1
|
Kilbas EPK, Kilbas I, Ciftci IH. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates in Turkiye: Systematic review. North Clin Istanb 2023; 10:531-539. [PMID: 37719251 PMCID: PMC10500232 DOI: 10.14744/nci.2022.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The World Health Organization has designated carbapenem-resistant Acinetobacter baumannii (CRAB) as a "critical" pathogen on the global priority list of antibiotic-resistant bacteria. This study aims to discuss the molecular epidemiology of CRAB isolates in Turkiye in the last 12 years and the prevalence of gene regions associated with resistance or pathogenesis using a systematic review method. Our study consists of a literature search, determination of eligibility and exclusion criteria, qualitative analysis of studies, data extraction, and statistical analysis. All studies were analyzed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Guidelines. The incidence rates of blaOXA-23, blaOXA-23-like, blaOXA-24/40, blaOXA-24/40-like, blaOXA-51, blaOXA-51-like, blaOXA-58, and blaOXA-58-like genes in CRAB strains were 76.4%, 68.6%, 1.2%, 3.4%, 97.0%, 98.6%, 8.4%, and 17.1%, respectively. It was determined that the prevalence of the blaOXA-23 and blaOXA-58 gene regions showed a statistically significant change over the years. Due to the high prevalence of A. baumannii strains carrying the blaOXA-23 variant, it is necessary to follow its geographical distribution and transposon and plasmid movements. Based on available data, molecular surveillance of CRAB strains should be standardized. In addition, sterilization and disinfection processes applied within the scope of an effective struggle against CRAB strains that can remain live on surfaces for a long time should be reviewed frequently.
Collapse
Affiliation(s)
- Elmas Pinar Kahraman Kilbas
- Department of Medical Laboratory Techniques, Fenerbahce University, Health Services Vocational School, Istanbul, Turkiye
| | - Imdat Kilbas
- Medical Microbiology Doctorate Program, Istanbul University, Institute of Health Sciences, Istanbul, Turkiye
| | - Ihsan Hakki Ciftci
- Department of Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkiye
| |
Collapse
|
2
|
A Variant Carbapenem Inactivation Method (CIM) for Acinetobacter baumannii Group with Shortened Time-to-Result: rCIM-A. Pathogens 2022; 11:pathogens11040482. [PMID: 35456157 PMCID: PMC9024794 DOI: 10.3390/pathogens11040482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii group organisms (CRAB) are challenging because the choice between targeted, new antibiotic drug options and hygiene measures should be guided by a timely identification of resistance mechanisms. In CRAB, acquired class-D carbapenemases (CHDLs) are active against meropenem and imipenem. If PCR methods are not the first choice, phenotypic methods have to be implemented. While promising, the carbapenemase inactivation method (CIM) using meropenem-hydrolysis is, however, hampered by poor performance or overly long time-to-result. We developed a rapid CIM (rCIM-A) with good performance using ertapenem, imipenem, and meropenem disks, 2-h permeabilization and incubation with the test strain in trypticase soy broth, and a read-out of residual carbapenem activity after 6 h, and optionally after 16–18 h. Using clinical isolates and type-strains of Acinetobacter (n = 67) not harboring carbapenemases (n = 28) or harboring acquired carbapenemases (n = 39), the sensitivity of detection was 97.4% with the imipenem disk after 6 h at a specificity of 92.9%. If the inhibition zone around the ertapenem disk at 6 h was 6 or ≤26 mm at 16–18 h, or ≤25.5 mm for meropenem, the specificity was 100%. Because of the high negative predictive value, the rCIM-A seems particularly appropriate in areas of lower CRAB-frequency.
Collapse
|
3
|
Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48:6987-6998. [PMID: 34460060 PMCID: PMC8403534 DOI: 10.1007/s11033-021-06690-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii has become a major concern for scientific attention due to extensive antimicrobial resistance. This resistance causes an increase in mortality rate because strains resistant to antimicrobial agents are a major challenge for physicians and healthcare workers regarding the eradication of either hospital or community-based infections. These strains with emerging resistance are a serious issue for patients in the intensive care unit (ICU). Antibiotic resistance has increased because of the acquirement of mobile genetic elements such as transposons, plasmids, and integrons and causes the prevalence of multidrug resistance strains (MDR). In addition, an increase in carbapenem resistance, which is used as last line antibiotic treatment to eliminate infections with multidrug-resistant Gram-negative bacteria, is a major concern. Carbapenems resistant A. baumannii (CR-Ab) is a worldwide problem. Because these strains are often resistant to all other commonly used antibiotics. Therefore, pathogenic multi-drug resistance A. baumannii (MDR-Ab) associated infections become hard to eradicate. Plasmid-mediated resistance causes outbreaks of extensive drug-resistant. A. baumannii (XDR-Ab). In addition, recent outbreaks relating to livestock and community settings illustrate the existence of large MDR-Ab strain reservoirs within and outside hospital settings. The purpose of this review, proper monitoring, prevention, and treatment are required to control (XDR-Ab) infections. Attachment, the formation of biofilms and the secretion of toxins, and low activation of inflammatory responses are mechanisms used by pathogenic A. baumannii strain. This review will discuss some aspects associated with antibiotics resistance in A. baumannii as well as cover briefly phage therapy as an alternative therapeutic treatment.
Collapse
Affiliation(s)
- Susan Ibrahim
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Nadal Al-Saryi
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq.
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| |
Collapse
|
4
|
Ribeiro S, Mourão J, Novais Â, Campos J, Peixe L, Antunes P. From farm to fork: Colistin voluntary withdrawal in Portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat. Environ Microbiol 2021; 23:7563-7577. [PMID: 34327794 DOI: 10.1111/1462-2920.15689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022]
Abstract
Expansion of mcr-carrying Enterobacteriaceae (MCR-E) is a well-recognized problem affecting animals, humans and the environment. Ongoing global control actions involve colistin restrictions among food-animal production, but their impact on poultry-derived products is largely unknown, justifying comprehensive farm-to-fork studies. Occurrence of MCR-E among 53 chicken-meat batches supplied from 29 Portuguese farms shortly after colistin withdrawal was evaluated. Strains (FT-IR/MLST/WGS), mcr plasmids and their adaptive features were characterized by cultural, molecular and genomic approaches. We found high rates of chicken-meat batches (80%-100% - 4 months; 12% - the last month) with multiple MDR + mcr-1-carrying Escherichia coli (Ec-including ST117 and ST648-Cplx) and Klebsiella pneumoniae (Kp-ST147-O5:K35) clones, some of them persisting over time. The mcr-1 was located in the chromosome (Ec-ST297/16-farms) or dispersed IncX4 (Ec-ST602/ST6469/5-farms), IncHI2-ST2/ST4 (Ec-ST533/ST6469/5 farms and Kp-ST147/6-farms) or IncI2 (Ec-ST117/1-farm) plasmids. WGS revealed high load and diversity in virulence, antibiotic resistance and metal tolerance genes. This study supports colistin withdrawal potential efficacy in poultry production and highlights both poultry-production chain as a source of mcr-1 and the risk of foodborne transmission to poultry-meat consumers. Finally, in the antibiotic reduction/replacement context, other potential co-selective pressures (e.g., metals-Cu as feed additives) need to be further understood to guide concerted, effective and durable actions under 'One Health' perspective.
Collapse
Affiliation(s)
- Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Mourão
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Campos
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,INEB-Institute of Biomedical Engineering, i3S-Institute for Research & Innovation in Health, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, 4150-180, Portugal
| |
Collapse
|
5
|
Abstract
Class D β-lactamases are composed of 14 families and the majority of the member enzymes are included in the OXA family. The genes for class D β-lactamases are frequently identified in the chromosome as an intrinsic resistance determinant in environmental bacteria and a few of these are found in mobile genetic elements carried by clinically significant pathogens. The most dominant OXA family among class D β-lactamases is superheterogeneous and the family needs to have an updated scheme for grouping OXA subfamilies through phylogenetic analysis. The OXA enzymes, even the members within a subfamily, have a diverse spectrum of resistance. Such varied activity could be derived from their active sites, which are distinct from those of the other serine β-lactamases. Their substrate profile is determined according to the size and position of the P-, Ω- and β5-β6 loops, assembling the active-site channel, which is very hydrophobic. Also, amino acid substitutions occurring in critical structures may alter the range of hydrolysed substrates and one subfamily could include members belonging to several functional groups. This review aims to describe the current class D β-lactamases including the functional groups, occurrence types (intrinsic or acquired) and substrate spectra and, focusing on the major OXA family, a new model for subfamily grouping will be presented.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Stojanoski V, Hu L, Sankaran B, Wang F, Tao P, Prasad BVV, Palzkill T. Mechanistic Basis of OXA-48-like β-Lactamases' Hydrolysis of Carbapenems. ACS Infect Dis 2021; 7:445-460. [PMID: 33492952 DOI: 10.1021/acsinfecdis.0c00798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are an important source of resistance to these last resort β-lactam antibiotics. OXA-48 is a member of a group of CHDLs named OXA-48-like enzymes. On the basis of sequence similarity, OXA-163 can be classified as an OXA-48-like enzyme, but it has altered substrate specificity. Compared to OXA-48, it shows impaired activity for carbapenems but displays an enhanced hydrolysis of oxyimino-cephalosporins. Here, we address the mechanistic and structural basis for carbapenem hydrolysis by OXA-48-like enzymes. Pre-steady-state kinetic analysis indicates that the rate-limiting step for OXA-48 and OXA-163 hydrolysis of carbapenems is deacylation and that the greatly reduced carbapenemase activity of OXA-163 compared to that of OXA-48 is due entirely to a slower deacylation reaction. Furthermore, our structural data indicate that the positioning of the β5-β6 loop is necessary for carbapenem hydrolysis by OXA-48. A major difference between the OXA-48 and OXA-163 complexes with carbapenems is that the 214-RIEP-217 deletion in OXA-163 creates a large opening in the active site that is absent in the OXA-48/carbapenem structures. We propose that the larger active site results in less constraint on the conformation of the 6α-hydroxyethyl group in the acyl-enzyme. The acyl-enzyme intermediate assumes multiple conformations, most of which are incompatible with rapid deacylation. Consistent with this hypothesis, molecular dynamics simulations indicate that the most stable complex is formed between OXA-48 and imipenem, which correlates with the OXA-48 hydrolysis of imipenem being the fastest observed. Furthermore, the OXA-163 complexes with imipenem and meropenem are the least stable and show significant conformational fluctuations, which correlates with the slow hydrolysis of these substrates.
Collapse
Affiliation(s)
| | | | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,
| | - Feng Wang
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | | | | |
Collapse
|
7
|
Hammer-Dedet F, Jumas-Bilak E, Licznar-Fajardo P. The Hydric Environment: A Hub for Clinically Relevant Carbapenemase Encoding Genes. Antibiotics (Basel) 2020; 9:antibiotics9100699. [PMID: 33076221 PMCID: PMC7602417 DOI: 10.3390/antibiotics9100699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are β-lactams antimicrobials presenting a broad activity spectrum and are considered as last-resort antibiotic. Since the 2000s, carbapenemase producing Enterobacterales (CPE) have emerged and are been quickly globally spreading. The global dissemination of carbapenemase encoding genes (CEG) within clinical relevant bacteria is attributed in part to its location onto mobile genetic elements. During the last decade, carbapenemase producing bacteria have been isolated from non-human sources including the aquatic environment. Aquatic ecosystems are particularly impacted by anthropic activities, which conduce to a bidirectional exchange between aquatic environments and human beings and therefore the aquatic environment may constitute a hub for CPE and CEG. More recently, the isolation of autochtonous aquatic bacteria carrying acquired CEG have been reported and suggest that CEG exchange by horizontal gene transfer occurred between allochtonous and autochtonous bacteria. Hence, aquatic environment plays a central role in persistence, dissemination and emergence of CEG both within environmental ecosystem and human beings, and deserves to be studied with particular attention.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
- Département d’Hygiène Hospitalière, CHU Montpellier, 34090 Montpellier, France
| | - Patricia Licznar-Fajardo
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
- Département d’Hygiène Hospitalière, CHU Montpellier, 34090 Montpellier, France
- Correspondence:
| |
Collapse
|
8
|
Hubbard ATM, Mason J, Roberts P, Parry CM, Corless C, van Aartsen J, Howard A, Bulgasim I, Fraser AJ, Adams ER, Roberts AP, Edwards T. Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of bla TEM-1B. Nat Commun 2020; 11:4915. [PMID: 33004811 PMCID: PMC7530762 DOI: 10.1038/s41467-020-18668-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
A phenotype of Escherichia coli and Klebsiella pneumoniae, resistant to piperacillin/tazobactam (TZP) but susceptible to carbapenems and 3rd generation cephalosporins, has emerged. The resistance mechanism associated with this phenotype has been identified as hyperproduction of the β-lactamase TEM. However, the mechanism of hyperproduction due to gene amplification is not well understood. Here, we report a mechanism of gene amplification due to a translocatable unit (TU) excising from an IS26-flanked pseudo-compound transposon, PTn6762, which harbours blaTEM-1B. The TU re-inserts into the chromosome adjacent to IS26 and forms a tandem array of TUs, which increases the copy number of blaTEM-1B, leading to TEM-1B hyperproduction and TZP resistance. Despite a significant increase in blaTEM-1B copy number, the TZP-resistant isolate does not incur a fitness cost compared to the TZP-susceptible ancestor. This mechanism of amplification of blaTEM-1B is an important consideration when using genomic data to predict susceptibility to TZP.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Chromosomes, Bacterial/genetics
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/genetics
- Drug Therapy, Combination/methods
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/isolation & purification
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/microbiology
- Escherichia coli Proteins/genetics
- Gene Amplification
- Gene Expression Regulation, Bacterial
- Genome, Bacterial/genetics
- Humans
- Microbial Sensitivity Tests
- Piperacillin/pharmacology
- Piperacillin/therapeutic use
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- Tazobactam/pharmacology
- Tazobactam/therapeutic use
- Whole Genome Sequencing
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Alasdair T M Hubbard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jenifer Mason
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Paul Roberts
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Building MA, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Christopher M Parry
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 7BE, UK
- Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- School of Tropical Medicine and Global Health, University of Nagasaki, Nagasaki, Japan
| | - Caroline Corless
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Jon van Aartsen
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Alex Howard
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Issra Bulgasim
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Alice J Fraser
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Emily R Adams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Thomas Edwards
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
9
|
Mourão J, Rebelo A, Ribeiro S, Peixe L, Novais C, Antunes P. Atypical Non-H 2S-Producing Monophasic Salmonella Typhimurium ST3478 Strains from Chicken Meat at Processing Stage Are Adapted to Diverse Stresses. Pathogens 2020; 9:E701. [PMID: 32859122 PMCID: PMC7557518 DOI: 10.3390/pathogens9090701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023] Open
Abstract
Poultry products are still an important cause of Salmonella infections worldwide, with an increasingly reported expansion of less-frequent serotypes or atypical strains that are frequently multidrug-resistant. Nevertheless, the ability of Salmonella to survive antimicrobials promoted in the context of antibiotic reducing/replacing and farming rethinking (e.g., organic acids and copper in feed/biocides) has been scarcely explored. We investigated Salmonella occurrence (conventional and molecular assays) among chicken meat at the processing stage (n = 53 batches/29 farms) and characterized their tolerance to diverse stress factors (antibiotics, copper, acid pH, and peracetic acid). Whole-genome sequencing was used to assess adaptive features and to perform comparative analysis. We found a low Salmonella occurrence (4%) and identified S. Enteritidis/ST11 plus atypical non-H2S-producing S. 1,4,[5],12:i:-/ST3478. The ST3478 presented the ability to grow under diverse stresses (antibiotics, copper, and acid-pH). Comparative genomics among ST3478 isolates showed similar antibiotic/metal resistance gene repertoires and identical nonsense phsA thiosulfate reductase mutations (related to H2S-negative phenotype), besides their close phylogenetic relationship by cgMLST and SNPs. This study alerts for the ongoing national and international spread of an emerging monophasic Salmonella Typhimurium clonal lineage with an enlarged ability to survive to antimicrobials/biocides commonly used in poultry production, being unnoticed by conventional Salmonella detection approaches due to an atypical non-H2S-producing phenotype.
Collapse
Affiliation(s)
- Joana Mourão
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Andreia Rebelo
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- Scientific Area of Environmental Health, School of Health, Polytechnic Institute of Porto, 4200-465 Porto, Portugal
| | - Sofia Ribeiro
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- ESCMID Food- and Water-borne Infections Study Group (EFWISG), 4010 Basel, Switzerland
| | - Carla Novais
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- ESCMID Food- and Water-borne Infections Study Group (EFWISG), 4010 Basel, Switzerland
| | - Patrícia Antunes
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- ESCMID Food- and Water-borne Infections Study Group (EFWISG), 4010 Basel, Switzerland
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| |
Collapse
|
10
|
Nasiri MJ, Zamani S, Fardsanei F, Arshadi M, Bigverdi R, Hajikhani B, Goudarzi H, Tabarsi P, Dabiri H, Feizabadi MM. Prevalence and Mechanisms of Carbapenem Resistance in Acinetobacter baumannii: A Comprehensive Systematic Review of Cross-Sectional Studies from Iran. Microb Drug Resist 2019; 26:270-283. [PMID: 30822197 DOI: 10.1089/mdr.2018.0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Carbapenem-resistant Acinetobacter baumannii (CRAB) is recognized to be among the most difficult antimicrobial-resistant gram-negative bacilli to control and treat. An understanding of the epidemiology of CRAB and the mechanisms of resistance to carbapenems is necessary to develop strategies to curtail their spread. Methods: Electronic databases were searched from January 1995 to December 2017 for all studies, which: (1) provide data on the frequency and antibiotic resistance profile of the isolated A. baumannii and (2) describe the mechanisms of carbapenem resistance in detail. Results: Sixty-eight studies were found referring to mechanisms of carbapenem resistance in clinical isolates of A. baumannii, and 56 studies were found referring to the frequency of CRAB. The pooled frequency of carbapenem resistance was 85.1% (95% confidence interval [CI]: 82.2-88.1) in 8,067 clinical isolates of A. baumannii. Resistances due to blaOXA23 (55.3%), blaOXA24 (41.4%), and blaOXA58 (5.2%) genes were the most prevalent reported mechanisms of resistance to carbapenem, respectively. Conclusions: Our data warn that CRAB will rise if the current situation remains uncontrolled. Better control infection strategies and antibiotic managements, particularly in the health care systems, are needed to limit the spread of this pathogen.
Collapse
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Zamani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mania Arshadi
- Department of Medical Laboratory Sciences, Faculty of Para Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical TB and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Eichenberger EM, Thaden JT. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2019; 8:antibiotics8020037. [PMID: 30959901 PMCID: PMC6628318 DOI: 10.3390/antibiotics8020037] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has increased markedly in gram-negative bacteria over the last two decades, and in many cases has been associated with increased mortality and healthcare costs. The adoption of genotyping and next generation whole genome sequencing of large sets of clinical bacterial isolates has greatly expanded our understanding of how antibiotic resistance develops and transmits among bacteria and between patients. Diverse mechanisms of resistance, including antibiotic degradation, antibiotic target modification, and modulation of permeability through the bacterial membrane have been demonstrated. These fundamental insights into the mechanisms of gram-negative antibiotic resistance have influenced the development of novel antibiotics and treatment practices in highly resistant infections. Here, we review the mechanisms and global epidemiology of antibiotic resistance in some of the most clinically important resistance phenotypes, including carbapenem resistant Enterobacteriaceae, extensively drug resistant (XDR) Pseudomonas aeruginosa, and XDR Acinetobacter baumannii. Understanding the resistance mechanisms and epidemiology of these pathogens is critical for the development of novel antibacterials and for individual treatment decisions, which often involve alternatives to β-lactam antibiotics.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Antunes P, Campos J, Mourão J, Pereira J, Novais C, Peixe L. Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1163-1171. [PMID: 30045498 DOI: 10.1016/j.scitotenv.2018.06.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
The impact of European aquaculture, namely trout farms, in the spread of antibiotic resistance and/or zoonotic pathogens has been scarcely addressed. Moreover, aquaculture contamination sources and bacterial dissemination routes have been barely explored. In this study, we assessed the contribution of Portuguese land-based intensive rainbow trout farms and retailed market trout to the spread of Salmonella and bacteria carrying clinically-relevant antibiotic resistance genes (ARGs) as well as inflow water and feed as possible sources of those contaminants. Cultural and molecular methods were used to analyse 53 fish farm samples (upstream/downstream water and sediments, tanks and trout) and 25 marketed trout. Plasmid-mediated quinolone resistance (PMQR) genes were found in 21% (n = 11/53) of samples (water/sediment/feed/trout), from all collection points (upstream/within/downstream tanks) and seasons, as well as in 12% (n = 3/25) of marketed trout (3 supermarkets). PMQR genes (qnrS1-S2-S3, qnrB7-B19, qnrD1, oqxAB) were detected in Enterobacteriaceae or Aeromonas hydrophila. An E. coli strain producing extended-spectrum-beta-lactamase SHV-12 was detected in all sampled points of a fish farm. Salmonella (4 serotypes, including S. Newport-ST118) was detected in 26% (n = 14/53) of the samples from both farms (water/sediment upstream/within tanks). The clinically-relevant plasmid-mediated colistin resistance mcr genes were not detected. However, colistin resistant S. Abony with new mutations in the chromosomal pmrA and pmrB genes was observed. Identical Salmonella and SHV-12-producing E. coli strains (by PFGE/MLST) in water upstream and within trout tanks points to inflow-water of trout farms as an important source of pathogenic bacteria and ARG contamination. These results highlight the need to define microbiological standards for water supplying fish farms in the EU and to establish surveillance and control strategies to limit bacterial transmission associated with this fastest growing food sector worldwide.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal; UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Joana Campos
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Joana Mourão
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Joana Pereira
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
13
|
Lohans CT, Wang DY, Jorgensen C, Cahill ST, Clifton IJ, McDonough MA, Oswin HP, Spencer J, Domene C, Claridge TDW, Brem J, Schofield CJ. 13C-Carbamylation as a mechanistic probe for the inhibition of class D β-lactamases by avibactam and halide ions. Org Biomol Chem 2018; 15:6024-6032. [PMID: 28678295 DOI: 10.1039/c7ob01514c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The class D (OXA) serine β-lactamases are a major cause of resistance to β-lactam antibiotics. The class D enzymes are unique amongst β-lactamases because they have a carbamylated lysine that acts as a general acid/base in catalysis. Previous crystallographic studies led to the proposal that β-lactamase inhibitor avibactam targets OXA enzymes in part by promoting decarbamylation. Similarly, halide ions are proposed to inhibit OXA enzymes via decarbamylation. NMR analyses, in which the carbamylated lysines of OXA-10, -23 and -48 were 13C-labelled, indicate that reaction with avibactam does not ablate lysine carbamylation in solution. While halide ions did not decarbamylate the 13C-labelled OXA enzymes in the absence of substrate or inhibitor, avibactam-treated OXA enzymes were susceptible to decarbamylation mediated by halide ions, suggesting halide ions may inhibit OXA enzymes by promoting decarbamylation of acyl-enzyme complex. Crystal structures of the OXA-10 avibactam complex were obtained with bromide, iodide, and sodium ions bound between Trp-154 and Lys-70. Structures were also obtained wherein bromide and iodide ions occupy the position expected for the 'hydrolytic water' molecule. In contrast with some solution studies, Lys-70 was decarbamylated in these structures. These results reveal clear differences between crystallographic and solution studies on the interaction of class D β-lactamases with avibactam and halides, and demonstrate the utility of 13C-NMR for studying lysine carbamylation in solution.
Collapse
Affiliation(s)
| | - David Y Wang
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Samuel T Cahill
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | - Ian J Clifton
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Henry P Oswin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Carmen Domene
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK. and Department of Chemistry, King's College London, London, SE1 1DB, UK
| | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
14
|
Maruyama Y, Shigemura T, Aoyama K, Nagano N, Nakazawa Y. Bacteremia due to Moraxella osloensis: a case report and literature review. Braz J Infect Dis 2018; 22:60-62. [PMID: 29409692 PMCID: PMC9425674 DOI: 10.1016/j.bjid.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/29/2022] Open
Abstract
Herein we report the case of a 10-year-old boy with an autosomal mosaic mutation who developed bacteremia. The causative agent was identified as Moraxella osloensis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene sequencing. In the pediatric population, there have been 13 case reports of infection attributed to M. osloensis and this is the fifth reported case of pediatric bacteremia due to M. osloensis. After Moraxella species infection was confirmed, the patient recovered with appropriate antimicrobial therapy. It is important to consider that M. osloensis can cause serious infections, such as bacteremia, in otherwise healthy children.
Collapse
Affiliation(s)
- Yuta Maruyama
- Shinshu Ueda Medical Center, Department of Pediatrics, Ueda, Japan
| | - Tomonari Shigemura
- Shinshu University, School of Medicine, Department of Pediatrics, Matsumoto, Japan.
| | - Koki Aoyama
- Kofu Municipal Hospital, Department of Pediatrics, Kofu, Japan
| | - Noriyuki Nagano
- Shinshu University, School of Medicine, Department of Health and Medical Sciences, Matsumoto, Japan
| | - Yozo Nakazawa
- Shinshu University, School of Medicine, Department of Pediatrics, Matsumoto, Japan
| |
Collapse
|
15
|
Identification and Isolation of Insertion Sequences, in Carbapenem Resistant Clinical Isolates of Acinetobacter baumannii from Tehran Hospitals. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.58251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol 2017; 7:55. [PMID: 28348979 PMCID: PMC5346588 DOI: 10.3389/fcimb.2017.00055] [Citation(s) in RCA: 517] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Moonhee Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji UniversityYongin, South Korea; DNA Analysis Division, Seoul Institute, National Forensic ServiceSeoul, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, College of Health and Welfare, Silla University Busan, South Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College Danvers, MA, USA
| | - Chang-Jun Cha
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University Anseong, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
17
|
Jiang M, Liu L, Ma Y, Zhang Z, Li N, Zhang F, Zhao S. Molecular Epidemiology of Multi-Drug Resistant Acinetobacter baumannii Isolated in Shandong, China. Front Microbiol 2016; 7:1687. [PMID: 27818659 PMCID: PMC5073130 DOI: 10.3389/fmicb.2016.01687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen prevalent in hospitals worldwide. In order to understand the molecular epidemiology of multi-drug resistant (MDR) A. baumannii, we investigated the genotypes of A. baumannii isolated from 10 hospitals in Shandong, China, from August 2013 to December 2013, by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Antimicrobial resistance genes were analyzed by PCR and DNA sequencing. By PFGE analysis, we discovered 11 PFGE types in these 10 hospitals. By MLST, we assigned these isolates to 12 sequence types (STs), 10 of which belong to the cloning complex CC92, including the prevalent ST369, ST208, ST195, and ST368. Two new STs, namely ST794 and ST809, were detected only in one hospital. All isolates of the MDR A. baumannii were resistant to carbapenem, except 2 isolates, which did not express the blaOXA-23 carbapenemase gene, indicating blaOXA-23 is the major player for carbapenem resistance. We also discovered armA is likely to be responsible for amikacin resistance, and may play a role in gentamicin and tobramycin resistance. aac(3)-I is another gene responsible for gentamicin and tobramycin resistance. In summary, we discovered that the majority of the isolates in Shandong, China, were the STs belonging to the CC92. Besides, two new STs were detected in one hospital. These new STs should be further investigated for prevention of outbreaks caused by A. baumannii.
Collapse
Affiliation(s)
- Meijie Jiang
- The Department of Clinical Laboratory, Tai'an City Central Hospital Tai'an, China
| | - Lijuan Liu
- The Department of Hematology, Laiwu City People's Hospital Laiwu, China
| | - Yunhua Ma
- The Department of Clinical Laboratory, Zoucheng City People's Hospital Zoucheng, China
| | - Zhijun Zhang
- The Department of Clinical Laboratory, Tai'an City Central Hospital Tai'an, China
| | - Ning Li
- The Department of Preventive Veterinary, College of Veterinary Medicine, Shandong Agricultural University Tai'an, China
| | - Fusen Zhang
- Intensive Medicine, Tai'an City Central Hospital Tai'an, China
| | - Shuping Zhao
- The Department of Clinical Laboratory, Tai'an City Central Hospital Tai'an, China
| |
Collapse
|
18
|
Lim J, Lee G, Choi Y, Kim J. An Analysis of the Antibiotic Resistance Genes of Multi-Drug Resistant (MDR) Acinetobacter baumannii. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2016. [DOI: 10.15324/kjcls.2016.48.3.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jina Lim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju 26493, Korea
| | - Gyusang Lee
- MAKRI (Military National Defense) KIA Recovery and Identification), Department of Identification, Scientific Staff, Seoul 06984, Korea
| | - Yeonim Choi
- Department of Biomedical Laboratory Science, Songho College, Hoengseong 25242, Korea
| | - Jongbae Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
19
|
Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms 2016; 4:microorganisms4030029. [PMID: 27681923 PMCID: PMC5039589 DOI: 10.3390/microorganisms4030029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.
Collapse
|
20
|
Abstract
The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems.
Collapse
|
21
|
Phylogeny and Comparative Genomics Unveil Independent Diversification Trajectories of qnrB and Genetic Platforms within Particular Citrobacter Species. Antimicrob Agents Chemother 2015; 59:5951-8. [PMID: 26169406 DOI: 10.1128/aac.00027-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/06/2015] [Indexed: 11/20/2022] Open
Abstract
To gain insights into the diversification trajectories of qnrB genes, a phylogenetic and comparative genomics analysis of these genes and their surrounding genetic sequences was performed. For this purpose, Citrobacter sp. isolates (n = 21) and genome or plasmid sequences (n = 56) available in public databases harboring complete or truncated qnrB genes were analyzed. Citrobacter species identification was performed by phylogenetic analysis of different genotypic markers. The clonal relatedness among isolates, the location of qnrB genes, and the genetic surroundings of qnrB genes were investigated by pulsed-field gel electrophoresis (PFGE), S1-/I-CeuI-PFGE and hybridization, and PCR mapping and sequencing, respectively. Identification of Citrobacter isolates was achieved using leuS and recN gene sequences, and isolates characterized in this study were diverse and harbored chromosomal qnrB genes. Phylogenetic analysis of all known qnrB genes revealed seven main clusters and two branches, with most of them included in two clusters. Specific platforms (comprising pspF and sapA and varying in synteny and/or identity of other genes and intergenic regions) were associated with each one of these qnrB clusters, and the reliable identification of all Citrobacter isolates revealed that each platform evolved in different recognizable (Citrobacter freundii, C. braakii, C. werkmanii, and C. pasteurii) and putatively new species. A high identity was observed between some of the platforms identified in the chromosome of Citrobacter spp. and in different plasmids of Enterobacteriaceae. Our data corroborate Citrobacter as the origin of qnrB and further suggest divergent evolution of closely related qnrB genes/platforms in particular Citrobacter spp., which were delineated using particular genotypic markers.
Collapse
|
22
|
Stojanoski V, Chow DC, Fryszczyn B, Hu L, Nordmann P, Poirel L, Sankaran B, Prasad BVV, Palzkill T. Structural Basis for Different Substrate Profiles of Two Closely Related Class D β-Lactamases and Their Inhibition by Halogens. Biochemistry 2015; 54:3370-80. [PMID: 25938261 DOI: 10.1021/acs.biochem.5b00298] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OXA-163 and OXA-48 are closely related class D β-lactamases that exhibit different substrate profiles. OXA-163 hydrolyzes oxyimino-cephalosporins, particularly ceftazidime, while OXA-48 prefers carbapenem substrates. OXA-163 differs from OXA-48 by one substitution (S212D) in the active-site β5 strand and a four-amino acid deletion (214-RIEP-217) in the loop connecting the β5 and β6 strands. Although the structure of OXA-48 has been determined, the structure of OXA-163 is unknown. To further understand the basis for their different substrate specificities, we performed enzyme kinetic analysis, inhibition assays, X-ray crystallography, and molecular modeling. The results confirm the carbapenemase nature of OXA-48 and the ability of OXA-163 to hydrolyze the oxyimino-cephalosporin ceftazidime. The crystal structure of OXA-163 determined at 1.72 Å resolution reveals an expanded active site compared to that of OXA-48, which allows the bulky substrate ceftazidime to be accommodated. The structural differences with OXA-48, which cannot hydrolyze ceftazidime, provide a rationale for the change in substrate specificity between the enzymes. OXA-163 also crystallized under another condition that included iodide. The crystal structure determined at 2.87 Å resolution revealed iodide in the active site accompanied by several significant conformational changes, including a distortion of the β5 strand, decarboxylation of Lys73, and distortion of the substrate-binding site. Further studies showed that both OXA-163 and OXA-48 are inhibited in the presence of iodide. In addition, OXA-10, which is not a member of the OXA-48-like family, is also inhibited by iodide. These findings provide a molecular basis for the hydrolysis of ceftazidime by OXA-163 and, more broadly, show how minor sequence changes can profoundly alter the active-site configuration and thereby affect the substrate profile of an enzyme.
Collapse
Affiliation(s)
| | | | | | | | - Patrice Nordmann
- §Medical and Molecular Microbiology "Emerging Antibiotic Resistance" Unit, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland
| | - Laurent Poirel
- §Medical and Molecular Microbiology "Emerging Antibiotic Resistance" Unit, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland
| | - Banumathi Sankaran
- ∥Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | |
Collapse
|
23
|
Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16:9654-92. [PMID: 25938965 PMCID: PMC4463611 DOI: 10.3390/ijms16059654] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.
Collapse
|
24
|
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568-85. [PMID: 25857949 DOI: 10.1016/j.ijantimicag.2015.03.001] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is quite common among non-fermenting Gram-negative rods, in particular among clinically relevant species including Pseudomonas aeruginosa and Acinetobacter baumannii. These bacterial species, which are mainly nosocomial pathogens, possess a diversity of resistance mechanisms that may lead to multidrug or even pandrug resistance. Extended-spectrum β-lactamases (ESBLs) conferring resistance to broad-spectrum cephalosporins, carbapenemases conferring resistance to carbapenems, and 16S rRNA methylases conferring resistance to all clinically relevant aminoglycosides are the most important causes of concern. Concomitant resistance to fluoroquinolones, polymyxins (colistin) and tigecycline may lead to pandrug resistance. The most important mechanisms of resistance in P. aeruginosa and A. baumannii and their most recent dissemination worldwide are detailed here.
Collapse
Affiliation(s)
- Anaïs Potron
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Laurent Poirel
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; HFR - Hôpital Cantonal de Fribourg, Fribourg, Switzerland
| |
Collapse
|
25
|
Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases 2014; 2:787-814. [PMID: 25516853 PMCID: PMC4266826 DOI: 10.12998/wjcc.v2.i12.787] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is undoubtedly one of the most successful pathogens in the modern healthcare system. With invasive procedures, antibiotic use and immunocompromised hosts increasing in recent years, A. baumannii has become endemic in hospitals due to its versatile genetic machinery, which allows it to quickly evolve resistance factors, and to its remarkable ability to tolerate harsh environments. Infections and outbreaks caused by multidrug-resistant A. baumannii (MDRAB) are prevalent and have been reported worldwide over the past twenty or more years. To address this problem effectively, knowledge of species identification, typing methods, clinical manifestations, risk factors, and virulence factors is essential. The global epidemiology of MDRAB is monitored by persistent surveillance programs. Because few effective antibiotics are available, clinicians often face serious challenges when treating patients with MDRAB. Therefore, a deep understanding of the resistance mechanisms used by MDRAB can shed light on two possible strategies to combat the dissemination of antimicrobial resistance: stringent infection control and antibiotic treatments, of which colistin-based combination therapy is the mainstream strategy. However, due to the current unsatisfying therapeutic outcomes, there is a great need to develop and evaluate the efficacy of new antibiotics and to understand the role of other potential alternatives, such as antimicrobial peptides, in the treatment of MDRAB infections.
Collapse
|
26
|
Branquinho R, Sousa C, Osório H, Meirinhos-Soares L, Lopes J, Carriço JA, Busse HJ, Abdulmawjood A, Klein G, Kämpfer P, Pintado ME, Peixe LV. Bacillus invictae sp. nov., isolated from a health product. Int J Syst Evol Microbiol 2014; 64:3867-3876. [DOI: 10.1099/ijs.0.067850-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive, rod-shaped, endospore-forming
Bacillus
isolate, Bi.FFUP1
T, recovered in Portugal from a health product was subjected to a polyphasic study and compared with the type strains of
Bacillus pumilus
,
Bacillus safensis
,
Bacillus altitudinis
and
Bacillus xiamenensis
, the phenotypically and genotypically most closely related species. Acid production from cellobiose, d-glucose and d-mannose and absence of acid production from d-arabinose, erythritol, inositol, maltose, mannitol, raffinose, rhamnose, sorbitol, starch and l-tryptophan discriminated this new isolate from the type strains of the most closely related species. Additionally, a significant different protein and carbohydrate signature was evidenced by spectroscopic techniques, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Fourier transform IR spectroscopy with attenuated total reflectance. Using a chemometric approach, the score plot generated by principal component analysis clearly delineated the isolate as a separate cluster. The quinone system for strain Bi.FFUP1
T comprised predominantly menaquinone MK-7 and major polar lipids were diphosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. Strain Bi.FFUP1
T showed ≥99 % 16S rRNA gene sequence similarity to
B. safensis
FO-036bT,
B. pumilus
(7061T and SAFR-032),
B. altitudinis
41KF2bT and
B. xiamenensis
HYC-10T. Differences in strain Bi.FFUP1
T
gyrB and rpoB sequences in comparison with the most closely related species and DNA–DNA hybridization experiments with Bi.FFUP1
T and
B. pumilus
ATCC 7061T,
B. safensis
FO-036bT,
B. altitudinis
41KF2bT and
B. xiamenensis
HYC-10T gave relatedness values of 39.6 % (reciprocal 38.0 %), 49.9 % (reciprocal 42.9 %), 61.9 % (reciprocal 52.2 %) and 61.7 % (reciprocal 49.2 %), respectively, supported the delineation of strain Bi.FFUP1
T as a representative of a novel species of the genus
Bacillus
, for which the name
Bacillus
invictae sp. nov. is proposed, with strain Bi.FFUP1
T ( = DSM 26896T = CCUG 64113T) as the type strain.
Collapse
Affiliation(s)
- Raquel Branquinho
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Clara Sousa
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Hugo Osório
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | | | - João Lopes
- Departamento de Farmácia Galénica e Tecnologia Farmacutica, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - João A. Carriço
- Faculdade de Medicina de Lisboa, Instituto de Microbiologia, Instituto de Medicina Molecular, Lisboa, Portugal
| | - Hans-Jürgen Busse
- Microbiology and Genetics Institute, University of Wien, Vienna, Austria
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Günter Klein
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Kämpfer
- Department of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Manuela E. Pintado
- CBQF, Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Luísa V. Peixe
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Branquinho R, Meirinhos-Soares L, Carriço JA, Pintado M, Peixe LV. Phylogenetic and clonality analysis of Bacillus pumilus isolates uncovered a highly heterogeneous population of different closely related species and clones. FEMS Microbiol Ecol 2014; 90:689-98. [PMID: 25230950 DOI: 10.1111/1574-6941.12426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 11/30/2022] Open
Abstract
Bacillus pumilus is a Gram-positive bacterium with a wide range of attributed applications, namely as a plant growth promoting rhizobacteria (PGPR), animal, and human probiotic. However, a rare putative role in human diseases has been reported, namely in food poisoning or as anthrax-like cutaneous infectious agent. This species is difficult to distinguish from its closely related species on the basis of phenotypic or biochemical characteristics and 16S rRNA gene sequences. In this study, the phylogenetic analysis of gyrB and rpoB gene sequences of a collection of isolates previously identified as B. pumilus, assigned most of them (93%, 38 of 41 isolates) to B. safensis or to the new recently described B. invictae. Moreover, we extended the previously reported recognized habitats of these species and unveiled a human health or biotechnological relevance (e.g. as implicated in food poisoning or PGPR) for them. Additionally, we demonstrated that both B. safensis and B. invictae species encompass a clonally diverse population, which can justify their great adaptation ability to different niches, with evidence of clonal-host specificity.
Collapse
Affiliation(s)
- Raquel Branquinho
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, REQUIMTE, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
28
|
Multidrug-resistant Acinetobacter baumannii strains carrying the blaOxA-23 and the blaGES-11 genes in a neonatology center in Tunisia. Microb Pathog 2014; 74:20-4. [DOI: 10.1016/j.micpath.2014.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022]
|
29
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
30
|
OXA-207, a novel OXA-24 variant with reduced catalytic efficiency against carbapenems in Acinetobacter pittii from Spain. Antimicrob Agents Chemother 2014; 58:4944-8. [PMID: 24890588 DOI: 10.1128/aac.02633-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A carbapenem-resistant Acinetobacter pittii strain carrying an OXA-24-like enzyme was isolated in northern Spain in 2008. Sequence analysis confirmed the presence of the novel bla(OXA-207) gene flanked by the site-specific XerC/XerD-like recombination binding sites and showing a unique Gly222Val substitution compared to OXA-24. Cloning and kinetic analysis showed that OXA-207 presents a reduction in the catalytic efficiency against carbapenems and a noticeable increase for oxacillin.
Collapse
|
31
|
Dissemination of IMP-6-producing Pseudomonas aeruginosa ST244 in multiple cities in China. Eur J Clin Microbiol Infect Dis 2014; 33:1181-7. [PMID: 24500601 DOI: 10.1007/s10096-014-2063-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen responsible for nosocomial infections and is currently reported to be a worldwide nosocomial menace. The aim of this study was to investigate the epidemiological traits and the distribution of metallo-β-lactamases (MBLs)-producing P. aeruginosa clinical isolates in ten cities in China between January 2010 and May 2012. Antimicrobial susceptibility was determined by disc diffusion assay and the minimum inhibitory concentrations (MICs) of imipenem and meropenem were also determined by the Etest according to Clinical and Laboratory Standards Institute (CLSI) guidelines. In addition, polymerase chain reaction (PCR) and DNA sequencing were applied to detect bla MBL genes, and their epidemiological relationships were investigated by multilocus sequence typing (MLST). Of 368 P. aeruginosa isolates, MLST analysis identified 138 sequence types (STs), including 122 known and 16 novel STs, and the most frequently detected clone was ST244, followed by ST235. Besides, our study revealed that 25 isolates carried the bla IMP-6 gene and three isolates carried the bla VIM-2 gene, and a probe specific for both genes could be hybridised to an ~1,125-kb fragment in all isolates. Interestingly, all of the bla IMP-6-producing isolates shared an identical ST, ST244, and exhibited a higher level of resistance to several antibiotics. Overall, these observations suggest that P. aeruginosa ST244 carrying the chromosomally located bla IMP-6 gene is widely disseminated in multiple cites in China.
Collapse
|
32
|
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are enzymes of the utmost clinical importance due to their ability to produce resistance to carbapenems, the antibiotics of last resort for the treatment of various life-threatening infections. The vast majority of these enzymes have been identified in Acinetobacter spp., notably in Acinetobacter baumannii. The OXA-2 and OXA-10 enzymes predominantly occur in Pseudomonas aeruginosa and are currently classified as narrow-spectrum class D β-lactamases. Here we demonstrate that when OXA-2 and OXA-10 are expressed in Escherichia coli strain JM83, they produce a narrow-spectrum antibiotic resistance pattern. When the enzymes are expressed in A. baumannii ATCC 17978, however, they behave as extended-spectrum β-lactamases and confer resistance to carbapenem antibiotics. Kinetic studies of OXA-2 and OXA-10 with four carbapenems have demonstrated that their catalytic efficiencies with these antibiotics are in the same range as those of some recognized class D carbapenemases. These results are in disagreement with the classification of the OXA-2 and OXA-10 enzymes as narrow-spectrum β-lactamases, and they suggest that other class D enzymes that are currently regarded as noncarbapenemases may in fact be CHDLs.
Collapse
|
33
|
Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 2013; 58:1835-46. [PMID: 24379206 PMCID: PMC4023773 DOI: 10.1128/aac.00826-13] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the incidence of Gram-negative bacterial infections for which few effective treatments remain increases, so does the contribution of drug-hydrolyzing β-lactamase enzymes to this serious clinical problem. This review highlights recent advances in β-lactamase inhibitors and focuses on agents with novel mechanisms of action against a wide range of enzymes. To this end, we review the β-lactamase inhibitors currently in clinical trials, select agents still in preclinical development, and older therapeutic approaches that are being revisited. Particular emphasis is placed on the activity of compounds at the forefront of the developmental pipeline, including the diazabicyclooctane inhibitors (avibactam and MK-7655) and the boronate RPX7009. With its novel reversible mechanism, avibactam stands to be the first new β-lactamase inhibitor brought into clinical use in the past 2 decades. Our discussion includes the importance of selecting the appropriate partner β-lactam and dosing regimens for these promising agents. This "renaissance" of β-lactamase inhibitors offers new hope in a world plagued by multidrug-resistant (MDR) Gram-negative bacteria.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Rodkey EA, McLeod DC, Bethel CR, Smith KM, Xu Y, Chai W, Che T, Carey PR, Bonomo RA, van den Akker F, Buynak JD. β-Lactamase inhibition by 7-alkylidenecephalosporin sulfones: allylic transposition and formation of an unprecedented stabilized acyl-enzyme. J Am Chem Soc 2013; 135:18358-69. [PMID: 24219313 PMCID: PMC4042847 DOI: 10.1021/ja403598g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibition of the class A SHV-1 β-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14 Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented, and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the β-aminoacrylate (i.e., vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the β-lactam, the resultant dihydrothiazine fragments on its own or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 β-lactamases.
Collapse
Affiliation(s)
- Elizabeth A. Rodkey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - David C. McLeod
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Kerri M. Smith
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Yan Xu
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Weirui Chai
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Tao Che
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
- Center for Drug Discovery, Design, and Development, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
35
|
Chow C, Xu H, Blanchard JS. Kinetic characterization of hydrolysis of nitrocefin, cefoxitin, and meropenem by β-lactamase from Mycobacterium tuberculosis. Biochemistry 2013; 52:4097-104. [PMID: 23672214 DOI: 10.1021/bi400177y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The constitutively expressed, chromosomally encoded β-lactamase (BlaC) is the enzyme responsible for the intrinsic resistance to β-lactam antibiotics in Mycobacterium tuberculosis. Previous studies from this laboratory have shown that the enzyme exhibits an extended-spectrum phenotype, with very high levels of penicillinase and cephalosporinase activity, as well as weak carbapenemase activity [Tremblay, L. W., et al. (2008) Biochemistry 47, 5312-5316]. In this report, we have determined the pH dependence of the kinetic parameters, revealing that the maximal velocity depends on the ionization state of two groups: a general base exhibiting a pK value of 4.5 and a general acid exhibiting a pK value of 7.8. Having defined a region where the kinetic parameters are pH-independent (pH 6.5), we determined solvent kinetic isotope effects (SKIEs) for three substrates whose kcat values differ by 5.5 orders of magnitude. Nitrocefin is a highly activated, chromogenic cephalosporin derivative that exhibits steady-state solvent kinetic isotope effects of 1.4 on both V and V/K. Cefoxitin is a slower cephalosporin derivative that exhibits a large SKIE on V of 3.9 but a small SKIE of 1.8 on V/K in steady-state experiments. Pre-steady-state, stopped-flow experiments with cefoxitin revealed a burst of β-lactam ring opening with associated SKIE values of 1.6 on the acylation step and 3.4 on the deacylation step. Meropenem is an extremely slow substrate for BlaC and exhibits burst kinetics in the steady-state experiments. SKIE determinations with meropenem revealed large SKIEs on both the acylation and deacylation steps of 3.8 and 4.0, respectively. Proton inventories in all cases were linear, indicating the participation of a single solvent-derived proton in the chemical step responsible for the SKIE. The rate-limiting steps for β-lactam hydrolysis of these substrates are analyzed, and the chemical steps responsible for the observed SKIE are discussed.
Collapse
Affiliation(s)
- Carmen Chow
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
36
|
Jang IH, Park SD, Uh Y, Lee GS, Kim JB, Choi I. Molecular Characteristics of blaOXA-23-Producing Acinetobacter baumanniiIsolated from a University Hospital. ANNALS OF CLINICAL MICROBIOLOGY 2013. [DOI: 10.5145/acm.2013.16.3.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- In-Ho Jang
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Deok Park
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Gyu-sang Lee
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, Korea
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, Korea
| | - Il Choi
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sangi University, Wonju, Korea
| |
Collapse
|
37
|
Torol S, Kasap M. Purification and characterization of OXA-23 from Acinetobacter baumannii. J Enzyme Inhib Med Chem 2012; 28:836-42. [PMID: 22651799 DOI: 10.3109/14756366.2012.689296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the existence of bla(OXA-23) is reported in various parts of the world, the product of bla(OXA-23) gene, OXA-23, has not been purified and its kinetic properties are not known. In this study, OXA-23 of Acinetobacter baumannii isolated from Kocaeli University intensive care unit was characterized after purification using recombinant methods. Preliminary results showed that conventional protein purification methods were not effective for purification of OXA-23. Therefore, OXA-23 was fused to maltose-binding protein of Escherichia coli, the fused protein was expressed and purified to homogeneity. Kinetic properties of the pure protein were then studied with substrates e.g., imipenem, meropenem, cefepime, ceftazidime, ampicilline, piperacillin, penicillin G, and nitrocefin. Also clavulanic acid, tazobactam, and sulbactam concentrations that inhibit 50% of OXA-23 enzyme activity were calculated. Modelling of OXA-23 revealed its ionic surface structure, conformation in the fused form and its topology allowing us to make predictions for OXA-23 substrate specificity.
Collapse
Affiliation(s)
- Sinem Torol
- Department Of Medical Biology/KABI Proteomics Laboratory, Kocaeli University Medical School, Kocaeli, Turkey
| | | |
Collapse
|
38
|
Role of common blaOXA-24/OXA-40-carrying platforms and plasmids in the spread of OXA-24/OXA-40 among Acinetobacter species clinical isolates. Antimicrob Agents Chemother 2012; 56:3969-72. [PMID: 22526316 DOI: 10.1128/aac.06255-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The spread of OXA-24/OXA-40 (OXA-24/40)-producing Acinetobacter spp. in the Iberian Peninsula has been strongly influenced by clonal expansion, but the role of horizontal gene transfer has scarcely been explored. bla(OXA-24/40)-carrying plasmids and genetic environments were characterized in representative (n = 15) Acinetobacter species clinical isolates (obtained between 2001 and 2007) by Acinetobacter baumannii PCR-based replicon typing, sequencing, hybridization, and restriction fragment length polymorphism. Besides the identification of bla(OXA-24/40) within the chromosomes of some isolates, the circulation of common bla(OXA-24/40)-carrying plasmids (30-kb repA_AB; 10-kb aci2) and genetic backbones among Acinetobacter spp. was demonstrated.
Collapse
|
39
|
Biochemical and genetic characterization of carbapenem-hydrolyzing β-lactamase OXA-229 from Acinetobacter bereziniae. Antimicrob Agents Chemother 2012; 56:3923-7. [PMID: 22508298 DOI: 10.1128/aac.00257-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter bereziniae (formerly Acinetobacter genomospecies 10) isolate Nec was recovered from a skin sample of a patient hospitalized in Paris, France. It was resistant to penicillins, penicillin-inhibitor combinations, and carbapenems. Cloning and expression in Escherichia coli identified the carbapenem-hydrolyzing class D β-lactamase OXA-229, which is weakly related to other oxacillinases (66% amino acid identity with the closest oxacillinase, OXA-58). It hydrolyzed penicillins, oxacillin, and imipenem but not expanded-spectrum cephalosporins. Sequencing of the genetic context of the bla(OXA-229) gene did not identify an insertion sequence but did identify mutations in the promoter sequences in comparison to the fully susceptible A. bereziniae reference strain. The overexpression of bla(OXA-229) in A. bereziniae Nec as a source of carbapenem resistance was identified by quantitative real-time PCR.
Collapse
|
40
|
Abstract
Innate resistance and remarkable ability to acquire additional resistance determinants underline the clinical importance of Acinetobacter. Over 210 β-lactamases belonging to 16 families have been identified in the genus, mostly in clinical isolates of A. baumannii. In this review, we update the current taxonomy of the genus Acinetobacter and summarize the β-lactamases detected in Acinetobacter spp. with an emphasis on Acinetobacter-derived cephalosporinases (ADCs) and carbapenem-hydrolysing class D β-lactamases (CHDLs). We also discuss the roles of integrons and insertion sequence (IS) elements in the expression and dissemination of such resistance determinants.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
41
|
Environmental microbiota represents a natural reservoir for dissemination of clinically relevant metallo-beta-lactamases. Antimicrob Agents Chemother 2011; 55:5376-9. [PMID: 21859934 DOI: 10.1128/aac.00716-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 10 metallo-β-lactamase-producing isolates of six different species, including Brevundimonas diminuta (n = 3), Rhizobium radiobacter (n = 2), Pseudomonas monteilii (n = 1), Pseudomonas aeruginosa (n = 2), Ochrobactrum anthropi (n = 1), and Enterobacter ludwigii (n = 1), were detected in the sewage water of a hospital. The presence of bla(VIM-13) associated with a Tn1721-class 1 integron structure was detected in all but one of the isolates (E. ludwigii, which produced VIM-2), and in two of them (R. radiobacter), this structure was located on a plasmid, suggesting that environmental bacteria represent a reservoir for the dissemination of clinically relevant metallo-β-lactamase genes.
Collapse
|
42
|
Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrob Agents Chemother 2011; 55:4844-9. [PMID: 21825287 DOI: 10.1128/aac.01728-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nosocomial Acinetobacter baumannii bloodstream infections occur with significant prevalence and mortality. The relationship between carbapenem resistance in A. baumannii and patient outcomes remains unclear. A retrospective cohort study was conducted on patients with A. baumannii bacteremia. Outcomes, controlling for confounders, were compared for carbapenem-nonresistant A. baumannii (CNRAB) and carbapenem-resistant A. baumannii (CRAB). The primary outcome studied was all-cause hospital mortality, and the secondary endpoints evaluated were time to mortality, time to negative cultures, and length of stay postinfection for survivors. A total of 79 patients, 37 infected with CRAB and 42 with CNRAB, were studied. Hospital mortality was greater in the CRAB group as determined based on bivariate analysis (P < 0.01); however, this effect was nullified when controlling for relevant confounders with logistic regression and a Cox proportional-hazards model (P = 0.71 and 0.75, respectively). Values for time to mortality and time to negative cultures did not differ between the groups. The median number of days of stay postinfection for survivors was greater for the CRAB group than the CNRAB group (14 versus 6.5; P < 0.01). Patients who received active antimicrobial therapy were less likely to die (93.5% versus 74.2%; P = 0.02), regardless of carbapenem susceptibility classifications, and this result was robust in the multivariate model (P = 0.02). Trends existed for improved outcomes in patients receiving an active beta-lactam, and patients fared worse if they had received a polymyxin as an active agent. Patients with CRAB bloodstream infections were more chronically ill and had more comorbidities. Inactive therapy was more important than carbapenem susceptibility with respect to outcomes, was a strong predictor of death, and is potentially modifiable.
Collapse
|
43
|
OXA-198, an acquired carbapenem-hydrolyzing class D beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 2011; 55:4828-33. [PMID: 21788473 DOI: 10.1128/aac.00522-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A carbapenem-resistant Pseudomonas aeruginosa strain (PA41437) susceptible to expanded-spectrum cephalosporins was recovered from several consecutive lower-respiratory-tract specimens of a patient who developed a ventilator-associated pneumonia while hospitalized in an intensive care unit. Cloning experiments identified OXA-198, a new class D β-lactamase which was weakly related (less than 45% amino acid identity) to other class D β-lactamases. Expression in Escherichia coli TOP10 and in P. aeruginosa PAO1 led to transformants that were resistant to ticarcillin and showed reduced susceptibility to carbapenems and cefepime. The bla(OXA-198) gene was harbored by a class 1 integron carried by a ca. 46-kb nontypeable plasmid. This study describes a novel class D β-lactamase involved in carbapenem resistance in P. aeruginosa.
Collapse
|
44
|
Three factors that modulate the activity of class D β-lactamases and interfere with the post-translational carboxylation of Lys70. Biochem J 2011; 432:495-504. [PMID: 21108605 DOI: 10.1042/bj20101122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity of class D β-lactamases is dependent on Lys70 carboxylation in the active site. Structural, kinetic and affinity studies show that this post-translational modification can be affected by the presence of a poor substrate such as moxalactam but also by the V117T substitution. Val117 is a strictly conserved hydrophobic residue located in the active site. In addition, inhibition of class D β-lactamases by chloride ions is due to a competition between the side chain carboxylate of the modified Lys70 and chloride ions. Determination of the individual kinetic constants shows that the deacylation of the acyl-enzyme is the rate-limiting step for the wild-type OXA-10 β-lactamase.
Collapse
|
45
|
Evans BA, Hamouda A, Towner KJ, Amyes SGB. Novel genetic context of multiple bla OXA-58 genes in Acinetobacter genospecies 3. J Antimicrob Chemother 2010; 65:1586-8. [PMID: 20542900 DOI: 10.1093/jac/dkq180] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The detection in Acinetobacter genospecies 3 isolates of OXA-type carbapenemases, resulting in reduced susceptibility to carbapenem antibiotics, is increasingly reported. We identified an Acinetobacter genospecies 3 isolate carrying the gene for OXA-58 and aimed to resolve the genetic environment surrounding the bla(OXA-58) gene. METHODS Species identification was confirmed by 16S-23S rRNA restriction analysis. MICs of imipenem, meropenem and ertapenem were determined, and the isolate was screened by PCR for bla(OXA-23-like), bla(OXA-40-like), bla(OXA-51-like) and bla(OXA-58-like) genes. The sequence surrounding bla(OXA-58) was determined through amplification by inverse PCR and genome walking followed by sequencing. Genetic localization was investigated by Southern blotting. RESULTS Isolate A164 was confirmed as belonging to Acinetobacter genospecies 3 and had reduced susceptibility to the carbapenems. The isolate was found to encode two bla(OXA-58) genes that may have been duplicated by the insertion sequence ISAba125, two copies of which were inserted into ISAba3 elements. The bla(OXA-58) genes appear to be plasmid borne. CONCLUSIONS This is the first report of beta-lactamase duplication in Acinetobacter genospecies 3 and of gene duplication mediated by ISAba125.
Collapse
Affiliation(s)
- B A Evans
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
46
|
Carbapenem-resistant KPC-2-producing Escherichia coli in a Tel Aviv Medical Center, 2005 to 2008. Antimicrob Agents Chemother 2010; 54:2687-91. [PMID: 20231393 DOI: 10.1128/aac.01359-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All of the carbapenem-resistant Escherichia coli (CREC) isolates identified in our hospital from 2005 to 2008 (n = 10) were studied. CREC isolates were multidrug resistant, all carried bla(KPC-2), and six of them were also extended-spectrum beta-lactamase producers. Pulsed-field gel electrophoresis indicated six genetic clones; within the same clone, similar transferable bla(KPC-2)-containing plasmids were found whereas plasmids differed between clones. Tn4401 elements were identified in all of these plasmids.
Collapse
|
47
|
Abstract
OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.
Collapse
|
48
|
Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents 2010; 35:219-26. [PMID: 20047818 DOI: 10.1016/j.ijantimicag.2009.10.024] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 02/06/2023]
Abstract
Infection due to Acinetobacter baumannii has become a significant challenge to modern healthcare systems. The organism shows a formidable capacity to develop antimicrobial resistance, yet the clinical impact of A. baumannii infection remains unclear. Much is known about the processes involved in multidrug resistance, but those underlying the pathogenicity and virulence potential of the organism are only beginning to be elucidated. In this article, we provide an overview of current knowledge, focusing on mechanisms of pathogenesis, the molecular basis of resistance and options for treatment in the absence of novel therapeutic agents.
Collapse
|
49
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
50
|
Yang HY, Lee HJ, Suh JT, Lee KM. Outbreaks of imipenem resistant Acinetobacter baumannii producing OXA-23 beta-lactamase in a tertiary care hospital in Korea. Yonsei Med J 2009; 50:764-70. [PMID: 20046415 PMCID: PMC2796401 DOI: 10.3349/ymj.2009.50.6.764] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/11/2009] [Accepted: 03/04/2009] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Since November 2006, imipenem-resistant Acinetobacter baumannii isolates have increased in Kyung Hee University Hospital in Seoul, Korea. The purpose of this study was to determine the genetic basis and molecular epidemiology of outbreak isolates. MATERIALS AND METHODS Forty-nine non-repetitive isolates of the 734 IRAB strains were investigated in order to determine their characteristics. The modified Hodge and the ethylenediaminetetraacetic acid (EDTA)-disk synergy test were performed for the screening of carbapenemase and metallo-beta-lactamase production. Multiplex polymerase chain reaction (PCR) assays were performed for the detection of genes encoding for OXA-23-like, OXA-24-like, OXA-58-like and OXA-51-like carbapenemase. Pulsed-field gel electrophoresis (PFGE) was performed for strain identification. RESULTS All isolates showed 100% resistance to ciprofloxacin and gentamicin, 97.9% resistance to cefepime, piperacillin/tazobactam, aztreonam, ceftazidime and piperacillin, 93.9% resistance to tobramycin and 57.1% resistance to amikacin. All of the 49 isolates (100%) showed positive results in the modified Hodge test and negative results in the EDTA-disk synergy test. They all (100%) possessed the encoding gene for an intrinsic OXA-51-like carbapenemase and an acquired OXA-23-like carbapenemase in the multiplex PCR assay. PFGE patterns revealed that all isolates were clonally related from A1 to A14. CONCLUSION It is concluded that all of the 49 IRAB isolates acquired resistance to imipenem by producing OXA-23 carbapenemase and they might have originated from a common source.
Collapse
Affiliation(s)
- Hee Young Yang
- Department of Laboratory Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hee Joo Lee
- Department of Laboratory Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jin Tae Suh
- Department of Laboratory Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Kyeong Min Lee
- Division of Antimicrobial Resistance, National Institute of Health, Korea Centers for Disease Control and Prevention, Seoul, Korea
| |
Collapse
|