1
|
Zavari A, Badouei MA, Hashemi Tabar G. Evaluation of multi-drug resistance, virulence factors, and antimicrobial resistance genes of non-typhoidal Salmonella isolated from ruminants as a potential human health threat in Razavi Khorasan, northeastern Iran. Microb Pathog 2024; 199:107222. [PMID: 39667639 DOI: 10.1016/j.micpath.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Non-typhoidal Salmonella (NTS) is a significant foodborne pathogen that poses a threat to human health by causing infections and potentially acquiring antibiotic resistance. We evaluated thirty-five Salmonella serovars previously isolated from cattle, sheep, goats, and their retail meat in Razavi Khorasan Province, Iran. The isolates were confirmed with Salmonella polyvalent antiserum. Furthermore, PCR was used to identify the Salmonella Enteritidis, Salmonella Typhimurium, and the host-adapted serovars Salmonella Dublin and Salmonella Abortusovis. Additionally, the antimicrobial susceptibility of the serovars was evaluated using the disk diffusion method. Subsequently, the occurrence of antimicrobial resistance genes and virulence factors was evaluated using the PCR technique. Molecular typing revealed that 20 % of the isolates were S. Typhimurium, 11.4 % were S. Dublin, 8.6 % were S. Enteritidis, 5.7 % were S. Abortusovis, and 54.3 % (19 isolates) were classified as non-typed serovars. Salmonella isolates showed high susceptibility to ciprofloxacin (91.4 %), colistin (88.6 %), gentamicin (88.6 %), and cefotaxime (85.7 %) while exhibiting high resistance to others such as ampicillin (88.6 %), streptomycin (74.3 %), and tetracycline (51.4 %). The most prevalent resistance genes in non-typhoidal Salmonella (NTS) are blaTEM (91.4 %), sul1 (65.7 %), and aadA (54.3 %). Additionally, twenty-five isolates (71.4 %) showed multi-drug resistance profiles. The most frequent virulence genes are stn (100 %), iroN (100 %), and pefA (42.9 %). The current study has revealed that Salmonella serovars isolated from sheep and goats, like those from cattle, exhibit multi-drug resistance and harbor antimicrobial resistance genes. Additionally, they possess diverse virulence factors that can threaten human health by spreading diseases and developing drug resistance, leading to antibiotic treatment failure.
Collapse
Affiliation(s)
- Ali Zavari
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Gholamreza Hashemi Tabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Tayh G, Nsibi F, Chemli K, Daâloul-Jedidi M, Abbes O, Messadi L. Occurrence, antibiotic resistance and molecular characterisation of Shiga toxin-producing Escherichia coli isolated from broiler chickens in Tunisia. Br Poult Sci 2024; 65:751-761. [PMID: 38967914 DOI: 10.1080/00071668.2024.2368906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
1. Shiga toxin-producing Escherichia coli (STEC) strains are associated with disease outbreaks which cause a public health problem. The aim of this study was to determine the frequency of STEC strains, their virulence factors, phylogenetic groups and antimicrobial resistance profiles in broiler chickens.2. A total of 222 E.coli isolates were collected from the caecum of chickens intended to be slaughtered. Antibiotic susceptibility was tested against 21 antimicrobial agents and ESBL phenotype was assessed by double-disk synergy test. The presence of STEC virulence genes stx1, stx2,eaeA and ehxA was detected by PCR. The identification of STEC serogroups was realised by PCR amplification. Additive virulence genes, phylogenetic groups and integrons were examined among the STEC isolates.3. Out of 222 E.coli isolates, 72 (32%) were identified as STEC strains and the most predominant serogroups were O103, O145 and O157. Shiga toxin gene 1 (stx1) was found in 84.7% (61/72) of the STEC strains, and eae and stx2 were detected in 38.8% and 13.8%, respectively. The ESBL phenotype was documented in 48.6% (35/72) of isolates. Most of the isolates (90.3%) carried class 1 integron with the gene cassette encoding resistance to trimethoprim (dfrA) and streptomycin (aadA) in 31.9% of the isolates. Class 2 integron was identified in 36.1% of isolates.4. Broilers can be considered as a reservoir of STEC strains which have high virulence factors and integrons that might be transmitted to other chickens, environments and humans. It is important to undertake surveillance and efficient control measures in slaughterhouses and farms to control measures of STEC bacteria.
Collapse
Affiliation(s)
- G Tayh
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - F Nsibi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - K Chemli
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - M Daâloul-Jedidi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - O Abbes
- DICK Company, Poulina Group Holding, Ben Arous, Tunisia
| | - L Messadi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| |
Collapse
|
3
|
Sampaio ANDCE, Caron EFF, Cerqueira-Cézar CK, Juliano LCB, Tadielo LE, Melo PRL, de Oliveira JP, Pantoja JCDF, Martins OA, Nero LA, Possebon FS, Pereira JG. Escherichia coli Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process. Pathogens 2024; 13:912. [PMID: 39452783 PMCID: PMC11510025 DOI: 10.3390/pathogens13100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
The swine production chain can be a reservoir of antimicrobial-resistant Escherichia coli, which transfers resistance genes to other bacteria, serving as an important biomarker in the One Health approach. This study aimed to identify the frequency and antimicrobial resistance profile of E. coli in the swine production chain, assess the presence of extended-spectrum beta-lactamases (ESBL), and compare resistance profiles across different sample types. A total of 622 samples of swine carcasses from various points of the slaughter process (n = 400), swine feces (n = 100), commercial cuts (n = 45), environment (n = 67), and feces from employees (n = 10) of a pig slaughterhouse certified by the Federal Inspection Service, located in São Paulo state, Brazil, were collected. A total of 1260 E. coli isolates were obtained from the samples, with 73.6% of the samples testing positive. The agar disk diffusion test was performed with 10 different classes of antimicrobials. To confirm the production of ESBLs, the isolates were submitted to a double-disk synergism test using cefotaxime, ceftazidime, and amoxicillin with clavulanic acid. Of the total isolates, 80.71% were multidrug resistant. All ESBL-producing isolates were multidrug resistant and resistant to amoxicillin, tetracycline, and chloramphenicol. Isolates from human feces samples had less chance of being multidrug resistant than samples from other sources. The diversity of resistance profiles was verified in the samples, not clustering according to the sources, except for human feces isolates that clustered, evidencing lower antimicrobial resistance variability of these samples. Antimicrobial resistance is significantly present in the pork production chain, necessitating a comprehensive multidisciplinary approach to effectively mitigate risks within the One Health framework.
Collapse
Affiliation(s)
- Aryele Nunes da Cruz Encide Sampaio
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Evelyn Fernanda Flores Caron
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Camila Koutsodontis Cerqueira-Cézar
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Lára Cristina Bastos Juliano
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Leonardo Ereno Tadielo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Patrícia Regina Lopes Melo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Janaína Prieto de Oliveira
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - José Carlos de Figueiredo Pantoja
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Otávio Augusto Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| | - Luís Augusto Nero
- Food Inspection Laboratory, Department of Veterinary Medicine, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Fábio Sossai Possebon
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Tecomarias av, SN, Botucatu 18607-440, São Paulo, Brazil
| | - Juliano Gonçalves Pereira
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil (J.G.P.)
| |
Collapse
|
4
|
Pineda MEB, Sánchez DFV, Caycedo PAC, -Rozo JC. Nanocomposites: silver nanoparticles and bacteriocins obtained from lactic acid bacteria against multidrug-resistant Escherichia coli and Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:341. [PMID: 39358621 DOI: 10.1007/s11274-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Drug-resistant bacteria such as Escherichia coli and Staphylococcus aureus represent a global health problem that requires priority attention. Due to the current situation, there is an urgent need to develop new, more effective and safe antimicrobial agents. Biotechnological approaches can provide a possible alternative control through the production of new generation antimicrobial agents, such as silver nanoparticles (AgNPs) and bacteriocins. AgNPs stand out for their antimicrobial potential by employing several mechanisms of action that can act simultaneously on the target cell such as the production of reactive oxygen species and cell wall rupture. On the other hand, bacteriocins are natural peptides synthesized ribosomally that have antimicrobial activity and are produced, among others, by lactic acid bacteria (LAB), whose main mechanism of action is to produce pores at the level of the cell membrane of bacterial cells. However, these agents have disadvantages. Nanoparticles also have limitations such as the tendency to form aggregates, which decreases their antibacterial activity and possible cytotoxic effects, and bacteriocins have a narrow spectrum of action, require high doses to be effective, and can be degraded by proteases. Given these limitations, nanoconjugates of these two agents have been developed that can act synergistically in the control of pathogenic bacteria resistant to antibiotics. This review focuses on knowing relevant aspects of the antibiotic resistance of E. coli and S. aureus, the characteristics of these new generation antibacterial agents, and their effect alone or forming nanoconjugates that are more effective against the multiresistant mentioned bacteria.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Grupo de Investigación Gestión Ambiental-Universidad de Boyacá, Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Macromoléculas. Universidad Nacional de Colombia, Tunja, Colombia
| | | | | | | |
Collapse
|
5
|
Beshiru A, Isokpehi NA, Igbinosa IH, Akinnibosun O, Ogofure AG, Igbinosa EO. Extended-spectrum beta-lactamase (ESBL)- and non-ESBL producing Escherichia coli surveillance in surface water sources in Edo State, Nigeria: a public health concern. Sci Rep 2024; 14:21658. [PMID: 39294326 PMCID: PMC11410956 DOI: 10.1038/s41598-024-72993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
This research explores the antimicrobial resistance (AMR) profiles and prevalence of extended-spectrum beta-lactamase (ESBL) and non-ESBL-producing Escherichia coli in Ojerame Dam and Ovokoto Spring, Edo State, Nigeria. Over 12 months, water was systematically sampled to accommodate seasonal variations and analyzed by employing an ESBL-selective medium for bacterial species. Additionally, bacterial isolates underwent identification and characterization using polymerase chain reaction (PCR) and disk diffusion methods to evaluate their susceptibility to antimicrobials. Results indicated significant prevalence of ESBL-producing E. coli, which exhibited complete resistance to common antimicrobials like ceftriaxone, ceftazidime, cefotaxime, and ampicillin while demonstrating 100% sensitivity to ertapenem, imipenem, meropenem, and nitrofurantoin. Non-ESBL-producing E. coli were resistant to ampicillin but sensitive to other antimicrobials mentioned earlier. Furthermore, both ESBL and non-ESBL-producing E. coli displayed multidrug resistance to varying degrees. Specific ESBL genes, including blaTEM, blaCTX-M-1, and blaCTX-M-15, were identified, alongside resistance genes like tetA, tetM, sul1, sul2, sul3, qnrA, qnrB, and qnrS in E. coli. This study pioneers the documentation of ESBL-producing E. coli in surface water in the region. This signals impending health risks associated with water being a reservoir of resistant genes while emphasizing the urgency for further research and public awareness concerning the quality of surface water.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria.
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, PMB 10, Oghara, 300104, Nigeria.
| | - Nnenna A Isokpehi
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Isoken H Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Olajide Akinnibosun
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
- Department of Microbiology, Faculty of Science, Federal University of Health Sciences, Private Mail Bag 145, Otukpo, 927101, Nigeria
| | - Abraham G Ogofure
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Etinosa O Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria.
| |
Collapse
|
6
|
Kim MB, Lee YJ. Emergence of Salmonella Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants in Korea. Food Microbiol 2024; 122:104568. [PMID: 38839227 DOI: 10.1016/j.fm.2024.104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
The plasmid of emerging S. Infantis (pESI) or pESI-like plasmid in Salmonella enterica Infantis are consistently reported in poultry and humans worldwide. However, there has been limited research on these plasmids of S. Infantis isolated from eggs. Therefore, this study aimed to analyze the prevalence and characteristics of S. Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants. In this study, the pESI-like plasmid was only detected in 18 (78.3%) of 23 S. Infantis isolates, and it was absent in the other 9 Salmonella serovars. In particular, S. Infantis isolates carrying the pESI-like plasmid showed the significantly higher resistance to β-lactams, phenicols, cephams, aminoglycosides, quinolones, sulfonamides, and tetracyclines than Salmonella isolates without the pESI-like plasmid (p < 0.05). Moreover, all S. Infantis isolates carrying the pESI-like plasmid were identified as extended-spectrum β-lactamase (ESBL) producer, harboring the blaCTX-M-65 and blaTEM-1 genes, and carried non-β-lactamase resistance genes (ant(3'')-Ia, aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, sul1, tetA, dfrA14, and floR) against five antimicrobial classes. However, all isolates without the pESI-like plasmid only carried the blaTEM-1 gene among the β-lactamase genes, and either had no non-β-lactamase resistance genes or harbored non-β-lactamase resistance genes against one or two antimicrobial classes. Furthermore, all S. Infantis isolates carrying the pESI-like plasmid carried class 1 and 2 integrons and the aadA1 gene cassette, but none of the other isolates without the pESI-like plasmid harbored integrons. In particular, D87Y substitution in the gyrA gene and IncP replicon type were observed in all the S. Infantis isolates carrying the pESI-like plasmid but not in the S. Infantis isolates without the pESI-like plasmid. The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis isolates was clearly distinguished, but all S. Infantis isolates were classified as sequence type 32, regardless of whether they carried the pESI-like plasmid. This study is the first to report the characteristics of S. Infantis carrying the pESI-like plasmid isolated from eggs and can provide valuable information for formulating strategies to control the spread of Salmonella in the egg industry worldwide.
Collapse
Affiliation(s)
- Min Beom Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41556, Republic of Korea.
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41556, Republic of Korea.
| |
Collapse
|
7
|
Liu C, Sun S, Sun Y, Li X, Gu W, Luo Y, Wang N, Wang Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173498. [PMID: 38815827 DOI: 10.1016/j.scitotenv.2024.173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Antibiotics are widely used in China's aquaculture, agricultural, and clinical settings and can lead to antibiotic resistance in various pathogens. Although the pooled prevalence estimate (PPE) and antibiotic resistance of Escherichia coli (E. coli) in food and clinical settings has been extensively studied, a comprehensive analysis of the published literature is lacking. We conducted a comprehensive search for research indicators for 2001-2020 in eight major Chinese and English literature databases. Antibiotic PPE and resistance trends of 5933 and 29,451 E. coli isolates were screened and analysed in 35 food studies (total 1821) and 62 clinical studies (total 5159). E. coli strains derived from food had the highest antibiotic resistance rate to tetracycline (TET, 71.3 %), followed by trimethoprim-sulfamethoxazole (SXT, 62.5 %) and cefazolin (CFZ, 36.2 %). E. coli strains isolated from clinical environments were highly resistant to piperacillin (PIP, 71.7 %), TET (68.3 %) and CFZ (60.9 %), consistent with foodborne E. coli drug resistance patterns. E. coli strains isolated from food and clinical samples collected in laboratories carry multiple antibiotic resistance genes (ARGs), such as blaTEM, gryA, gryB, sul1, and tetA, making E. coli a reservoir of ARGs. This study highlights the presence of drug-resistant E. coli pathogens and ARGs in food and clinical environments.
Collapse
Affiliation(s)
- Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
8
|
Monroy-Pérez E, Hernández-Jaimes T, Morales-Espinosa R, Delgado G, Martínez-Gregorio H, García-Cortés LR, Herrera-Gabriel JP, De Lira-Silva A, Vaca-Paniagua F, Paniagua-Contreras GL. Analysis of in vitro expression of virulence genes related to antibiotic and disinfectant resistance in Escherichia coli as an emerging periodontal pathogen. Front Cell Infect Microbiol 2024; 14:1412007. [PMID: 39211796 PMCID: PMC11358117 DOI: 10.3389/fcimb.2024.1412007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The collective involvement of virulence markers of Escherichia coli as an emerging pathogen associated with periodontitis remains unexplained. This study aimed to implement an in vitro model of infection using a human epithelial cell line to determine the virulome expression related to the antibiotic and disinfectant resistance genotype and pulse field gel electrophoresis (PFGE) type in E. coli strains isolated from patients with periodontal diseases. We studied 100 strains of E. coli isolated from patients with gingivitis (n = 12), moderate periodontitis (n = 59), and chronic periodontitis (n = 29). The identification of E. coli and antibiotic and disinfectant resistance genes was performed through PCR. To promote the expression of virulence genes in the strains, an in vitro infection model was used in the human epithelial cell line A549. RNA was extracted using the QIAcube robotic equipment and reverse transcription to cDNA was performed using the QuantiTect reverse transcription kit (Qiagen). The determination of virulence gene expression was performed through real-time PCR. Overall, the most frequently expressed adhesion genes among the isolated strains of gingivitis, moderate periodontitis, and chronic periodontitis were fimH (48%), iha (37%), and papA (18%); those for toxins were usp (33%); those for iron acquisition were feoB (84%), fyuA (62%), irp-2 (61%), and iroN (35%); those for protectins were traT (50%), KpsMT (35%), and ompT (28%); and those for pathogenicity islands were malX (45%). The most common antibiotic and disinfectant resistance genes among gingivitis, moderate periodontitis, and chronic periodontitis strains were sul-2 (43%), blaSHV (47%), blaTEM (45%), tet(A) (41%), dfrA1 (32%), marR-marO (57%), and qacEA1 (79%). The findings revealed the existence of a wide distribution of virulome expression profiles related to the antibiotic and disinfectant resistance genotype and PFGE type in periodontal strains of E. coli. These findings may contribute toward improving the prevention and treatment measures for periodontal diseases associated with E. coli.
Collapse
Affiliation(s)
- Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Tania Hernández-Jaimes
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rosario Morales-Espinosa
- Departamento de Microbiología and Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabriela Delgado
- Departamento de Microbiología and Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Héctor Martínez-Gregorio
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Rey García-Cortés
- Coordinación de Investigación del Estado de México oriente, Insitituto Mexicano del Seguro Social, Tlalnepantla de Baz, Mexico
| | | | - Andrea De Lira-Silva
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | |
Collapse
|
9
|
Arfaoui A, Martínez-Álvarez S, Abdullahi IN, Fethi M, Sayem N, Melki SBK, Ouzari HI, Torres C, Klibi N. Surveillance of Enterobacteriaceae from Diabetic Foot Infections in a Tunisian Hospital: Detection of E. coli-ST131- blaCTX-M-15 and K. pneumoniae-ST1- blaNDM-1 Strains. Microb Drug Resist 2024; 30:341-349. [PMID: 38722095 DOI: 10.1089/mdr.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The study determined the prevalence, antimicrobial resistant (AMR) determinants, and genetic characteristics of Escherichia coli and Klebsiella pneumoniae isolates from patients with diabetic foot infection (DFI) in a Tunisian hospital. A total of 26 Escherichia spp. and Klebsiella spp. isolates were recovered and identified by MALDI-TOF-MS. Antimicrobial susceptibility testing, the detection of AMR determinants and Shiga-like toxin genes, phylogenetic grouping, and molecular typing were performed. Twelve E. coli, 10 K. pneumoniae, 3 K. oxytoca, and 1 E. hermanii were isolated. A multidrug-resistant phenotype was detected in 65.4% of the isolates. About 30.8% of isolates were extended-spectrum β-lactamase (ESBL) producers and mainly carried blaCTX-M-15 and blaCTX-M-14 genes. One blaNDM-1-producing K. pneumoniae-ST1 strain was identified. Class 1 integrons were detected in 11 isolates and 5 gene cassette arrangements were noted: dfrA1+aadA1 (n = 1), dfrA12+aadA2 (n = 3), and dfrA17+aadA5 (n = 1). Other non-β-lactam resistance genes detected were as follows (number of isolates): aac(3')-II (3), aac(6')-Ib-cr(8), qnrB (2), qnrS (4), cmlA (2), floR (4), sul1 (11), sul2 (11), and sul3 (2). The phylogroup B1 was the most frequent (41.7%) among E. coli, and two ESBL-producing isolates corresponded to the ST131-B2 lineage. The ESBL- and carbapenemase-producing Enterobacteriaceae in DFIs are described for the first time in Tunisia.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Noureddine Sayem
- Service of Biology, International Hospital Center Carthagene of Tunisia, Tunis, Tunisia
| | | | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
10
|
Tayh G, Fhoula I, Said MB, Boudabous A, Slama KB. Prevalence and characterization of quinolone resistance and integrons in clinical Gram-negative isolates from Gaza strip, Palestine. Mol Biol Rep 2024; 51:855. [PMID: 39066817 DOI: 10.1007/s11033-024-09721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, β-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). BlaCTX-M genes were detected in 50% (32/64) of isolates, with blaCTX-M-15 being the most common. BlaTEM-1, blaSHV-1 and blaVIM genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Ghassan Tayh
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunis 2092, Tunisia.
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet 2020, Ariana, Tunisia.
| | - Imene Fhoula
- Laboratory of Microbiology-Biochemistry, Aziza Othmana Hospital, University of Tunis, Tunis, 1008, Tunisia
| | - Mourad Ben Said
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet 2020, Ariana, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Abdellatif Boudabous
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunis 2092, Tunisia
| | - Karim Ben Slama
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunis 2092, Tunisia
- Higher Institute of Applied Biological Sciences of Tunis - University of Tunis El Manar, Tunis, 1006, Tunisia
| |
Collapse
|
11
|
Wu Z, Chi H, Han T, Li G, Wang J, Chen W. Differences of Escherichia coli isolated from different organs of the individual sheep: molecular typing, antibiotics resistance, and biofilm formation. Folia Microbiol (Praha) 2024; 69:567-578. [PMID: 37540315 DOI: 10.1007/s12223-023-01082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Despite numerous studies on Escherichia coli (E. coli) from sheep, there have been few reports on the characterization of E. coli isolates from various organs of individual sheep until now. The present study conducted molecular typing, antibiotics resistance, biofilm formation, and virulence genes on E. coli isolated from 57 freshly slaughtered apparently healthy sheep carcasses, gallbladders, fecal samples, and mesenteric lymph nodes (MLNs). The results demonstrated that the detection rate of R1 LPS core type in E. coli isolated from fecal samples (70.83%) was higher than that from other organs, but the detection rate of antibiotic resistance genes was lower (P < 0.05). The predominant phylogenetic group of E. coli isolated from the carcasses was group B1 (93.33%), and the detection rate of multidrug-resistance phenotype (80%) and the resistance rate of E. coli was higher than that from other organs (P < 0.05). Interestingly, the intensity of biofilm formation of E. coli isolated from MLNs was higher than that from other organs (P < 0.05). However, except for ibeB, the detection rates of virulence genes did not differ in E.coli isolated from different organs. In conclusion, differences were noted in these parameters of E. coli isolated from different organs of individual sheep. Therefore, the data may contain considerable mistakes concerning the actual situation in the host if we only analyze the data of E. coli isolated from feces or carcasses.
Collapse
Affiliation(s)
- Zihao Wu
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Haoming Chi
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Tingting Han
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Guangxi Li
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Jixue Wang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Wei Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Sciences and Technology, Tarim University, Alar, 86-843300, China.
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China.
| |
Collapse
|
12
|
Watson E, Hamilton S, Silva N, Moss S, Watkins C, Baily J, Forster T, Hall AJ, Dagleish MP. Variations in antimicrobial resistance genes present in the rectal faeces of seals in Scottish and Liverpool Bay coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123936. [PMID: 38588972 DOI: 10.1016/j.envpol.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Antibiotic resistance genes originating from human activity are considered important environmental pollutants. Wildlife species can act as sentinels for coastal environmental contamination and in this study we used qPCR array technology to investigate the variety and abundance of antimicrobial resistance genes (ARGs), mobile genetic elements (MGEs) and integrons circulating within seal populations both near to and far from large human populations located around the Scottish and northwest English coast. Rectal swabs were taken from 50 live grey seals and nine live harbour seals. Nucleic acids were stabilised upon collection, enabling extraction of sufficient quality and quantity DNA for downstream analysis. 78 ARG targets, including genes of clinical significance, four MGE targets and three integron targets were used to monitor genes within 22 sample pools. 30 ARGs were detected, as well as the integrons intl1 and intl2 and tnpA transposase. Four β-lactam, nine tetracycline, two phenicol, one trimethoprim, three aminoglycoside and ten multidrug resistance genes were detected as well as mcr-1 which confers resistance to colistin, an important drug of last resort. No sulphonamide, vancomycin, macrolide, lincosamide or streptogramin B (MLSB) resistance genes were detected. Resistance genes were detected in all sites but the highest number of ARGs (n = 29) was detected in samples derived from grey seals on the Isle of May, Scotland during the breeding season, and these genes also had the highest average abundance in relation to the 16S rRNA gene. This pilot study demonstrates the effectiveness of a culture-independent workflow for global analysis of ARGs within the microbiota of live, free-ranging, wild animals from habitats close to and remote from human habitation, and highlights seals as a valuable indicator species for monitoring the presence, abundance and land-sea transference of resistance genes within and between ecosystems.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK.
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Nuno Silva
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Simon Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Craig Watkins
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Johanna Baily
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Thorsten Forster
- LifeArc, Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, Scotland, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| |
Collapse
|
13
|
Morales L, Cobo A, Frías MP, Gálvez A, Ortega E. The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. Antibiotics (Basel) 2024; 13:429. [PMID: 38786157 PMCID: PMC11117780 DOI: 10.3390/antibiotics13050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for blaOXA-23 and blaNDM-1 genes among the A. baumannii samples, one resistance gene (blaCTX-M) among E. coli, and two genetic determinants (blaCTX-M and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of blaVEB and blaGES genes, as well as between the aztreonam resistance phenotype and the presence of blaGES gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality.
Collapse
Affiliation(s)
- Laura Morales
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| | - Antonio Cobo
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| | - María Pilar Frías
- Department of Statistics and Operation Research, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain;
| | - Antonio Gálvez
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| | - Elena Ortega
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| |
Collapse
|
14
|
Martínez-Álvarez S, Châtre P, François P, Abdullahi IN, Simón C, Zarazaga M, Madec JY, Haenni M, Torres C. Unexpected role of pig nostrils in the clonal and plasmidic dissemination of extended-spectrum beta-lactamase-producing Escherichia coli at farm level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116145. [PMID: 38460199 DOI: 10.1016/j.ecoenv.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The presence of methicillin-resistant or -susceptible S. aureus in pig nostrils has been known for a long time, but the occurrence of extended-spectrum beta-lactamase (ESBL)-producing E. coli has hardly been investigated. Here, we collected 25 E. coli recovered from nasal samples of 40 pigs/10 farmers of four farms. Nine ESBL-producing isolates belonging to ST48, ST117, ST847, ST5440, ST14914 and ST10 were retrieved from seven pigs. All blaESBL genes (blaCTX-M-32,blaCTX-M-14,blaCTX-M-1,blaCTX-M-65, and blaSHV-12) were horizontally transferable by conjugation through plasmids belonging to IncI1 (n=3), IncX1 (n=3) and IncHI2 (n=1) types. IncI1-plasmids displayed different genetic environments: i) IS26-blaSHV-12-deoR-IS26, ii) wbuC-blaCTX-M-32-ISKpn26 (IS5), and iii) IS930-blaCTX-M-14-IS26. The IncHI2-plasmid contained the genetic environment IS903-blaCTX-M-65-fipA with multiple resistance genes associated either to: a) Tn21-like transposon harbouring genes conferring aminoglycosides/beta-lactams/chloramphenicol/macrolides resistance located on two atypical class 1 integrons with an embedded ΔTn5393; or b) Tn1721-derived transposon displaying an atypical class 1 integron harbouring aadA2-arr3-cmlA5-blaOXA-10-aadA24-dfrA14, preceding the genetic platform IS26-blaTEM-95-tet(A)-lysR-floR-virD2-ISVsa3-IS3075-IS26-qnrS1, as well as the tellurite resistance module. Other plasmids harbouring clinically relevant genes were detected, such as a ColE-type plasmid carrying the mcr-4.5 gene. Chromosomally encoded genes (fosA7) or integrons (intI1-dfrA1-aadA1-qacE-sul1/intI1-IS15-dfrA1-aadA2) were also identified. Finally, an IncY plasmid harbouring a class 2 integron (intI2-dfrA1-sat2-aadA1-qacL-IS406-sul3) was detected but not associated with a blaESBL gene. Our results evidence that pig nostrils might favour the spread of ESBL-E. coli and mcr-mediated colistin-resistance. Therefore, enhanced monitoring should be considered, especially in a sector where close contact between animals in intensive farming increases the risk of spreading antimicrobial resistance.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
15
|
Abad-Fau A, Sevilla E, Oro A, Martín-Burriel I, Moreno B, Morales M, Bolea R. Multidrug resistance in pathogenic Escherichia coli isolates from urinary tract infections in dogs, Spain. Front Vet Sci 2024; 11:1325072. [PMID: 38585298 PMCID: PMC10996866 DOI: 10.3389/fvets.2024.1325072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Escherichia coli (E. coli) is a pathogen frequently isolated in cases of urinary tract infections (UTIs) in both humans and dogs and evidence exists that dogs are reservoirs for human infections. In addition, E. coli is associated to increasing antimicrobial resistance rates. This study focuses on the analysis of antimicrobial resistance and the presence of selected virulence genes in E. coli isolates from a Spanish dog population suffering from UTI. This collection of isolates showed an extremely high level of phenotypic resistance to 1st-3rd generation cephalosporins, followed by penicillins, fluoroquinolones and amphenicols. Apart from that, 13.46% of them were considered extended-spectrum beta-lactamase producers. An alarmingly high percentage (71.15%) of multidrug resistant isolates were also detected. There was a good correlation between the antimicrobial resistance genes found and the phenotypic resistance expressed. Most of the isolates were classified as extraintestinal pathogenic E. coli, and two others harbored virulence factors related to diarrheagenic pathotypes. A significant relationship between low antibiotic resistance and high virulence factor carriage was found, but the mechanisms behind it are still poorly understood. The detection of high antimicrobial resistance rates to first-choice treatments highlights the need of constant antimicrobial resistance surveillance, as well as continuous revision of therapeutic guidelines for canine UTI to adapt them to changes in antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Eloisa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ainara Oro
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon, Universidad de Zaragoza, Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Mariano Morales
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Albéitar Laboratories, Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
16
|
Wu S, Cui L, Han Y, Lin F, Huang J, Song M, Lan Z, Sun S. Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm. Microorganisms 2023; 11:2939. [PMID: 38138083 PMCID: PMC10745608 DOI: 10.3390/microorganisms11122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use of antibiotics has led to the emergence of multidrug resistance in E. coli as a significant global problem and long-term challenge. Resistant E. coli can be transmitted to humans through animal products or the environment, which presents significant public health concerns and food safety issues. In this study, we analyzed the features of 135 E. coli strains obtained from a white feather broiler farm in Shandong, China, including antimicrobial susceptibility tests, detection of class 1 integrons, drug resistance genes, virulence genes, and phylogenetic subgroups. It is particularly worrying that all 135 E. coli strains were resistant to at least five antibiotic agents, and 100% of them were multidrug-resistant (MDR). Notably, the resistance genes of blaTEM, blaCTX-M, qnrS, aaC4, tetA, and tetB exhibited a high prevalence of carriage among the tested resistance genes. However, mcr-2~mcr-9 were not detected, while the prevalence of mcr-1 was found to be 2.96%. The most common virulence genes detected were EAST1 (14.07%, encoding enterotoxins) and fyuA (14.81%, encoding biofilm formation). Phylogenetic subgroup analysis revealed that E. coli belonging to groups B2 and D, which are commonly associated with high virulence, constituted 2.22% and 11.11%, respectively. The positive rate of class 1 integrons was 31.1%. Whole-genome sequencing (WGS) and animal experiments were performed on a unique isolated strain called 21EC78 with an extremely strong membrane-forming capacity. The WGS results showed that 21EC78 carried 11 drug resistance genes and 16 virulence genes. Animal experiments showed that intraperitoneal injection with 2 × 105 CFU could cause the death of one-day-old SPF chickens in 3 days. However, the mortality of Luhua chickens was comparatively lower than that of SPF chickens. This study reports the isolation of multidrug-resistant E. coli strains in poultry, which may pose a potential threat to human health via the food chain. Furthermore, the findings of this study enhance our comprehension of the frequency and characteristics of multidrug-resistant E. coli in poultry farms, emphasizing the urgent need for improved and effective continuous surveillance to control its dissemination.
Collapse
Affiliation(s)
- Shaopeng Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Lulu Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Yu Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Fang Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Jiaqi Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control, Jinan 250000, China
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| |
Collapse
|
17
|
Zhu DM, Ding Q, Li PH, Wang YL, Li YZ, Yu Li X, Li GM, Ma HX, Kong LC. Antimicrobial resistance in E. Coli of animal origin and discovery of a novel ICE mobile element in Northeast China. BMC Vet Res 2023; 19:255. [PMID: 38053138 DOI: 10.1186/s12917-023-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Multidrug resistance in Enterobacteriaceae including resistance to quinolones is rising worldwide. The development of resistance may lead to the emergence of new transmission mechanisms. In this study, the collection of different E. coli was performed from animals and subjected to subsequent procedures including pulsed-field gel electrophoresis, micro-broth dilution method, polymerase chain reaction. Whole genome sequencing of E. coli C3 was performed to detect the affinity, antimicrobial resistance and major carriers of the isolates. RESULTS A total of 66 E. coli were isolated and their antibiotic resistance genes, frequency of horizontal transfer and genetic environment of E. coli C3 were determined. The results showed there were both different and same types in PFGE typing, indicating clonal transmission of E. coli among different animals. The detection of antimicrobial resistance and major antibiotic resistance genes and the plasmid transfer results showed that strains from different sources had high levels of resistance to commonly used clinical antibiotics and could be spread horizontally. Whole-genome sequencing discovered a novel ICE mobile element. CONCLUSION In summary, the antimicrobial resistance of E. coli in northeast China is a serious issue and there is a risk of antimicrobial resistance transmission. Meanwhile, a novel ICE mobile element appeared in the process of antimicrobial resistance formation.
Collapse
Affiliation(s)
- Dao Mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Qiang Ding
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Peng Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Yong Liang Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Ya Zhuo Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Xuan Yu Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Gong Mei Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
| | - Hong Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China.
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China.
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China.
| | - Ling Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China.
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China.
| |
Collapse
|
18
|
Di Francesco A, Salvatore D, Gobbi M, Morandi B. Antimicrobial resistance genes in a golden jackal (Canis aureus L. 1758) from Central Italy. Vet Res Commun 2023; 47:2351-2355. [PMID: 37436553 DOI: 10.1007/s11259-023-10172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
In recent years an increasing interest has been focused on the contribution of wildlife in ecology and evolution of the antimicrobial resistance (AMR). The aim of this study was to molecularly investigate the presence of antimicrobial resistance genes (ARGs) in organ samples from a golden jackal (Canis aureus) found dead in the Marche region (Central Italy). Samples from lung, liver, spleen, kidney, and intestine were investigated by PCRs targeting the following genes: tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tet(S), tet(P), tet(Q), tet(X), sul1, sul2, sul3, blaCTX-M, blaSHV, blaTEM, and mcr-1 to mcr-10. One or more ARGs were detected in all organs tested, except the spleen. Specifically, the lung and liver were positive for tet(M) and tet(P), the kidney for mcr-1 and the intestine for tet(A), tet(L), tet(M), tet(O), tet(P), sul3 and blaTEM-1. These results, according to the opportunistic foraging strategy of the jackal, confirm its potential role as a good bioindicator of AMR environmental contamination.
Collapse
Affiliation(s)
- A Di Francesco
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell' Emilia (BO), Italy.
| | - D Salvatore
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell' Emilia (BO), Italy
| | - M Gobbi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - B Morandi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| |
Collapse
|
19
|
Zhang S, Huang Y, Yang G, Wu Q, Zhang J, Wang J, Ding Y, Su Y, Ye Q, Wu S, Gu Q, Wei X, Zhang Y. High prevalence of multidrug-resistant Escherichia coli in retail aquatic products in China and the first report of mcr-1-positive extended-spectrum β-lactamase-producing E. coli ST2705 and ST10 in fish. Int J Food Microbiol 2023; 408:110449. [PMID: 39491388 DOI: 10.1016/j.ijfoodmicro.2023.110449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Contamination of food by multidrug-resistant (MDR) bacteria is a potential threat to consumers. Aquatic products are increasingly consumed due to their high value and rich nutrient. Nevertheless, the prevalence of multi-drug resistant (MDR) E. coli in retail aquatic products has not been systematically investigated in China. In this study, we conducted a national investigation on the prevalence of E. coli and MDR E. coli in retail aquatic products and the characteristics of the MDR E. coli isolates. A total of 849 samples consisting of 680 fish, 143 shrimp, and 26 shellfish were purchased from markets in 39 cities in China and investigated for the presence of E. coli. Overall, 340 (40.0 %) and 169 (19.9 %) samples were contaminated with E. coli and MDR E. coli, indicating poor hygiene conditions of retail aquatic products. A total of 190 MDR E. coli were isolated, which were recovered from 38.5 % shellfish, 20.1 % shrimp, and 19.0 % fish. Thirty-two ESBL-producing E. coli were identified from 3.5 % fish, 3.5 % shrimp, and 3.8 % shellfish. The MDR E. coli isolates showed a high prevalence of resistance to tetracycline (93.7 %), trimethoprim-sulfamethoxazole (78.9 %), ampicillin (78.4 %), chloramphenicol (72.1 %), nalidixic acid (73.2 %), cephalothin (65.3 %), and streptomycin (65.8 %). Resistances to kanamycin (42.1 %), gentamicin (37.9 %), ciprofloxacin (42.6 %), and norfloxacin (45.8 %) were also common. Further, 15.3 % and 8.4 % of the isolates were resistant to cefotaxime and ceftazidime, respectively. Four isolates were resistant to colistin. More than 85.0 % of the isolates were resistant to 5-15 antibiotics. Of the antibiotic resistance genes, TEM-1, tetA, strA/B, sul2, aadA, floR, and qnrS were the most prevalent, followed by sul1, aac(6')-Ib, oqxA/B, cmlA and aphA1. Six CTX-M-types were found, among which CTX-M-55 and CTX-M-14 were predominant. All 4 colistin-resistant isolates carried the mcr-1 gene, of which three were ESBL strains. WGS indicated that the mcr-1 gene was located on two types of plasmids (IncHI2 and IncX4). Conjugation experiments showed the mcr-1 gene could be transferred to E. coli C600. To our knowledge, this is the first report of mcr-1-positive ESBL E. coli (ST10 and ST2705) in retail aquatic products. The emergence of such strains poses a serious threat to consumers, with the potential to spread resistance genes to humans. Our results indicate that retail aquatic products are important reservoirs of MDR E. coli and facilitate the dissemination of the resistance genes. Continuous surveillance and interventions of restricting antibiotic use in aquatic environments should also be applied to reduce the prevalence of MDR bacteria.
Collapse
Affiliation(s)
- Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Yuanbin Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Guangzhu Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China.
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Yue Su
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China
| |
Collapse
|
20
|
Martínez-Álvarez S, Châtre P, Cardona-Cabrera T, François P, Sánchez-Cano A, Höfle U, Zarazaga M, Madec JY, Haenni M, Torres C. Detection and genetic characterization of bla ESBL-carrying plasmids of cloacal Escherichia coli isolates from white stork nestlings (Ciconia ciconia) in Spain. J Glob Antimicrob Resist 2023; 34:186-194. [PMID: 37482121 DOI: 10.1016/j.jgar.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES This study aimed to characterize Escherichia coli isolates from cloacal samples of white stork nestlings, with a special focus on extended-spectrum β-lactamases (ESBLs)-producing E. coli isolates and their plasmid content. METHODS Cloacal samples of 88 animals were seeded on MacConkey-agar and chromogenic-ESBL plates to recover E. coli and ESBL-producing E. coli. Antimicrobial susceptibility was screened using the disc diffusion method, and the genotypic characterization was performed by polymerase chain reaction (PCR) and subsequent sequencing. S1 nuclease Pulsed-Field-Gel-Electrophoresis (PFGE), Southern blotting, and conjugation essays were performed on ESBL-producing E. coli, as well as whole-genome sequencing by short- and long-reads. The four blaESBL-carrying plasmids were completely sequenced. RESULTS A total of 113 non-ESBL-producing E. coli isolates were collected on antibiotic-free MacConkey-agar, of which 27 (23.9%) showed a multidrug-resistance (MDR) phenotype, mainly associated with β-lactam-phenicol-sulfonamide resistance (blaTEM/cmlA/floR/sul1/sul2/sul3). Moreover, four white stork nestlings carried ESBL-producing E. coli (4.5%) with the following characteristics: blaSHV-12/ST38-D, blaSHV-12/ST58-B1, blaCTX-M-1/ST162-B1, and blaCTX-M-32/ST155-B1. Whole-genome sequencing followed by Southern blot hybridizations on S1-PFGE gels in ESBL-positive isolates proved that the blaCTX-M-1 gene and one of the blaSHV-12 genes were carried by IncI1/pST3 plasmids, while the second blaSHV-12 gene and the blaCTX-M-32 gene were located on IncF plasmids. The two blaSHV-12 genes and the two blaCTX-M genes had similar but non-identical close genetic environments, as all four genes were flanked by a variety of insertion sequences. CONCLUSION The role played by several genetic platforms in the mobility of ESBL genes allows for interchangeability on a remarkably small scale (gene-plasmid-clones), which may support the spread of ESBL genes.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Teresa Cardona-Cabrera
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Alberto Sánchez-Cano
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
21
|
Milton AAP, Srinivas K, Lyngdoh V, Momin AG, Lapang N, Priya GB, Ghatak S, Sanjukta R, Sen A, Das S. Biofilm-forming antimicrobial-resistant pathogenic Escherichia coli: A one health challenge in Northeast India. Heliyon 2023; 9:e20059. [PMID: 37809422 PMCID: PMC10559811 DOI: 10.1016/j.heliyon.2023.e20059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
This study aimed to investigate the prevalence of Shiga toxin-producing Escherichia coli (STEC), Enteropathogenic E. coli (EPEC), and Enterotoxigenic E. coli (ETEC) in common food animals (cattle, goats, and pigs) reared by tribal communities and smallholder farmers in Northeast India. The isolates were characterized for the presence of virulence genes, extended-spectrum beta-lactamases (ESBL) production, antimicrobial resistance, and biofilm production, and the results were statistically interpreted. In pathotyping 141 E. coli isolates, 10 (7.09%, 95% CI: 3.45%-12.66%) were identified as STEC, 2 (1.42%, 95% CI: 0.17%-5.03%) as atypical-EPEC, and 1 (0.71%, 95% CI: 0.02%-3.89%) as typical-EPEC. None of the isolates were classified as ETEC. Additionally, using the phenotypic combination disc method (ceftazidime with and without clavulanic acid), six isolates (46.1%, 95% CI: 19.22%-74.87%) were determined to be ESBL producers. Among the STEC/EPEC strains, eleven (84.6%, 95% CI: 54.55%-98.08%) and one (7.7%, 95% CI: 0.19%-36.03%) strains were capable of producing strong or moderate biofilms, respectively. PFGE analysis revealed indistinguishable patterns for certain isolates, suggesting clonal relationships. These findings highlight the potential role of food animals reared by tribal communities and smallholder farmers as reservoirs of virulent biofilm-forming E. coli pathotypes, with implications for food contamination and zoonotic infections. Therefore, monitoring these pathogens in food animals is crucial for optimizing public health through one health strategy.
Collapse
Affiliation(s)
- A. Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - K. Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Aleimo G. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Naphisabet Lapang
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - G. Bhuvana Priya
- College of Agriculture, Central Agricultural University (Imphal), Kyrdemkulai, Meghalaya, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - R.K. Sanjukta
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| |
Collapse
|
22
|
Seo KW, Do KH, Jung CM, Lee SW, Lee YJ, Lim SK, Lee WK. Comparative genetic characterisation of third-generation cephalosporin-resistant Escherichia coli isolated from integrated and conventional pig farm in Korea. J Glob Antimicrob Resist 2023; 34:74-82. [PMID: 37394034 DOI: 10.1016/j.jgar.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES Pig-farming systems consist of integrated or conventional farms, and many antimicrobials are used to treat bacterial infections. The objective of this study was to compare characteristics of third-generation cephalosporin resistance and extended-spectrum β-lactamase (ESBL)/pAmpC β-lactamase-producing Escherichia coli between integrated and conventional farms. METHODS Third-generation cephalosporin-resistant E. coli was collected from integrated and conventional pig farms from 2021 to 2022. Polymerase chain reaction and DNA sequencing were performed for the detection of β-lactamase-encoding genes, molecular analysis, and identification of genetic relationships. To determine the transferability of β-lactamase genes, conjugation assays were conducted. RESULTS Antimicrobial resistance rates were higher in conventional farms than in integrated farms; ESBL- and pAmpC-lactamase-producing E. coli rates were higher in conventional farms (9.8%) than in integrated farms (3.4%). Fifty-two (6.5%) isolates produced ESBL/pAmpC β-lactamase genes. Isolates from integrated farms harboured CTX-15 (3 isolates), CTX-55 (9 isolates), CTX-229 (1 isolate), or CMY-2 (1 isolate) genes; isolates from conventional farms harboured CTX-1 (1 isolate), CTX-14 (6 isolates), CTX-15 (2 isolates), CTX-27 (3 isolates), CTX-55 (14 isolates), CTX-229 (1 isolate), and CMY-2 (11 isolates) genes. Of the 52 ESBL/pAmpC β-lactamase-producing E. coli isolates, class 1 integrons with 11 different gene cassette arrangements were detected in 39 (75.0%) isolates, and class 2 integrons were detected in 3 isolates. The most common sequence type in both integrated and conventional farms was ST5229, followed by ST101, and then ST10. CONCLUSION Third-generation cephalosporin-resistant patterns and molecular characteristics differed between integrated and conventional farms. Our findings suggest that continuous monitoring of third-generation cephalosporin resistance on pig farms is necessary to prevent the dissemination of resistant isolates.
Collapse
Affiliation(s)
- Kwang Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Chang Min Jung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Onnuri Animals Hospital, Cheonan, Korea
| | - Seong Won Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Boehringer Ingelheim Animal Health Korea Ltd., Seoul, Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Korea
| | - Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon, Korea
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; GutBiomeTech, Cheongju, Korea.
| |
Collapse
|
23
|
Kneis D, Lemay-St-Denis C, Cellier-Goetghebeur S, Elena AX, Berendonk TU, Pelletier JN, Heß S. Trimethoprim resistance in surface and wastewater is mediated by contrasting variants of the dfrB gene. THE ISME JOURNAL 2023; 17:1455-1466. [PMID: 37369703 PMCID: PMC10432401 DOI: 10.1038/s41396-023-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Trimethoprim (TMP) is a low-cost, widely prescribed antibiotic. Its effectiveness is increasingly challenged by the spread of genes coding for TMP-resistant dihydrofolate reductases: dfrA, and the lesser-known, evolutionarily unrelated dfrB. Despite recent reports of novel variants conferring high level TMP resistance (dfrB10 to dfrB21), the prevalence of dfrB is still unknown due to underreporting, heterogeneity of the analyzed genetic material in terms of isolation sources, and limited bioinformatic processing. In this study, we explored a coherent set of shotgun metagenomic sequences to quantitatively estimate the abundance of dfrB gene variants in aquatic environments. Specifically, we scanned sequences originating from influents and effluents of municipal sewage treatment plants as well as river-borne microbiomes. Our analyses reveal an increased prevalence of dfrB1, dfrB2, dfrB3, dfrB4, dfrB5, and dfrB7 in wastewater microbiomes as compared to freshwater. These gene variants were frequently found in genomic neighborship with other resistance genes, transposable elements, and integrons, indicating their mobility. By contrast, the relative abundances of the more recently discovered variants dfrB9, dfrB10, and dfrB13 were significantly higher in freshwater than in wastewater microbiomes. Moreover, their direct neighborship with other resistance genes or markers of mobile genetic elements was significantly less likely. Our findings suggest that natural freshwater communities form a major reservoir of the recently discovered dfrB gene variants. Their proliferation and mobilization in response to the exposure of freshwater communities to selective TMP concentrations may promote the prevalence of high-level TMP resistance and thus limit the future effectiveness of antimicrobial therapies.
Collapse
Affiliation(s)
- David Kneis
- TU Dresden, Institute of Hydrobiology, 01062, Dresden, Germany.
| | - Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Stella Cellier-Goetghebeur
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Alan X Elena
- TU Dresden, Institute of Hydrobiology, 01062, Dresden, Germany
| | | | - Joelle N Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
- Chemistry Department, University of Montréal, Montréal, QC, H2V 0B3, Canada
| | - Stefanie Heß
- TU Dresden, Institute of Microbiology, 01062, Dresden, Germany
| |
Collapse
|
24
|
Sabença C, Costa E, Sousa S, Barros L, Oliveira A, Ramos S, Igrejas G, Torres C, Poeta P. Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples. Antibiotics (Basel) 2023; 12:1143. [PMID: 37508239 PMCID: PMC10376346 DOI: 10.3390/antibiotics12071143] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The appearance of Klebsiella pneumoniae strains producing extended-spectrum β-lactamase (ESBL), and carbapenemase (KPC) has turned into a significant public health issue. ESBL- and KPC-producing K. pneumoniae's ability to form biofilms is a significant concern as it can promote the spread of antibiotic resistance and prolong infections in healthcare facilities. A total of 45 K. pneumoniae strains were isolated from human infections. Antibiograms were performed for 17 antibiotics, ESBL production was tested by Etest ESBL PM/PML, a rapid test was used to detect KPC carbapenemases, and resistance genes were detected by PCR. Biofilm production was detected by the microtiter plate method. A total of 73% of multidrug resistance was found, with the highest resistance rates to ampicillin, trimethoprim-sulfamethoxazole, cefotaxime, amoxicillin-clavulanic acid, and aztreonam. Simultaneously, the most effective antibiotics were tetracycline and amikacin. blaCTX-M, blaTEM, blaSHV, aac(3)-II, aadA1, tetA, cmlA, catA, gyrA, gyrB, parC, sul1, sul2, sul3, blaKPC, blaOXA, and blaPER genes were detected. Biofilm production showed that 80% of K. pneumoniae strains were biofilm producers. Most ESBL- and KPC-producing isolates were weak biofilm producers (40.0% and 60.0%, respectively). There was no correlation between the ability to form stronger biofilms and the presence of ESBL and KPC enzymes in K. pneumoniae isolates.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Eliana Costa
- Hospital Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-508 Vila Real, Portugal
| | - Sara Sousa
- Hospital Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-508 Vila Real, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Oliveira
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Sónia Ramos
- Faculty of Veterinary Medicine, Centro Universitário de Lisboa, Campo Grande, 376, 1749-024 Lisbon, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
25
|
Graspeuntner S, Lupatsii M, Dashdorj L, Rody A, Rupp J, Bossung V, Härtel C. First-Day-of-Life Rectal Swabs Fail To Represent Meconial Microbiota Composition and Underestimate the Presence of Antibiotic Resistance Genes. Microbiol Spectr 2023; 11:e0525422. [PMID: 37097170 PMCID: PMC10269712 DOI: 10.1128/spectrum.05254-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
The human gut microbiome plays a vital role in health and disease. In particular, the first days of life provide a unique window of opportunity for development and establishment of microbial community. Currently, stool samples are known to be the most widely used sampling approach for studying the gut microbiome. However, complicated sample acquisition at certain time points, challenges in transportation, and patient discomfort underline the need for development of alternative sampling approaches. One of the alternatives is rectal swabs, shown to be a reliable proxy for gut microbiome analysis when obtained from adults. Here, we compare the usability of rectal swabs and meconium paired samples collected from infants on the first days of life. Our results indicate that the two sampling approaches display significantly distinct patterns in microbial composition and alpha and beta diversity as well as detection of resistance genes. Moreover, the dissimilarity between the two collection methods was greater than the interindividual variation. Therefore, we conclude that rectal swabs are not a reliable proxy compared to stool samples for gut microbiome analysis when collected on the first days of a newborn's life. IMPORTANCE Currently, there are numerous suggestions on how to ease the notoriously complex and error-prone methodological setups to study the gut microbiota of newborns during the first days of life. Especially, meconium samples are regularly failing to yield meaningful data output and therefore have been suggested to be replaced by rectal swabs as done in adults as well. We find this development toward a simplified method to be producing dramatically erroneous results, skewing data interpretation away from the real aspects to be considered for neonatal health during the first days of life. We have put together our knowledge on this critical aspect with careful consideration and identified the failure of rectal swabs to be a replacement for sampling of meconium in term-born newborns.
Collapse
Affiliation(s)
- S. Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - M. Lupatsii
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - L. Dashdorj
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - A. Rody
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - J. Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - V. Bossung
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Lübeck, Germany
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - C. Härtel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Luo S, Liao C, Peng J, Tao S, Zhang T, Dai Y, Ding Y, Ma Y. Resistance and virulence gene analysis and molecular typing of Escherichia coli from duck farms in Zhanjiang, China. Front Cell Infect Microbiol 2023; 13:1202013. [PMID: 37396302 PMCID: PMC10308044 DOI: 10.3389/fcimb.2023.1202013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The widespread use of antibiotics in animal agriculture has increased the resistance of Escherichia coli, and pathogenic E. coli often harbor complex virulence factors. Antimicrobial resistance in pathogenic bacteria can cause public health problems. Correlation analyses of the resistance, virulence, and serotype data from the pathogenic bacteria found on farms and in the surrounding environment can thus provide extremely valuable data to help improve public health management. Methods In this investigation, we have assessed the drug resistance and virulence genes as well as the molecular typing characteristics of 30 E. coli strains isolated from duck farms in the Zhanjiang area of China. Polymerase chain reaction was used to detect the drug resistance and virulence genes as well as serotypes, and whole-genome sequencing was used to analyze the multilocus sequence typing. Results The detection rates for the oqxA resistance gene and fimC virulence gene were highest (93.3%, respectively). There were no correlations between the drug resistance and virulence gene numbers in the same strain. The epidemic serotype was O81 (5/24), ST3856 was an epidemic sequence type, and strains I-9 and III-6 carried 11 virulence genes. The E. coli strains from the duck farms in the Zhanjiang area were thus found to have a broad drug resistance spectrum, various virulence genes, complex serotypes, and certain pathogenicity and genetic relationship. Discussion Monitoring the spread of pathogenic bacteria and the provision of guidance regarding the use of antibiotics in the livestock and poultry industries will be required in the future in the Zhanjiang area.
Collapse
Affiliation(s)
- Shuaishuai Luo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Cuiyi Liao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- College of Traditional Chinese Medicine, Zhanjiang University of Science and Technology, Zhanjiang, China
| | - Jinju Peng
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Songruo Tao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Tengyue Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yue Dai
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuexia Ding
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yi Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
27
|
Zhongguan H, Qiang Z, Zhang G, Nadeem A, Sen L, Ge Y. Cost-effective one-spot hydrothermal synthesis of graphene oxide nanoparticles for wastewater remediation: AI-enhanced approach for transition metal oxides. CHEMOSPHERE 2023:139064. [PMID: 37321457 DOI: 10.1016/j.chemosphere.2023.139064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
This investigation presents a cost-efficient hydrothermal synthesis technique for producing graphene oxide nanoparticles (GO-NPs) that exhibit promising potential in wastewater treatment. The synthesis process involves a facile and expandable hydrothermal reactor that can be regulated using an AI-empowered methodology. The generated GO-NPs were characterised using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM), confirming their successful synthesis and high quality. The high degree of crystallinity observed in the GO-NPs can be attributed to the favourable reaction conditions facilitated by the hydrothermal synthesis. The TEM analysis showed that the GO-NPs had a homogeneous dispersion pattern and a consistent size distribution of approximately 10 nm. Carboxylation was employed to functionalize the GO-NPs, enhancing their reactivity towards diverse contaminants present in wastewater. The remediation potential of the GO-NPs for transition metal oxides, which are frequently found in wastewater, was assessed. The GO-NPs exhibited notable efficacy in remediating the transition metal oxides that were subjected to testing. The heightened efficacy of remediation can be attributed to the substantial surface area and elevated reactivity of the GO-NPs, in addition to their functionalization using carboxylic groups. The cost-effective and efficient synthesis method, coupled with the high remediation potential of the GO-NPs, makes them a highly promising contender for employment in wastewater remediation applications. The use of AI in regulating the hydrothermal synthesis procedure enables accurate manipulation of the reaction parameters, thereby augmenting the quality and uniformity of the resultant GO-NPs. The proposed method exhibits scalability potential for large-scale production of GO-NPs, presenting a viable remedy for the challenges associated with wastewater remediation.
Collapse
Affiliation(s)
| | - Zhou Qiang
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China
| | - Guodao Zhang
- Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China
| | | | - Lin Sen
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China
| | - Yisu Ge
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China.
| |
Collapse
|
28
|
Ferrand A, Vergalli J, Bosi C, Pantel A, Pagès JM, Davin-Regli A. Contribution of efflux and mutations in fluoroquinolone susceptibility in MDR enterobacterial isolates: a quantitative and molecular study. J Antimicrob Chemother 2023; 78:1532-1542. [PMID: 37104818 DOI: 10.1093/jac/dkad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES The emergence of MDR strains is a public health problem in the management of associated infections. Several resistance mechanisms are present, and antibiotic efflux is often found at the same time as enzyme resistance and/or target mutations. However, in the laboratory routinely, only the latter two are identified and the prevalence of antibiotic expulsion is underestimated, causing a misinterpretation of the bacterial resistance phenotype. The development of a diagnostic system to quantify the efflux routinely would thus improve the management of patients. METHODS A quantitative technique based on detection of clinically used fluoroquinolones was investigated in Enterobacteriaceae clinical strains with a high or basal efflux activity. The detail of efflux involvement was studied from MIC determination and antibiotic accumulation inside bacteria. WGS was carried out on selected strains to determine the genetic background associated with efflux expression. RESULTS Only 1 Klebsiella pneumoniae isolate exhibited a lack of efflux whereas 13 isolates had a basal efflux and 8 presented efflux pump overexpression. The antibiotic accumulation evidenced the efficacy of the efflux mechanism in strains, and the contribution of dynamic expulsion versus target mutations in fluoroquinolone susceptibility. CONCLUSIONS We confirmed that phenylalanine arginine β-naphthylamide is not a reliable marker of efflux due to the affinity of the AcrB efflux pump for different substrates. We have developed an accumulation test that can be used efficiently on clinical isolates collected by the biological laboratory. The experimental conditions and protocols ensure a robust assay that with improvements in practice, expertise and equipment could be transferred to the hospital laboratory to diagnose the contribution of efflux in Gram-negative bacteria.
Collapse
Affiliation(s)
- Aurélie Ferrand
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Julia Vergalli
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Claude Bosi
- Laboratoire de Biologie Polyvalente, Centre Hospitalier d'Aubagne, Aubagne, France
| | - Alix Pantel
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Jean-Marie Pagès
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| |
Collapse
|
29
|
Comparative Analysis between Salmonella enterica Isolated from Imported and Chinese Native Chicken Breeds. Microorganisms 2023; 11:microorganisms11020390. [PMID: 36838355 PMCID: PMC9962450 DOI: 10.3390/microorganisms11020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Salmonella enterica is considered a significant threat to the global poultry industry and public health. In recent decades, antimicrobial resistance in Salmonella enterica has attracted increasing concern throughout the world. However, limited information is available on Salmonella enterica among different breeds of breeder chickens. Thus, this study aimed to compare the prevalence, serotype distribution, emergence of extended-spectrum beta-lactamases (ESBLs), antimicrobial resistance, and genetic resistance mechanisms in Salmonella enterica among different breeds of breeder chickens. A total of 693 samples (dead embryos, cloacal swabs, water, feed, environmental swabs, and meconium of newly hatched chicks) were selected and cultured for Salmonella from four breeder chicken farms in Shandong province, China, representing one imported and three native breeds, and the isolates were further serotyped. Of the Salmonella isolates, susceptibility to 11 antimicrobials of 5 classes, ESBL screening, and the presence of 21 antimicrobial resistance genes were determined in the present study. Overall, 94 (13.6%) isolates were recovered, which were divided into 3 serotypes (Salmonella Pullorum (n = 36), Salmonella Thompson (n = 32), and Salmonella Enteritidis (n = 26)). The results showed that the prevalence of Salmonella enterica isolates from the imported breeds was higher compared with the three domestic breeds. Eight of the ninety-four isolates were ESBL-positive strains, which were recovered from a domestic breed chicken farm. These eight ESBL-producing isolates were serotyped to Pullorum. Surprisingly, Salmonella Enteritidis (S. enteritidis) and S. pullorum were simultaneously isolated from a single dead embryo observed among one native breed. Meanwhile, among the Salmonella isolates, 53.2% (50/94) were multidrug-resistant strains, and 44.7% (42/94) of the isolates presented resistance to at least five antibiotics. Nearly all of the isolates (97.9%, 92/94) were resistant to at least one antimicrobial; one isolate of S. Thompson was resistant to seven antimicrobial agents belonging to four different classes. The carriage rate of three resistance genes (tetA, tetB, and sul1) among isolates from the imported breeds (87%, 70%, and 65.2%) was higher than that in those from domestic breeds (35.2%, 36.6, and 14.1%). To our knowledge, this is the first report of ESBLs-producing Salmonella isolated from a Chinese native breed of breeder chickens. Our results also highlight that a high prevalence of multidrug-resistant Salmonella enterica contamination is widespread among different breeds of breeder chickens, which is a major risk of food-borne diseases and public health.
Collapse
|
30
|
Dhaouadi S, Romdhani A, Bouglita W, Chedli S, Chaari S, Soufi L, Cherif A, Mnif W, Abbassi MS, Elandoulsi RB. High Biofilm-Forming Ability and Clonal Dissemination among Colistin-Resistant Escherichia coli Isolates Recovered from Cows with Mastitis, Diarrheic Calves, and Chickens with Colibacillosis in Tunisia. Life (Basel) 2023; 13:life13020299. [PMID: 36836656 PMCID: PMC9959077 DOI: 10.3390/life13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main etiological agents responsible for bovine mastitis (BM), neonatal calf diarrhea (NCD), and avian colibacillosis (AC). This study aimed to assess resistance and virulence genes content, biofilm-forming ability, phylogenetic groups, and genetic relatedness in E. coli isolates recovered from clinical cases of BM, NCD, and AC. MATERIALS/METHODS A total of 120 samples including samples of milk (n = 70) and feces (n = 50) from cows with BM and calves with NCD, respectively, were collected from different farms in Northern Tunisia. Bacterial isolation and identification were performed. Then, E. coli isolates were examined by disk diffusion and broth microdilution method for their antimicrobial susceptibility and biofilm-forming ability. PCR was used to detect antimicrobial resistance genes (ARGs), virulence genes (VGs), phylogenetic groups, and Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) for their clonal relationship. RESULTS Among the 120 samples, 67 E. coli isolates (25 from BM, 22 from AC, and 20 from NCD) were collected. Overall, 83.6% of isolates were multidrug resistant. Thirty-six (53.73%) isolates were phenotypically colistin-resistant (CREC), 28.3% (19/67) were ESBL producers (ESBL-EC), and forty-nine (73.1%) formed biofilm. The blaTEM gene was found in 73.7% (14/19) of isolates from the three diseases, whilst the blaCTXM-g-1 gene was detected in 47.3% (9/19) of isolates, all from AC. The most common VG was the fimA gene (26/36, 72.2%), followed by aer (12/36, 33.3%), cnf1 (6/36, 16.6%), papC (4/36, 11.1%), and stx1 and stx2 genes (2/36; 5.5% for each). Phylogenetic analysis showed that isolates belonged to three groups: A (20/36; 55.5%), B2 (7/36; 19.4%), and D (6/36; 16.6%). Molecular typing by ERIC-PCR showed high genetic diversity of CREC and ESBL E. coli isolates from the three animal diseases and gave evidence of their clonal dissemination within farms in Tunisia. CONCLUSION The present study sheds new light on the biofilm-forming ability and clonality within CREC and ESBL-EC isolated from three different animal diseases in Tunisian farm animals.
Collapse
Affiliation(s)
- Sana Dhaouadi
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| | - Amel Romdhani
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| | - Wafa Bouglita
- Institut Supérieur de Biotechnologie de Sidi Thabet, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| | - Salsabil Chedli
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| | - Soufiene Chaari
- MEDIVET, Immeuble les Mimosas, 159 Avenue de l’UMA, La Soukra 2036, Tunisia
| | - Leila Soufi
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| | - Ameur Cherif
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
- Correspondence: (W.M.); (R.B.E.)
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Bacteriological Research, Tunis 1006, Tunisia
| | - Ramzi Boubaker Elandoulsi
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
- Correspondence: (W.M.); (R.B.E.)
| |
Collapse
|
31
|
Seo KW, Do KH, Shin MK, Lee WK, Lee WK. Comparative genetic characterization of CMY-2-type beta-lactamase producing pathogenic Escherichia coli isolated from humans and pigs suffering from diarrhea in Korea. Ann Clin Microbiol Antimicrob 2023; 22:7. [PMID: 36658572 PMCID: PMC9854124 DOI: 10.1186/s12941-023-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pathogenic Escherichia coli are an important cause of bacterial infections in both humans and pigs and many of antimicrobials are used for the treatment of E. coli infection. The objective of this study was to investigate the characteristics and relationship between humans and pigs regarding third-generation cephalosporin resistance and CMY-2-producing E. coli in Korea. RESULTS All 103 third-generation cephalosporin-resistant E. coli isolates showed multidrug resistance. Also, except for β-lactam/β-lactamase inhibitor combinations, all antimicrobials resistant rates were higher in pigs than in humans. A total of 36 isolates (humans: five isolates; pigs: 31 isolates) were positive for the CMY-2-encoding genes and thirty-two (88.9%) isolates detected class 1 integrons with 10 different gene cassette arrangements, and only 1 isolate detected a class 2 integron. The most common virulence genes in pigs were LT (71.0%), F18 (51.6%), and STb (51.6%), while stx2 (80.0%) was the most frequently detected gene in humans. Stx2 gene was also detected in pigs (6.5%). Interestingly, 36 CMY-2-producing E. coli isolates showed a high diversity of sequence types (ST), and ST88 was present in E. coli from both pigs (11 isolates) and humans (one isolate). CONCLUSION Our findings suggest that a critical need for comprehensive surveillance of third-generation cephalosporin resistance is necessary to preserve the usefulness of third-generation cephalosporins in both humans and pigs.
Collapse
Affiliation(s)
- Kwang-Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyung-Hyo Do
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Wan-Kyu Lee
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
32
|
Ben Sallem R, Arfaoui A, Najjari A, Carvalho I, Lekired A, Ouzari HI, Ben Slama K, Wong A, Torres C, Klibi N. First Report of IMI-2-Producing Enterobacter bugandensis and CTX-M-55-Producing Escherichia coli isolated from Healthy Volunteers in Tunisia. Antibiotics (Basel) 2023; 12:antibiotics12010116. [PMID: 36671318 PMCID: PMC9854954 DOI: 10.3390/antibiotics12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to characterize the prevalence of fecal carriage of extended-spectrum beta-lactamases and carbapenemase-producing Gram-negative bacteria among healthy humans in Tunisia. Fifty-one rectal swabs of healthy volunteers were plated on MacConkey agar plates supplemented with cefotaxime or imipenem. The occurrences of resistance genes, integrons, and phylogroup typing were investigated using PCR and sequencing. The genetic relatedness of isolates was determined by pulsed-field-gel-electrophoresis (PFGE) and multilocus-sequence-typing (MLST). Whole-genome-sequencing (WGS) was performed for the carbapenem-resistant isolate. Sixteen ESBL-producing Escherichia coli isolates and one carbapenem-resistant Enterobacter bugandensis were detected out of the fifty-one fecal samples. The ESBL-producing E. coli strains contained genes encoding CTX-M-15 (n = 9), CTX-M-1 (n = 3), CTX-M-27 (n = 3), and CTX-M-55 (n = 1). Three CTX-M-1-producers were of lineages ST131, ST7366, and ST1158; two CTX-M-15-producers belonged to lineage ST925 and ST5100; one CTX-M-27-producer belonged to ST2887, and one CTX-M-15-producer belonged to ST744. Six isolates contained class 1 integrons with the following four gene cassette arrangements: dfrA5 (two isolates), dfrA12-orf-aadA2 (two isolates), dfrA17-aadA5 (one isolate), and aadA1 (one isolate). E. bugandensis belonged to ST1095, produced IMI-2 carbapenemase, and contained qnrE1 and fosA genes. A genome-sequence analysis of the E. bugandensis strain revealed new mutations in the blaACT and qnr genes. Our results reveal an alarming rate of ESBL-E. coli in healthy humans in Tunisia and the first description of IMI-2 in E. bugandensis.
Collapse
Affiliation(s)
- Rym Ben Sallem
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Department of Sciences, Sainte Anne University, 1695 Route 1, Clare, NS B0W 1M0, Canada
- Correspondence: ; Tel.: +1-(613)-261-8581
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Afef Najjari
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Isabel Carvalho
- Biochemistry and Molecular Biology, University of La Rioja, 26006 Logrono, Spain
- Department of Veterinary Sciences, University of Trás-os-Montes-and Alto Douro, 5000-801 Vila Real, Portugal
| | - Abdelmalek Lekired
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Hadda-Imen Ouzari
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Karim Ben Slama
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Alex Wong
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Carmen Torres
- Biochemistry and Molecular Biology, University of La Rioja, 26006 Logrono, Spain
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
33
|
Multidrug-resistant extended spectrum β-lactamase (ESBL)-producing Escherichia coli from farm produce and agricultural environments in Edo State, Nigeria. PLoS One 2023; 18:e0282835. [PMID: 36897838 PMCID: PMC10004523 DOI: 10.1371/journal.pone.0282835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major public health concern, especially the extended-spectrum β-lactamase-producing (ESBL) Escherichia coli bacteria are emerging as a global human health hazard. This study characterized extended-spectrum β-lactamase Escherichia coli (ESBL-E. coli) isolates from farm sources and open markets in Edo State, Nigeria. A total of 254 samples were obtained in Edo State and included representatives from agricultural farms (soil, manure, irrigation water) and vegetables from open markets, which included ready-to-eat (RTE) salads and vegetables which could potentially be consumed uncooked. Samples were culturally tested for the ESBL phenotype using ESBL selective media, and isolates were further identified and characterized via polymerase chain reaction (PCR) for β-lactamase and other antibiotic resistance determinants. ESBL E. coli strains isolated from agricultural farms included 68% (17/25) from the soil, 84% (21/25) from manure and 28% (7/25) from irrigation water and 24.4% (19/78) from vegetables. ESBL E. coli were also isolated from RTE salads at 20% (12/60) and vegetables obtained from vendors and open markets at 36.6% (15/41). A total of 64 E. coli isolates were identified using PCR. Upon further characterization, 85.9% (55/64) of the isolates were resistant to ≥ 3 and ≤ 7 antimicrobial classes, which allows for characterizing these as being multidrug-resistant. The MDR isolates from this study harboured ≥1 and ≤5 AMR determinants. The MDR isolates also harboured ≥1 and ≤3 beta-lactamase genes. Findings from this study showed that fresh vegetables and salads could be contaminated with ESBL-E. coli, particularly fresh produce from farms that use untreated water for irrigation. Appropriate measures, including improving irrigation water quality and agricultural practices, need to be implemented, and global regulatory guiding principles are crucial to ensure public health and consumer safety.
Collapse
|
34
|
Nirwan S, Chahal V, Kakkar R. A comparative study of different docking methodologies to assess the protein-ligand interaction for the E. coli MurB enzyme. J Biomol Struct Dyn 2022; 40:11229-11238. [PMID: 34323658 DOI: 10.1080/07391102.2021.1957019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have investigated the active site of E. coli MurB using the Quantum Mechanics/Molecular Mechanics (QM/MM) methodology. The docking of three novel series of 4-thiazolidinone derivatives has been performed using two methods: rigid docking and flexible docking (Induced Fit Docking: IFD). The results have been compared to understand the conformational aspects of the enzyme. The docking results from rigid docking show that the ligands with highly negative ΔGbind have poor docking scores. In addition, the value of the regression coefficient (R) obtained on correlating the ΔGbind and the experimental pMIC values is insignificant. On keeping the protein flexible, there is a remarkable improvement in both the docking score and ΔGbind, along with a good value of R (0.64). Two important residues, Tyr254 and Try190 are found to be highly displaced during the flexible docking and hence their role in effective ligand binding has been confirmed. Thus, comparing the two methodologies, IFD has emerged as the more appropriate one for studying the E. coli MurB enzyme. To further substantiate the findings, MD studies over a time period of 20 ns have been performed on the IFD-LIII j and Rigid/XP-LIII j complexes and the results shows the former complex to be more stable, with lower average RMSD and higher average ΔGbind.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonam Nirwan
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Varun Chahal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
35
|
Ekhlas D, Soro AB, Leonard FC, Manzanilla EG, Burgess CM. Examining the impact of zinc on horizontal gene transfer in Enterobacterales. Sci Rep 2022; 12:20503. [PMID: 36443412 PMCID: PMC9705563 DOI: 10.1038/s41598-022-23690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance is one of the main international health concerns for humans, animals, and the environment, and substantial efforts have focused on reducing its development and spread. While there is evidence for correlations between antimicrobial usage and antimicrobial resistance development, specific information on the effect of heavy metal/antimicrobial usage on bacterial conjugation is more limited. The aim of this study was to investigate the effects of zinc and antimicrobials in different concentrations on horizontal gene transfer of an ampicillin resistance gene, using a multi-drug resistant Escherichia coli donor strain and three different Salmonella enterica serovars as recipient strains. Differences in conjugation frequencies for the different Salmonella recipients were observed, independent of the presence of zinc or the antimicrobials. Selective pressure on the recipient strains, in the form of ampicillin, resulted in a decrease in conjugation frequencies, while, the presence of rifampicin resulted in increases. Zinc exposure affected conjugation frequencies of only one of the three recipient strains, thus the effect of zinc on conjugation frequencies seemed to be concentration and strain dependent. Furthermore, differences in growth rates due to plasmid carriage were observed for one of the Salmonella strains.
Collapse
Affiliation(s)
- Daniel Ekhlas
- grid.6435.40000 0001 1512 9569Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Arturo B. Soro
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland ,grid.6435.40000 0001 1512 9569Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Finola C. Leonard
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Edgar G. Manzanilla
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland ,Pig Development Department, Teagasc Moorepark, Fermoy, Co. Cork Ireland
| | - Catherine M. Burgess
- grid.6435.40000 0001 1512 9569Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
36
|
Zhang S, Huang Y, Chen M, Yang G, Zhang J, Wu Q, Wang J, Ding Y, Ye Q, Lei T, Su Y, Pang R, Yang R, Zhang Y. Characterization of Escherichia coli O157:non-H7 isolated from retail food in China and first report of mcr-1/IncI2-carrying colistin-resistant E. coli O157:H26 and E. coli O157:H4. Int J Food Microbiol 2022; 378:109805. [DOI: 10.1016/j.ijfoodmicro.2022.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
|
37
|
Harbaoui S, Ferjani S, Abbassi M, Saidani M, Gargueh T, Ferjani M, Hammi Y, Boutiba‐Ben Boubaker I. Genetic heterogeneity and predominance of
bla
CTX‐M
‐15
in cefotaxime‐resistant
Enterobacteriaceae
isolates colonizing hospitalized children in Tunisia. Lett Appl Microbiol 2022; 75:1460-1474. [DOI: 10.1111/lam.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- S. Harbaoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
| | - S. Ferjani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
| | - M.S. Abbassi
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie Tunis Tunisie
| | - M. Saidani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- CHU Charles Nicolle Service de Microbiologie 1006 Tunis Tunisie
| | - T. Gargueh
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - M. Ferjani
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - Y. Hammi
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - I. Boutiba‐Ben Boubaker
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- CHU Charles Nicolle Service de Microbiologie 1006 Tunis Tunisie
| |
Collapse
|
38
|
Antimicrobial Resistance Pattern of Escherichia coli Isolates from Small Scale Dairy Cattle in Dar es Salaam, Tanzania. Animals (Basel) 2022; 12:ani12141853. [PMID: 35883400 PMCID: PMC9311648 DOI: 10.3390/ani12141853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Dearth of information on antimicrobial resistance (AMR) in small-scale dairy cattle in Dar es Salaam, the commercial city of Tanzania, prompted us to conduct this study. The objective was to determine the different levels of resistance phenotypical patterns among Escherichia coli (E. coli) isolates from rectal swabs of apparently healthy cattle. Antimicrobial resistance occurs when microorganisms develop the ability to tolerate antimicrobial concentrations to which they were initially susceptible. It is a phenomenon of global concern, which is on the rise due to antimicrobial use in food-producing animals. In dairy farms, cattle carry high levels of AMR Escherichia coli (E. coli), and may act as a potential reservoir. The study revealed that resistance to ampicillin, cefotaxime, tetracycline and trimethoprim/sulfamethoxazole was the most frequent. Resistance to nalidixic acid, ciprofloxacin, chloramphenicol, and gentamycin was also observed among the E. coli isolates, but with lower percentages. E. coli resistant to third generation cephalosporins was also detected. The results of the current study give an insight into the status of antimicrobial resistance and multidrug resistance in small-scale dairy cattle in Dar es Salaam, Tanzania. The findings call for further research, prudent antimicrobial use, and surveillance initiatives. Abstract In Tanzania, information on antimicrobial resistance in small-scale dairy cattle is scarce. This cross-sectional study was conducted to determine the different levels and pattern of antimicrobial resistance (AMR), in 121 Escherichia coli isolated from rectal swab of 201 apparently healthy small-scale dairy cattle in Dar es Salaam, Tanzania. Isolation and identification of E. coli were carried out using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing was carried out using the Kirby–Bauer disk diffusion method on Mueller-Hinton agar (Merck), according to the recommendations of Clinical and Laboratory Standards Institute (CLSI). Resistance was tested against ampicillin, gentamicin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, nalidixic acid, ciprofloxacin and cefotaxime. Resistance to almost all antimicrobial agents was observed. The agents to which resistance was demonstrated most frequently were ampicillin (96.7%), cefotaxime (95.0%), tetracycline (50.4%), trimethoprim-sulfamethoxazole (42.1%) and nalidixic acid (33.1%). In this case, 20 extended-spectrum beta-lactamases (ESBLs) producing E. coli were identified. 74.4% (90/121) of the isolates were Multidrug resistant (MDR), ranging from a combination of three to 8 different classes. The most frequently observed phenotypes were AMP-SXT-CTX with a prevalence of 12.4%, followed by the combination AMP-CTX with 10.7% and TE-AMP-CTX and NA + TE + AMP + CTX with 8.3% each. The high prevalence and wide range of AMR calls for prudent antimicrobial use.
Collapse
|
39
|
Baloyi T, Duvenage S, Du Plessis E, Villamizar-Rodríguez G, Korsten L. Multidrug resistant Escherichia coli from fresh produce sold by street vendors in South African informal settlements. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1513-1528. [PMID: 33706630 DOI: 10.1080/09603123.2021.1896681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to assess the prevalence of commensal and pathogenic Escherichia coli on informally sold fresh produce in South Africa, who harbour and express antimicrobial resistance genes and therefore pose indirect risks to public health. The majority (85.71%) of E. coli isolates from spinach, apples, carrots, cabbage and tomatoes, were multidrug resistant (MDR). Resistance to Aminoglycoside (94.81%), Cephalosporin (93.51%), Penicillin (93.51%) and Chloramphenicol (87.01%) antibiotic classes were most prevalent. Antibiotic resistance genes detected included blaTEM (89.29%), tetA (82.14%), tetB (53.57%), tetL (46.43%), sulI (41.07%), sulII (51.79%), aadA1a (58.93%) and strAB (51.79%). A single isolate was found to harbour eae virulence factor. Moreover, E. coli isolates were grouped into the intra-intestinal infectious phylogenetic group E (28.57%), the rare group C (26.79%), the generalist group B1 (21.43%) and the human commensal group A (16.07%). Presence of MDR E. coli represents a transmission route and significant human health risk.
Collapse
Affiliation(s)
- Tintswalo Baloyi
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Erika Du Plessis
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Germán Villamizar-Rodríguez
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Lise Korsten
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
40
|
Cui L, Zhao X, Li R, Han Y, Hao G, Wang G, Sun S. Companion Animals as Potential Reservoirs of Antibiotic Resistant Diarrheagenic Escherichia coli in Shandong, China. Antibiotics (Basel) 2022; 11:antibiotics11060828. [PMID: 35740235 PMCID: PMC9220070 DOI: 10.3390/antibiotics11060828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance genes of Escherichia coli (E. coli) from companion animals were still poorly understood. Here, we investigated the extended-spectrum β-lactamases (ESBLs) resistance genes of E. coli from companion animals in Shandong, China. A total of 79 isolates (80.6%) were recovered from 98 healthy or diarrheal companion animals in 2021, among which ESBLs-producing isolates accounted for 43.0% (34/79), and more than half of ESBL E. coli (ESBL-EC) strains (n = 19) were isolated from healthy companion animals. Diarrheagenic E. coli isolates (45.6%, n = 36) were represented by enterotoxigenic (ETEC) (32.9%), enteropathogenic (EPEC) (10.1%) and enteroinvasive (EIEC) (2.6%), 20 isolates of which were from healthy pets. Among tested antibiotics, resistance to tetracycline (64.6%) was the most commonly observed, followed by doxycycline (59.5%) and ampicillin (53.2%). Notably, all isolates were susceptible to meropenem. The multidrug-resistant (MDR) rate was 49.4%, 20 isolates of which were ESBLs producers; moreover, 23.4%, 16.4% of ESBL-EC strains were resistant to 5 or more, 7 or more antibiotics, respectively. Among the 5 β-lactamase resistance genes, the most frequent gene was blaCTX-M (60.76%), followed by blaSHV (40.51%). The plasmid-mediated quinolone resistance (PMQR) gene aac(6')-Ib-cr was detected in 35 isolates. Additionally, ESBL-associated genes (i.e., blaCTX-M, blaSHV) were found in 76.5% ESBL-EC strains, with six isolates carrying blaCTX-M and blaSHV. The marker gene of high-pathogenicity island gene irp2 (encoding iron capture systems) was the most frequency virulence gene. Our results showed that ESBL-EC were widespread in healthy or diarrhea companion animals, especially healthy pets, which may be a potential reservoir of antibiotic resistance, therefore, enhancing a risk to public and animal health.
Collapse
Affiliation(s)
- Lulu Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (R.L.); (Y.H.); (G.H.)
| | - Xiaonan Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Ruibo Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (R.L.); (Y.H.); (G.H.)
| | - Yu Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (R.L.); (Y.H.); (G.H.)
| | - Guijuan Hao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (R.L.); (Y.H.); (G.H.)
| | - Guisheng Wang
- Shandong Animal Disease Prevention and Control Center, Jinan 250100, China
- Correspondence: (G.W.); (S.S.); Tel.: +86-150-9891-3008 (G.W.); +86-137-0538-9710 (S.S.)
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (R.L.); (Y.H.); (G.H.)
- Correspondence: (G.W.); (S.S.); Tel.: +86-150-9891-3008 (G.W.); +86-137-0538-9710 (S.S.)
| |
Collapse
|
41
|
Naziri Z, Poormaleknia M, Ghaedi Oliyaei A. Risk of sharing resistant bacteria and/or resistance elements between dogs and their owners. BMC Vet Res 2022; 18:203. [PMID: 35624502 PMCID: PMC9137046 DOI: 10.1186/s12917-022-03298-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background The indiscriminate use and the similarity of prescribed antibiotics especially beta-lactams in human and small animal medicine, along with the close communication between pets and humans, increases the risk of the transfer of antibiotic-resistant bacteria and/or resistance elements especially integrons, between them. Therefore, we aimed to compare the frequencies of extended spectrum beta-lactamase (ESBL)-producing strains, major ESBL genes, classes 1 and 2 integrons, and antibiotic resistance patterns of fecal Escherichia coli (E. coli) isolates from dogs and their owners. Methods The present study was conducted on 144 commensal E. coli isolates from the feces of 28 healthy dog-owner pairs and 16 healthy humans who did not own pets. Phenotypic confirmatory test was used to identify the frequencies of ESBL-producing E. coli. Frequencies of blaCTX-M, blaSHV, and blaTEM genes, and also classes 1 and 2 integrons were determined by polymerase chain reaction. Resistance against 16 conventional antibiotics was determined by disk diffusion technique. Results ESBL-production status was similar between the E. coli isolates of 71.4% of dog-owner pairs. The E. coli isolates of 75, 60.7, and 85.7% of dog-owner pairs were similar in terms of the presence or absence of blaCTX-M, blaTEM, and blaSHV genes, respectively. The presence or absence of class 1 and class 2 integrons was the same in E. coli isolates of 57.1% of dog-owner pairs. Prevalence of resistance to chloramphenicol and tetracycline was significantly higher in E. coli isolates of dogs than owners, but for other 10 (83.3%) tested antibiotics, no statistically significant difference was found in prevalence of antibiotic resistance between dogs and owners isolates. Furthermore, the antibiotic-resistance profile was the same in the E. coli isolates of 14.3% of dog-owner pairs. Conclusions The results of current research highlight the seriousness of the drug-resistance problem and the need to prevent further increases and spread of antibiotic-resistance to reduce treatment failure. Moreover, relatively similar characteristics of the E. coli isolates of dogs and their owners can show the risk of sharing resistant bacteria and/or resistance elements between them.
Collapse
Affiliation(s)
- Zahra Naziri
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Meisam Poormaleknia
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azar Ghaedi Oliyaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
42
|
Escherichia coli serogroups in slaughterhouses: Antibiotic susceptibility and molecular typing of isolates. Int J Food Microbiol 2022; 371:109673. [DOI: 10.1016/j.ijfoodmicro.2022.109673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
|
43
|
Singh NS, Singhal N, Kumar M, Virdi JS. Public health implications of plasmid-mediated quinolone and aminoglycoside resistance genes in Escherichia coli inhabiting a major anthropogenic river of India. Epidemiol Infect 2022; 150:1-21. [PMID: 35343419 PMCID: PMC9044524 DOI: 10.1017/s095026882200053x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
Presence of antimicrobial resistance (AMR) genes in Escherichia coli inhabiting anthropogenic rivers is an important public health concern because plasmid-mediated AMR genes can easily spread to other pathogens by horizontal gene transfer. Besides β -lactams, quinolones and aminoglycosides are the major antibiotics against E. coli. In the present study, we have investigated the presence of plasmid-mediated quinolone resistance (PMQR) and aminoglycoside resistance genes in E. coli isolated from a major river of northern India. Our results revealed that majority of the strains were phenotypically susceptible for fluoroquinolones and some aminoglycosides like amikacin, netilmicin, tobramycin and gentamicin. However, 16.39% of the strains were resistant for streptomycin, 8.19% for kanamycin and 3.30% for gentamicin. Of the various PMQR genes investigated, only qnrS1 was present in 24.59% of the strains along with ISEcl2 . Aminoglycoside-resistance genes like strA-strB were found to be present in 16.39%, aphA1 in 8.19% and aacC 2 in only 3.30% of the strains. Though, no co-relation was observed between phenotypic resistance for fluorquinolones and presence of PMQR genes, phenotypic resistance for streptomycin, kanamycin and gentamicin exactly co-related with the presence of the genes strA-strB , aphA1 and aacC2 , respectively. Moreover, all the AMR genes discerned in aquatic E. coli were found to be situated on conjugative plasmids and, thus easily transferrable. Our study accentuates the importance of routine surveillance of urban rivers to curtail the spread of AMR genes in aquatic pathogens.
Collapse
Affiliation(s)
- Nambram Somendro Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
44
|
Antimicrobial Resistance of Shigella flexneri in Pakistani Pediatric Population Reveals an Increased Trend of Third-Generation Cephalosporin Resistance. Curr Microbiol 2022; 79:118. [DOI: 10.1007/s00284-022-02805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/07/2022] [Indexed: 11/03/2022]
|
45
|
Lenart-Boroń AM, Boroń PM, Prajsnar JA, Guzik MW, Żelazny MS, Pufelska MD, Chmiel MJ. COVID-19 lockdown shows how much natural mountain regions are affected by heavy tourism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151355. [PMID: 34740648 PMCID: PMC9755070 DOI: 10.1016/j.scitotenv.2021.151355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/02/2023]
Abstract
Mountain areas in Poland are among the most frequented tourist destinations and such intensive tourism negatively affects the natural environment. The COVID-19 pandemic and the resulting lockdown restricted travel for a few months in 2020, providing a unique opportunity to observe the studied mountain environment without the impact of typical tourist traffic. This study is based on the determination of antibiotic content, hydrochemical parameters, enumeration of culturable bacterial water quality indicators, antimicrobial susceptibility tests together with extended spectrum beta-lactamase (ESBL) gene detection in waterborne E. coli and NGS-based bacterial community composition at six sites along the Białka river valley (one of the most popular touristic regions in Poland) in three periods: in summer and winter tourist seasons and during the COVID-19 lockdown. The results of individual measurements showed decreased numbers of bacterial indicators of water contamination (e.g. numbers of E. coli dropped from 99 × 104 CFU/100 ml to 12 CFU/100 ml at the most contaminated site) and the share of antimicrobial resistant E. coli (total resistance dropped from 21% in summer to 9% during lockdown, share of multidrug resistant strains from 100 to 44%, and ESBL from 20% in summer to none during lockdown). Antibiotic concentrations were the highest during lockdown. The use of multivariate analysis (principal component analysis - PCA and heatmaps) revealed a clear pattern of tourism-related anthropogenic pressure on the water environment and positive impact of COVID-19 lockdown on water quality. PCA distinguished three major factors determining water quality: F1 shows strong effect of anthropogenic pressure; F2 describes the lockdown-related quality restoration processes; F3 is semi-natural and describes the differences between the most pristine and most anthropogenically-impacted waters.
Collapse
Affiliation(s)
- Anna M Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| | - Piotr M Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna A Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Mirosław S Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Marta D Pufelska
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Maria J Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| |
Collapse
|
46
|
Badi S, Salah Abbassi M, Snoussi M, Werheni R, Hammami S, Maal-Bared R, Hassen A. High rates of antibiotic resistance and biofilm production in Escherichia coli isolates from food products of animal and vegetable origins in Tunisia: a real threat to human health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:406-416. [PMID: 32452215 DOI: 10.1080/09603123.2020.1769039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to compare the antibiotic susceptibility of eighty Escherichia coli isolates from vegetables and food products of animal origin in Tunisia, and to study their genes encoding antibiotic resistance and in vitro biofilm forming capacity. Antimicrobial susceptibilities were determined, as well as PCR investigation of genes associated with antibiotic resistance. Biofilm formation was tested using four different methods: the microtiter plate-, MTT-staining-, XTT-staining-, and the Congo Red Agar assays. High antibiotic resistance rates were observed for amoxicillin (68.7%), amoxicillin/clavulanic acid (73.7%), gentamicin (68.7%), kanamycin (66.2%), nalidixic acid (36.2%), streptomycin (68.7%) and tetracycline (35%). The majority of isolates was multidrug resistant and biofilm producer. MTT testing showed that vegetables isolates were significantly higher biofilm producers compared to foods of animal origins. This study showed that E. coli isolates from food products were reservoirs of genes encoding antibiotic-resistance and have a high propensity to produce biofilm.
Collapse
Affiliation(s)
- Souhir Badi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Wastewater Treatment, Research Center of Wastewater technologies, Technopark Borj Cedria, Soliman, Tunisia
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory of antibiotic resistance LR99ES09, University of Tunis El Manar, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Rim Werheni
- Laboratory of Wastewater Treatment, Research Center of Wastewater technologies, Technopark Borj Cedria, Soliman, Tunisia
| | - Salah Hammami
- National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Tunisia
| | - Rasha Maal-Bared
- Microbiology Laboratories, Quality Assurance and Environment, EPCOR Water Inc., Edmonton, Alberta, Canada
| | - Abdennaceur Hassen
- Laboratory of Wastewater Treatment, Research Center of Wastewater technologies, Technopark Borj Cedria, Soliman, Tunisia
| |
Collapse
|
47
|
Yukawa S, Uchida I, Takemitsu H, Okamoto A, Yukawa M, Ohshima S, Tamura Y. Anti-microbial resistance of Salmonella isolates from raw meat-based dog food in Japan. Vet Med Sci 2022; 8:982-989. [PMID: 35077028 PMCID: PMC9122446 DOI: 10.1002/vms3.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background Salmonella contamination of raw meat‐based diets (RMBDs) for pets poses a major public health concern but has not been investigated in Japan. Objective To investigate Salmonella contamination in RMBDs for dogs marketed in Japan and the anti‐microbial resistance profiles of the Salmonella isolates. Methods Sixty commercial RMBD samples were collected in the Okayama and Osaka Prefectures, Japan, between December 2016 and March 2017. The obtained Salmonella isolates were serotyped, their anti‐microbial resistance patterns were determined, and the anti‐microbial‐resistant isolates were screened for the presence of resistance genes by polymerase chain reaction. Results Salmonella enterica subsp. enterica was detected in seven of the 60 RMBD samples. Among them, five isolates were identified as S. Infantis (n = 3), S. Typhimurium (n = 1) and S. Schwarzengrund (n = 1), while the serotypes of two isolates were unable to be identified. All isolates were susceptible to ampicillin, cefazolin, cefotaxime and gentamycin. Two isolates were resistant to more than one anti‐microbial agent; one of the S. Infantis isolates was resistant to streptomycin, kanamycin, tetracycline and trimethoprim, while the S. Typhimurium isolate was resistant to nalidixic acid, ciprofloxacin and chloramphenicol. The S. Schwarzengrund isolate was resistant to tetracycline. Additionally, the S. Typhimurium isolate harboured the anti‐microbial resistance gene gyrA with a mutation corresponding to Ser‐83→Phe amino acid substitution. Conclusion The study findings suggest that RMBDs for dogs marketed in Japan can be a potential source of Salmonella infection for dogs and humans including infections caused by quinolone‐resistant isolates. The current study's objective was to determine the prevalence of Salmonella contamination in RMBD for dogs and the antimicrobial resistance profiles of these isolates. Therefore, the incidence of Salmonella contamination in RMBD for dogs currently sold in Japan was surveyed. Salmonella was detected in seven of the 60 raw food samples.
Collapse
Affiliation(s)
- Shoichiro Yukawa
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, Kurashiki-shi, Okayama, Japan
| | - Ikuo Uchida
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu-shi, Hokkaido, Japan
| | - Hiroshi Takemitsu
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, Kurashiki-shi, Okayama, Japan
| | - Asako Okamoto
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, Kurashiki-shi, Okayama, Japan
| | | | - Seinosuke Ohshima
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, Kurashiki-shi, Okayama, Japan
| | - Yutaka Tamura
- Center for Veterinary Drug Development, Rakuno Gakuen University, Ebetsu-shi, Hokkaido, Japan
| |
Collapse
|
48
|
Liao CY, Balasubramanian B, Peng JJ, Tao SR, Liu WC, Ma Y. Antimicrobial Resistance of Escherichia coli From Aquaculture Farms and Their Environment in Zhanjiang, China. Front Vet Sci 2022; 8:806653. [PMID: 35004933 PMCID: PMC8740034 DOI: 10.3389/fvets.2021.806653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a major concern worldwide. To evaluate the AMR of Escherichia coli in aquaculture farms of Zhanjiang, China, a total of 90 samples from the water, soil, and sediment of three aquaculture farms (farms I, II, and III) in Zhanjiang were collected, and 90 strains of E. coli were isolated for drug resistance analysis and AMR gene detection. The results indicated that the isolated 90 strains of E. coli have high resistance rates to penicillin, amoxicillin, ampicillin, tetracycline, compound sulfamethoxazole, sulfisoxazole, chloramphenicol, florfenicol, and rifampin (≥70%). Among these antimicrobial drugs, the resistance rate to rifampicin is as high as 100%. Among the isolated 90 strains of E. coli, all of them were resistant to more than two kinds of antimicrobial drugs, the number of strains resistant to nine kinds of drugs was the largest (19 strains), and the most resistant strain showed resistance to 16 kinds of antibacterial drugs. Regarding the AMR genes, among the three aquaculture farms, the most resistance genes were detected in farm II (28 species). The detection rate of blaTEM, blaCIT, blaNDM, floR, OptrA, cmlA, aphA1, Sul2, oqxA, and qnrS in 90 isolates of E. coli was high (≥50%). The detection rate of carbapenem-resistant genes, such as blaKPC, blaIMP, and cfr, was relatively lower ( ≤ 30%), and the detection rate of mcr2 was the lowest (0). At least four AMR genes were detected for each strain, and 15 AMR genes were detected at most. Among them, the number of strains that carried 10 AMR genes was the largest (15 strains). Finally, a correlation analysis found that the AMR genes including blaTEM, blaCIT, floR, OptrA, cmlA, aac(3)-II, Sul2, ereA, ermB, oqxB, qnrA, mcr1, and mcr2 had a high correlation rate with drug resistance (≥50%). To summarize, the 90 strains of E. coli isolated from water, surrounding soil, and sediment samples showed resistance to multi-antimicrobial drugs and carried various antimicrobial resistance genes. Thus, it is essential to strengthen the rational use of antimicrobial drugs, especially the amide alcohol drugs, and control the AMR in the aquaculture industry of Zhanjiang, China.
Collapse
Affiliation(s)
- Cui-Yi Liao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | | | - Jin-Ju Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Song-Ruo Tao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wen-Chao Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
49
|
Selmi R, Tayh G, Srairi S, Mamlouk A, Ben Chehida F, Lahmar S, Bouslama M, Daaloul-Jedidi M, Messadi L. Prevalence, risk factors and emergence of extended-spectrum β-lactamase producing-, carbapenem- and colistin-resistant Enterobacterales isolated from wild boar (Sus scrofa) in Tunisia. Microb Pathog 2022; 163:105385. [PMID: 34995748 DOI: 10.1016/j.micpath.2021.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Antimicrobial resistance (AMR) is recognized as an emerging and growing public health problem worldwide. In Tunisia, knowledge is still limited to domestic animals and humans, and only few data are available regarding the role of wildlife. This research determined the antibiotic susceptibility profiles of Beta-lactamase producing Gram-negative bacteria isolated from the faeces of 110 wild boars (Sus scrofa) in northern Tunisia. Fecal samples, obtained post mortem from boar carcasses, were cultured on MacConkey agar and MacConkey agar containing 2 mg/L of cefotaxime. A total of 102 Enterobacterales isolates were identified from 94(85%) fecal samples. Escherichia coli (56, 54%), Citrobacter freundii (14, 13%), Klebsiella oxytoca (11, 10%), and Klebsiella pneumoniae (7, 6%) were the most predominantly identified Enterobacterales. However, Pantoea spp. (4, 4%), Enterobacter spp. (3,3%), Enterobacter cloacae (1, 1%), Enterobacter gergoviae (2, 2%), Proteus mirabilis (2, 2%), Yersinia sp. (1, 1%), and Citrobacter diversus (1, 1%) were rarely identified. Antimicrobial susceptibility tests revealed that 55% (57/102) of the identified strains were multidrug resistant (MDR). A total of 30% (31/102) of the tested isolates were recognized as Extended Spectrum β-Lactamase (ESBL)-producing strains and blaCTX-M-G1, blaTEM, blaSHV β-lactamases were the main encoding genes revealed. Furthermore, identified isolates showed a high level of AMR, especially for amoxicillin-clavulanic acid (77.67%), ticarcillin-clavulanic acid (71.85%), streptomycin (76.69%), amoxicillin (75.73%), and cephalotin (74.76%). Alarming levels of resistance to colistin (2.9%) and ertapenem (9.7%) were revealed and confirmed by the detection of mcr-1, and blaIMP and blaVIM genes, respectively. Various phenotypes of AMR were obtained in this study highlighting the important role of wild boars as hosts and even carriers for several resistant Enterobacterales isolates. This may represents a focal risk factor allowing the transmission of these strains between domestic, wild animals, environment and humans.
Collapse
Affiliation(s)
- Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia; Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Ghassan Tayh
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Sinda Srairi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Aymen Mamlouk
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Faten Ben Chehida
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Samia Lahmar
- Service de Parasitologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | | | - Monia Daaloul-Jedidi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia.
| |
Collapse
|
50
|
Bossung V, Lupatsii M, Dashdorj L, Tassiello O, Jonassen S, Pagel J, Demmert M, Wolf EA, Rody A, Waschina S, Graspeuntner S, Rupp J, Härtel C. Timing of antimicrobial prophylaxis for cesarean section is critical for gut microbiome development in term born infants. Gut Microbes 2022; 14:2038855. [PMID: 35184691 PMCID: PMC8865290 DOI: 10.1080/19490976.2022.2038855] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Animal models imply that the perinatal exposure to antibiotics has a substantial impact on microbiome establishment of the offspring. We aimed to evaluate the effect of timing of antimicrobial prophylaxis for cesarean section before versus after cord clamping on gut microbiome composition of term born infants. We performed an exploratory, single center randomized controlled clinical trial. We included forty pregnant women with elective cesarean section at term. The intervention group received single dose intravenous cefuroxime after cord clamping (n = 19), the control group single dose intravenous cefuroxime 30 minutes before skin incision (n = 21). The primary endpoint was microbiome signature of infants and metabolic prediction in the first days of life as determined in meconium samples by 16S rRNA gene sequencing. Secondary endpoints were microbiome composition at one month and 1 year of life. In meconium samples of the intervention group, the genus Staphylococcus pre-dominated. In the control group, the placental cross-over of cefuroxime was confirmed in cord blood. A higher amino acid and nitrogen metabolism as well as increased abundance of the genera Cutibacterium, Corynebacterium and Streptophyta were noted (indicator families: Cytophagaceae, Lactobacilaceae, Oxalobacteraceae). Predictive models of metabolic function revealed higher 2'fucosyllactose utilization in control group samples. In the follow-up visits, a higher abundance of the genus Clostridium was evident in the intervention group. Our exploratory randomized controlled trial suggests that timing of antimicrobial prophylaxis is critical for early microbiome engraftment but not antimicrobial resistance emergence in term born infants.
Collapse
Affiliation(s)
- Verena Bossung
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | | | - Oronzo Tassiello
- Institute for Human Nutrition and Food Science, Nutriinformatics, University of Kiel, Kiel, Germany
| | - Sinje Jonassen
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Julia Pagel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Martin Demmert
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Ellinor Anna Wolf
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Achim Rody
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Nutriinformatics, University of Kiel, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus, Lübeck, Germany
- Department of Pediatrics, University Hospital of Würzburg, Wurzburg, Germany
| |
Collapse
|