florestal do Estado de São Paulo, São Paulo 02377-000, Brazil
| | - Marcos E. G. Sobral
- Natural Sciences Department, Campus Dom Bosco, Universidade Federal de São João del-Rei, São João del Reio 36301-160, Brazil
| | - Vera Quecini
- Grape and Wine Research Center, Brazilian Agricultural Research Corporation, Bento Gonçalves 95701-008, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| | - Marcia Ortiz M. Marques
- Instituto Agronômico, Campinas 13075-630, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| |
Collapse
|
38
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India,*Correspondence: Vishvanath Tiwari,
| |
Collapse
|
39
|
Polysorbate 21 Can Modulate the Antibacterial Potential of Two Pyrazol Derivatives. Biomolecules 2022; 12:biom12121819. [PMID: 36551246 PMCID: PMC9776004 DOI: 10.3390/biom12121819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The combination of two compounds with known antimicrobial activity may, in some cases, be an effective way to limit the resistance to antibiotics of specific pathogens. Molecules carrying pyrazole moiety are well known for their bioactive properties and have wide applicability in the medical and pharmaceutical field. Surfactants have, among other useful properties, the ability to affect the growth of microorganisms. The paper reports on the effect of the combination of two pyrazole derivatives, (1H-pyrazol-1-yl) methanol 1-hydroxymethylpyrazole (SAM1) and 1,1'methandiylbis (1H-pyrazol) (AM1), with sorbitan monolaurate (polysorbate 21, Tween 21, T21) on the growth of Gram-positive and Gram-negative bacteria. The results demonstrated a different ability of this combination to inhibit Staphylococcus aureus and Escherichia coli. T21 intensified the inhibitory activity of the pyrazoles to a greater extent in the Gram-negative bacteria compared to the Gram-positive ones, a fact confirmed by time-kill experiments. The experimental data showed that the association of T21 with the pyrazoles led to the increased release of intracellular material and a more intense uptake of crystal violet, which indicates that the potentiation of the antibacterial effect was based on the modification of the normal permeability of bacterial cells. T21 acted as a modulating factor and increased the permeability of the membrane, allowing the accelerated penetration of the pyrazoles inside the bacterial cells. This fact is important in controlling the global increase in microbial resistance to antibiotics and antimicrobials and finding viable solutions to overcome the antibiotic crisis. The paper highlights the possibility of using non-toxic surfactant molecules in antimicrobial combinations with practical applications. This could widen the range of adjuvants in applications which would be useful in the control of resistant microorganisms.
Collapse
|
40
|
First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens. Molecules 2022; 27:molecules27217472. [PMID: 36364298 PMCID: PMC9654757 DOI: 10.3390/molecules27217472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Antimicrobial resistance is a major public health issue raising growing concern in the face of dwindling response options. It is therefore urgent to find new anti-infective molecules enabling us to fight effectively against ever more numerous bacterial infections caused by ever more antibiotic-resistant bacteria. In this quest for new antibacterials, essential oils (or compounds extracted from essential oils) appear to be a promising therapeutic option. In the present work, we investigate the potential antibacterial synergy between a combination of terpinen-4-ol and α-terpineol (10:1) compared to standard tea tree oil. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. Then, time kill assays, in vitro cytotoxicity and bactericidal activity on latent bacteria (persisters) were investigated. Finally, an in silico study of the pharmacokinetic parameters of α-terpineol was also performed. Altogether, our data demonstrate that the combination of terpinen-4-ol and α-terpineol might be a precious weapon to address ESKAPE pathogens.
Collapse
|
41
|
Lv X, Chen L, Zhou C, Guo Y, Zhang G, Kang J, Tan Z, Tang S, Liu Z. Dietary tea tree ( Melaleuca alternifolia) oil supplementation enhances the expressions of amino acid transporters in goat ileal mucosa and improves intestinal immunity. Food Sci Nutr 2022; 10:3749-3758. [PMID: 36348789 PMCID: PMC9632209 DOI: 10.1002/fsn3.2972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 09/08/2024] Open
Abstract
Tea tree oil (TTO) is a plant-derived additive with anti-inflammatory, bactericidal, and growth-promoting properties. However, little is known about the effects of TTO on intestinal amino acid transport and immune function in goats. Twenty-four Ganxi goats (initial body weight of 13.5 ± 0.70 kg) were randomly allotted two treatments and fed either control (CON) or CON+TTO (0.2 ml/kg) diet. The addition of TTO to the diet significantly decreased (p < .05) tumor necrosis factor-α content and increased (p < .05) interleukin-2 (IL-2) content in goat serum; significantly decreased (p < .05) IL-12, and increased (p < .05) IL-2 content in goat ileal mucosa; significantly increased (p < .05) secreted IgA content in the jejunal and ileal mucosa; significantly upregulated (p < .05) IL-2 and downregulated (p < .05) IL-12 at the mRNA level in the ileal mucosa; significantly elevated the levels of serine, arginine, and total amino acids in the ileal mucosa (p < .05); significantly upregulated (p < .05) SLC1A1 and SLC7A1 in the ileum; and significantly enhanced (p < .05) the protein expression of Claudin-1 in the ileal mucosa. In summary, adding 0.2 ml/kg of TTO to the diet enhanced SLC1A1 and SLC7A1 mRNA expression in the ileal mucosa, and SLC1A1 and SLC7A1 could transport serine and arginine from the chyme to the ileal mucosa. Thus, increased serine and arginine content in the mucosa could improve intestinal immunity. TTO supplementation upregulated the expression of IL-2 and Claudin-1 in goat ileal mucosa, and enhanced immune function in the intestine.
Collapse
Affiliation(s)
- Xiaokang Lv
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
- College of Advanced AgriculturalUniversity of Chinese Academy of SciencesBeijingChina
| | - Liang Chen
- Shenyang Agricultural UniversityInstitute of Rural Revitalization StrategyShenyangChina
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
- College of Advanced AgriculturalUniversity of Chinese Academy of SciencesBeijingChina
- School of AgricultureNingxia UniversityYinchuanChina
| | - Yibing Guo
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Guijie Zhang
- School of AgricultureNingxia UniversityYinchuanChina
| | - Jinhe Kang
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Zhiliang Tan
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Shaoxun Tang
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Zixin Liu
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
- College of Advanced AgriculturalUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
42
|
Hu X, Zhang K, Pan G, Wang Y, Shen Y, Peng C, Deng L, Cui H. Cortex Mori extracts induce apoptosis and inhibit tumor invasion via blockage of the PI3K/AKT signaling in melanoma cells. Front Pharmacol 2022; 13:1007279. [PMID: 36339598 PMCID: PMC9627489 DOI: 10.3389/fphar.2022.1007279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 08/22/2023] Open
Abstract
Melanoma, the most aggressive and deadliest form of skin cancer, has attracted increased attention due to its increasing incidence worldwide. The Cortex Mori (CM) has long been used as a classical traditional Chinese medicine (TCM) to treat various diseases, including cancer. The bioactive components and underlying mechanisms, however, remain largely unknown. The current study aims to investigate the anti-melanoma effects of CM and potential mechanisms through combined network pharmacology and bioinformatic analyses, and validated by in vitro and in vivo experiments. We report here that CM has anti-melanoma activity both in vitro and in vivo. Furthermore, 25 bioactive compounds in CM were found to share 142 melanoma targets, and network pharmacology and enrichment analyses suggested that CM inhibits melanoma through multiple biological processes and signaling pathways, particularly the PI3K-AKT signaling inhibition and activation of apoptotic pathways, which were further confirmed by biochemical and histological examinations. Finally, partial CM-derived bioactive compounds were found to show anti-melanoma effects, validating the anti-melanoma potential of bioactive ingredients of CM. Taken together, these results reveal bioactive components and mechanisms of CM in inhibiting melanoma, providing them as potential anti-cancer natural products for the treatment of melanoma.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Yinggang Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Yue Shen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| |
Collapse
|
43
|
Preparation and Characterization of Degradable Cellulose−Based Paper with Superhydrophobic, Antibacterial, and Barrier Properties for Food Packaging. Int J Mol Sci 2022; 23:ijms231911158. [PMID: 36232459 PMCID: PMC9570331 DOI: 10.3390/ijms231911158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A great paradigm for foremost food packaging is to use renewable and biodegradable lignocellulose−based materials instead of plastic. Novel packages were successfully prepared from the cellulose paper by coating a mixture of polylactic acid (PLA) with cinnamaldehyde (CIN) as a barrier screen and nano silica−modified stearic acid (SA/SiO2) as a superhydrophobic layer. As comprehensively investigated by various tests, results showed that the as−prepared packages possessed excellent thermal stability attributed to inorganic SiO2 incorporation. The excellent film−forming characteristics of PLA improved the tensile strength of the manufactured papers (104.3 MPa) as compared to the original cellulose papers (70.50 MPa), enhanced by 47.94%. Benefiting from the rough nanostructure which was surface−modified by low surface energy SA, the contact angle of the composite papers attained 156.3°, owning superhydrophobic performance for various liquids. Moreover, the composite papers showed excellent gas, moisture, and oil bacteria barrier property as a result of the reinforcement by the functional coatings. The Cobb300s and WVP of the composite papers were reduced by 100% and 88.56%, respectively, and their antibacterial efficiency was about 100%. As the novel composite papers have remarkable thermal stability, tensile strength, and barrier property, they can be exploited as a potential candidate for eco−friendly, renewable, and biodegradable cellulose paper−based composites for the substitute of petroleum−derived packages.
Collapse
|
44
|
Abdelhamed FM, Abdeltawab NF, ElRakaiby MT, Shamma RN, Moneib NA. Antibacterial and Anti-Inflammatory Activities of Thymus vulgaris Essential Oil Nanoemulsion on Acne Vulgaris. Microorganisms 2022; 10:microorganisms10091874. [PMID: 36144477 PMCID: PMC9503056 DOI: 10.3390/microorganisms10091874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are frequently used in acne treatment and their prolonged use has led to an emergence of resistance. This study aimed to investigate the use of natural antimicrobials as an alternative therapy. The antimicrobial and anti-inflammatory activities of five commonly used essential oils (EOs) (tea tree, clove, thyme, mentha and basil EOs), and their possible mechanisms of action against Cutibacterium acnes and Staphylococcus epidermidis, were explored. The effect of the most potent EO on membrane permeability was elucidated and its anti-inflammatory action, when formulated as nanoemulsion, was tested in an in vivo acne model. The in vitro studies showed that thyme EO had the most potent antimicrobial and antibiofilm activity, with phenolics and terpenoids as main antimicrobial constituents of EO. Thyme EO affected cell membrane permeability of both bacterial species, evident by the detection of the leakage of intracellular ions and membrane integrity by the leakage of nucleic acids. Morphological alteration in bacterial cells was confirmed by transmission electron microscopy. Thyme EO nanoemulsion led to the suppression of an inflammatory response in acne animal models along with a bacterial load decrease and positive histopathological changes. Collectively, thyme EO nanoemulsion showed potent antimicrobial and anti-inflammatory effects compared to the reference antibiotics, suggesting its effectiveness as a natural alternative in acne treatment.
Collapse
Affiliation(s)
- Farah M. Abdelhamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (F.M.A.); (N.F.A.)
| | - Nourtan F. Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (F.M.A.); (N.F.A.)
| | - Marwa T. ElRakaiby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rehab N. Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nayera A. Moneib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
45
|
Antimicrobial potential of a ponericin-like peptide isolated from Bombyx mori L. hemolymph in response to Pseudomonas aeruginosa infection. Sci Rep 2022; 12:15493. [PMID: 36109567 PMCID: PMC9477818 DOI: 10.1038/s41598-022-19450-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Abstract
The main effectors in the innate immune system of Bombyx mori L. are antimicrobial peptides (AMPs). Here, we infected B. mori with varied inoculum sizes of Pseudomonas aeruginosa ATCC 25668 cells to investigate changes in morpho-anatomical responses, physiological processes and AMP production. Ultraviolet-visible spectra revealed a sharp change in λmax from 278 to 285 nm (bathochromic shift) in the hemolymph of infected B. mori incubated for 24 h. Further, Fourier Transform InfraRed studies on the hemolymph extracted from the infected B. mori showed a peak at 1550 cm-1, indicating the presence of α-helical peptides. The peptide fraction was obtained through methanol, acetic acid and water mixture (90:1:9) extraction, followed by peptide purification using Reverse Phase High Performance Liquid Chromatography. The fraction exhibiting antibacterial properties was collected and characterized by Matrix-Assisted Laser Desorption/Ionization-Time of Flight. A linear α-helical peptide with flexible termini (LLKELWTKMKGAGKAVLGKIKGLL) was found, corresponding to a previously described peptide from ant venom and here denominated as Bm-ponericin-L1. The antibacterial activity of Bm-ponericin-L1 was determined against ESKAPE pathogens. Scanning electron microscopy confirmed the membrane disruption potential of Bm-ponericin-L1. Moreover, this peptide also showed promising antibiofilm activity. Finally, cell viability and hemolytic assays revealed that Bm-ponericin-L1 is non-toxic toward primary fibroblasts cell lines and red blood cells, respectively. This study opens up new perspectives toward an alternative approach to overcoming multiple-antibiotic-resistance by means of AMPs through invertebrates' infection with human pathogenic bacteria.
Collapse
|
46
|
Bunse M, Daniels R, Gründemann C, Heilmann J, Kammerer DR, Keusgen M, Lindequist U, Melzig MF, Morlock GE, Schulz H, Schweiggert R, Simon M, Stintzing FC, Wink M. Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being. Front Pharmacol 2022; 13:956541. [PMID: 36091825 PMCID: PMC9449585 DOI: 10.3389/fphar.2022.956541] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
Essential oils (EOs) and their individual volatile organic constituents have been an inherent part of our civilization for thousands of years. They are widely used as fragrances in perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients of pharmaceutical products. Their antibacterial, antiviral, and anti-inflammatory properties have qualified EOs early on for both, the causal and symptomatic therapy of a number of diseases, but also for prevention. Obtained from natural, mostly plant materials, EOs constitute a typical example of a multicomponent mixture (more than one constituent substances, MOCS) with up to several hundreds of individual compounds, which in a sophisticated composition make up the property of a particular complete EO. The integrative use of EOs as MOCS will play a major role in human and veterinary medicine now and in the future and is already widely used in some cases, e.g., in aromatherapy for the treatment of psychosomatic complaints, for inhalation in the treatment of respiratory diseases, or topically administered to manage adverse skin diseases. The diversity of molecules with different functionalities exhibits a broad range of multiple physical and chemical properties, which are the base of their multi-target activity as opposed to single isolated compounds. Whether and how such a broad-spectrum effect is reflected in natural mixtures and which kind of pharmacological potential they provide will be considered in the context of ONE Health in more detail in this review.
Collapse
Affiliation(s)
- Marek Bunse
- Department of Analytical Development and Research, WALA Heilmittel GmbH, Bad Boll, Germany
| | - Rolf Daniels
- Department of Pharmaceutical Technology, University of Tübingen, Tübingen, Germany
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jörg Heilmann
- Department of Pharmaceutical Biology, University of Regensburg, Regensburg, Germany
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, WALA Heilmittel GmbH, Bad Boll, Germany
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Lindequist
- Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | | | - Gertrud E. Morlock
- Institute of Nutritional Science, Chair of Food Science and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Hartwig Schulz
- Consulting & Project Management for Medicinal & Aromatic Plants, Stahnsdorf, Germany
| | - Ralf Schweiggert
- Institute of Beverage Research, Chair of Analysis and Technology of Plant-Based Foods, Geisenheim University, Geisenheim, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Florian C. Stintzing
- Department of Analytical Development and Research, WALA Heilmittel GmbH, Bad Boll, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
47
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
48
|
El Fayoumy RA, El-Sheekh MM, Abu Ahmed SE. Potential of Ulvan Polysaccharide from Ulva lactuca as Antifungal Against Some Foodborne Fungi Isolated from Spoiled Tomato Sauce Cans. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Reham A. El Fayoumy
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Mostafa M. El-Sheekh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Seham E. Abu Ahmed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
49
|
Busto N, Vigueras G, Cutillas N, García B, Ruiz J. Inert cationic iridium(III) complexes with phenanthroline-based ligands: application in antimicrobial inactivation of multidrug-resistant bacterial strains. Dalton Trans 2022; 51:9653-9663. [PMID: 35713595 DOI: 10.1039/d2dt00752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial activity of a new series of heteroleptic iridium(III) complexes of the type [Ir(C^N)2(N^N)][PF6] (C^N = deprotonated 2-phenylbenzimidazole-κN, κC; N^N = phen (Ir1), dpq (Ir2), dppz (Ir3), dppn (Ir4), and dppz-idzo (Ir5)) was studied towards two Gram positive (vancomycin-resistant Enterococcus faecium and a methicillin-resistant Staphylococcus aureus) and two Gram negative (Acinetobacter baumanii and Pseudomonas aeruginosa) multidrug-resistant bacterial strains of clinical interest. Although the complexes were inactive towards Gram negative bacteria, their effectiveness against Gram positive strains was remarkable, especially for Ir1 and Ir2, the most bactericidal complexes that were even more active (10 times) than the fluoroquinolone antibiotic norfloxacin and displayed no toxicity in human kidney cells (HEK293). Mechanistic studies revealed that the cell wall and membrane of MRSA S. aureus remained intact on treatment with these compounds and that DNA was not their main target. It is important to note that the complexes were able to induce ROS generation, this being the feature key to their antimicrobial activity.
Collapse
Affiliation(s)
- Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001, Burgos, Spain. .,Departamento de Ciencias de la Salud. Facultad de Ciencias de la Salud. Universidad de Burgos, Hospital Militar, Paseo de los Comendadores, s/n, 09001 Burgos, Spain.
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001, Burgos, Spain.
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| |
Collapse
|
50
|
Terpinen-4-ol, the Main Bioactive Component of Tea Tree Oil, as an Innovative Antimicrobial Agent against Legionella pneumophila. Pathogens 2022; 11:pathogens11060682. [PMID: 35745536 PMCID: PMC9229490 DOI: 10.3390/pathogens11060682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Legionella pneumophila (Lp), responsible for a severe pneumonia called Legionnaires’ disease, represents an important health burden in Europe. Prevention and control of Lp contamination in warm water systems is still a great challenge often due to the failure in disinfection procedures. The aim of this study was to evaluate the in vitro activity of Terpinen-4-ol (T-4-ol) as potential agent for Lp control, in comparison with the essential oil of Melaleuca alternifolia (tea tree) (TTO. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of T-4-ol were determined by broth micro-dilution and a micro-atmosphere diffusion method to investigate the anti-Lp effects of T-4-ol and TTO vapors. Scanning Electron Microscopy (SEM) was adopted to highlight the morphological changes and Lp damage following T-4-ol and TTO treatments. The greatest antimicrobial activity against Lp was shown by T-4-ol with a MIC range of 0.06–0.125% v/v and MBC range of 0.25–0.5% v/v. The TTO and T-4-ol MIC and MBC decreased with increasing temperature (36 °C to 45 ± 1 °C), and temperature also significantly influenced the efficacy of TTO and T-4-ol vapors. The time-killing assay showed an exponential trend of T-4-ol bactericidal activity at 0.5% v/v against Lp. SEM observations revealed a concentration- and temperature- dependent effect of T-4-ol and TTO on cell surface morphology with alterations. These findings suggest that T-4-ol is active against Lp and further studies may address the potential effectiveness of T-4-ol for control of water systems.
Collapse
|