1
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Tang F, Chen Z, Zhu H, Xi L, Li C, Luo W. Genetic relatedness, antibiotic resistance, and virulence of Klebsiella pneumoniae isolated from health care and food sources in Wuhan, China. Am J Infect Control 2024; 52:1043-1051. [PMID: 38782211 DOI: 10.1016/j.ajic.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND To investigate genetic relatedness and antibiotic resistance of Klebsiella pneumoniae from retail meat samples, clinical source samples, and hospital environmental samples in Wuhan, China. METHODS Hypermucoviscosity and biofilm formation of K. pneumoniae were assessed by string test and crystal violet staining. MICs of 18 antimicrobials were determined by broth microdilution. PCR detected 14 antibiotic resistance genes. Genetic relatedness and clonal dissemination were analyzed by PFGE. RESULTS Among 5,730 samples, 46 were tested positive for K pneumoniae, with higher rates observed in meat (23.4%) than in clinical samples (0.6%) and hospital environmental samples (8.0%). Meat-derived isolates showed high resistance to tetracycline (36.4%, 4/11), sulfonamide (27.3%, 3/11), and gentamicin (27.3%, 3/11), whereas clinical isolates exhibited significant resistance to ampicillin-sulbactam (32.3%, 10/31). Multidrug resistance was observed in 17.4% (8/46) of the isolates, particularly in hospital environmental samples (3/4). Biofilm production was observed in 88.1% (37/42) of K pneumoniae. Pulsed-field gel electrophoresis analysis revealed patient-to-patient K pneumoniae transmission, transmission between patients and hospital environment, as well as cross-contamination between markets. CONCLUSIONS The findings underscore the importance of comprehensive surveillance, infection control, and judicious antibiotic use in mitigating the impact of K pneumoniae on public health, especially in the food chain and health care settings.
Collapse
Affiliation(s)
- Feng Tang
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhi Chen
- Microbiological Laboratory, Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Hanjue Zhu
- Plastic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Xi
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Changzhen Li
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Wanjun Luo
- Hospital-Acquired Infection Control Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
3
|
Alav I, Pordelkhaki P, Rodriguez-Navarro J, Neo O, Kessler C, Awodipe RJ, Cliffe P, Pulavan N, Marton HL, Gibbons S, Buckner MMC. Natural products from food sources can alter the spread of antimicrobial resistance plasmids in Enterobacterales. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001496. [PMID: 39190025 PMCID: PMC11541548 DOI: 10.1099/mic.0.001496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global public health. Notably, resistance to carbapenem and extended-spectrum β-lactam antibiotics in Gram-negative bacteria is a major impediment to treating infections. Genes responsible for antibiotic resistance are frequently carried on plasmids, which can transfer between bacteria. Therefore, exploring strategies to prevent this transfer and the prevalence of AMR plasmids is timely and pertinent. Here, we show that certain natural product extracts and associated pure compounds can reduce the conjugation of AMR plasmids into new bacterial hosts. Using our established high-throughput fluorescence-based flow cytometry assay, we found that the natural products were more active in reducing transmission of the IncK extended-spectrum β-lactamase-encoding plasmid pCT in Escherichia coli EC958c, compared to Klebsiella pneumoniae Ecl8 carrying the IncFII carbapenemase-encoding plasmid pKpQIL. The exception was the natural product rottlerin, also active in K. pneumoniae. In classical conjugation assays, rottlerin also reduced the conjugation frequency of the IncFII bla NDM-1 carrying plasmid pCPE16_3 from a clinical K. pneumoniae isolate. Our data indicate that the natural products tested here, in their current molecular structure, reduced conjugation by a small amount, which is unlikely to achieve a large-scale reduction in AMR in bacterial populations. However, certain natural products like rottlerin could provide a foundation for further research into compounds with effective anti-plasmid activity.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Parisa Pordelkhaki
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Judith Rodriguez-Navarro
- Department of Microbiology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintıí 89, E-08041 Barcelona, Spain
| | - Onalenna Neo
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Celia Kessler
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Poppy Cliffe
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nivethanaa Pulavan
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Huba L. Marton
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Uskudar-Guclu A, Unlu S, Salih-Dogan H, Yalcin S, Basustaoglu A. Biological and genomic characteristics of three novel bacteriophages and a phage-plasmid of Klebsiella pneumoniae. Can J Microbiol 2024; 70:213-225. [PMID: 38447122 DOI: 10.1139/cjm-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteriophages have emerged as promising candidates for the treatment of difficult-to-treat bacterial infections. The aim of this study is to isolate and characterize phages infecting carbapenem-resistant and extended-spectrum beta-lactamase producer Klebsiella pneumoniae isolates. Water samples were taken for the isolation of bacteriophages. One-step growth curve, the optimal multiplicity of infection (MOI), thermal and pH stabilities, transmission electron microscopy and whole-genome sequencing of phages were studied. Four phages were isolated and named Klebsiella phage Kpn02, Kpn17, Kpn74, and Kpn13. The optimal MOI and latent periods of phage Kpn02, Kpn17, Kpn74, and Kpn13 were 10, 1, 0.001, and 100 PFU/CFU and 20, 10, 20, and 30 min, respectively. Burst sizes ranged from 811 to 2363. No known antibiotic resistance and virulence genes were identified. No tRNAs were detected except Klebsiella phage Kpn02 which encodes 24 tRNAs. Interestingly, Klebsiella phage Kpn74 was predicted to be a lysogenic phage whose prophage is a linear plasmid molecule with covalently closed ends. Of the Klebsiella-infecting phages presented in current study, virulent phages suggest that they may represent candidate therapeutic agents against MDR K. pneumoniae, based on short latent period, high burst sizes and no known antibiotic resistance and virulence genes in their genomes.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Sezin Unlu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Hanife Salih-Dogan
- Aydin Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), Aydin, Turkiye
| | - Suleyman Yalcin
- Ministry of Health General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkiye
| | - Ahmet Basustaoglu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| |
Collapse
|
5
|
Mostafa SH, Saleh SE, Khaleel EF, Badi RM, Aboshanab KM, Hamed SM. Phenotypic and Genotypic Analysis of Bacterial Pathogens Recovered from Patients Diagnosed with Fever of Unknown Origin in Egypt. Antibiotics (Basel) 2023; 12:1294. [PMID: 37627714 PMCID: PMC10451874 DOI: 10.3390/antibiotics12081294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Fever of unknown origin (FUO) is a medical term describing fever that lasts for at least three weeks without a diagnosis being reached after extensive diagnostic evaluation. Therefore, this study aimed to identify the common pathogens causing FUO in patients admitted to Abbasia Fever Hospital in Egypt from January 2020 to December 2022, their antimicrobial susceptibility profiles, and associated resistance genes. The study also aimed to investigate the burden of multidrug-resistant (MDR) pathogens and the priority pathogens nominated by the World Health Organization (WHO) for posing the greatest threat to human health due to antibiotic resistance. During the study period, about 726 patients were diagnosed with FUO. After extensive investigations, the cause of the FUO was found to be infectious diseases in 479/726 patients (66.0%). Of them, 257 patients had positive bacterial cultures, including 202 Gram-negative isolates that comprised Klebsiella pneumoniae (85/202; 42.1%), Escherichia coli (71/202; 35.1%), Acinetobacter baumannii (26/202; 12.9%), and Pseudomonas aeruginosa (14/202; 6.9%) and 55 Gram-positive isolates, including Staphylococcus aureus (23/55; 41.8%), Streptococcus pneumoniae (7/55; 12.7%), and Enterococcus spp. (25/55; 45.5%). The MDR phenotype was shown by 68.3% and 65.5% of the Gram-negative and Gram-positive isolates, respectively. Carbapenem resistance (CR) was shown by 43.1% of the Gram-negative isolates. Of the 23 S. aureus isolates obtained from research participants, 15 (65.2%) were methicillin-resistant S. aureus (MRSA). A high-level aminoglycoside resistance (HLAR) phenotype was found in 52.0% of the Enterococcus sp. isolates. The PCR screening of resistance genes in the MDR isolates showed that blaOXA-48 was the most prevalent (84%) among the carbapenemase-coding genes, followed by blaVIM (9%) and then blaIMP (12%). The ESBL-coding genes blaTEM, blaCTX-M,aac(6')-Ib, and blaSHV, were prevalent in 100%, 93.2%, 85,% and 53.4% of the MDR isolates, respectively. This study updates the range of bacteria that cause FUO and emphasizes the burden of multidrug resistance and priority infections in the region. The obtained data is of relevant medical importance for the implementation of evidence-based antimicrobial stewardship programs and tailoring existing empirical treatment guidelines.
Collapse
Affiliation(s)
- Shimaa H. Mostafa
- Microbiology Lab Department, Abbasia Fever Hospital, Cairo 11566, Egypt;
| | - Sarra E. Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12451, Egypt;
| |
Collapse
|
6
|
Elshamy AA, Saleh SE, Aboshanab KM, Aboulwafa MM, Hassouna NA. Transferable IncX3 plasmid harboring bla NDM-1, ble MBL, and aph(3')-VI genes from Klebsiella pneumoniae conferring phenotypic carbapenem resistance in E. coli. Mol Biol Rep 2023; 50:4945-4953. [PMID: 37081308 PMCID: PMC10209314 DOI: 10.1007/s11033-023-08401-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND The dissemination of carbapenem resistance via carbapenemases, such as the metallo-β-lactamase NDM, among Enterobacterales poses a public health threat. The aim of this study was to characterize a plasmid carrying the blaNDM-1 gene, which was extracted from a clinical Klebsiella pneumoniae uropathogen from an Egyptian patient suffering from a urinary tract infection. METHODS AND RESULTS The recovered plasmid was transformed into competent E. coli DH5α which acquired phenotypic resistance to cefoxitin, ceftazidime, and ampicillin/sulbactam, and intermediate sensitivity to ceftriaxone and imipenem (a carbapenem). Whole plasmid sequencing was performed on the extracted plasmid using the DNBSEQ™ platform. The obtained forward and reverse reads were assembled into contigs using the PRINSEQ and PLACNETw web tools. The obtained contigs were uploaded to PlasmidFinder and ResFinder for in silico plasmid typing and detection of antimicrobial resistance genes, respectively. The final consensus sequence was obtained using the Staden Package software. The plasmid (pNDMKP37, NCBI accession OK623716.1) was typed as an IncX3 plasmid with a size of 46,160 bp and harbored the antibiotic resistance genes blaNDM-1, bleMBL, and aph(3')-VI. The plasmid also carried mobile genetic elements involved in the dissemination of antimicrobial resistance including insertion sequences IS30, IS630, and IS26. CONCLUSIONS This is Egypt's first report of a transmissible plasmid co-harboring blaNDM-1 and aph(3')-VI genes. Moreover, the respective plasmid is of great medical concern as it has caused the horizontal transmission of multidrug-resistant phenotypes to the transformant. Therefore, new guidelines should be implemented for the rational use of broad-spectrum antibiotics, particularly carbapenems.
Collapse
Affiliation(s)
- Ann A. Elshamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| | - Sarra E. Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| | - Mohammad M. Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
- Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sedr, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| |
Collapse
|
7
|
Ge H, Qiao J, Zheng J, Xu H, Liu R, Zhao J, Chen R, Li C, Guo X, Zheng B. Emergence and clonal dissemination of KPC-3-producing Pseudomonas aeruginosa in China with an IncP-2 megaplasmid. Ann Clin Microbiol Antimicrob 2023; 22:31. [PMID: 37120531 PMCID: PMC10149002 DOI: 10.1186/s12941-023-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Despite the global prevalence of Klebsiella pneumoniae Carbapenemase (KPC)-type class A β-lactamases, occurrences of KPC-3-producing isolates in China remain infrequent. This study aims to explore the emergence, antibiotic resistance profiles, and plasmid characteristics of blaKPC-3-carrying Pseudomonas aeruginosa. METHODS Species identification was performed by MALDI-TOF-MS, and antimicrobial resistance genes (ARGs) were identified by polymerase chain reaction (PCR). The characteristics of the target strain were detected by whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST). Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis(S1-PFGE), Southern blotting and transconjugation experiment. RESULTS Five P. aeruginosa strains carrying blaKPC-3 were isolated from two Chinese patients without a history of travelling to endemic areas. All strains belonged to the novel sequence type ST1076. The blaKPC-3 was carried on a 395-kb IncP-2 megaplasmid with a conserved structure (IS6100-ISKpn27-blaKPC-3-ISKpn6-korC-klcA), and this genetic sequence was identical to many plasmid-encoded KPC of Pseudomonas species. By further analyzing the genetic context, it was supposed that the original of blaKPC-3 in our work was a series of mutation of blaKPC-2. CONCLUSIONS The emergence of a multidrug resistance IncP-2 megaplasmid and clonal transmission of blaKPC-3-producing P. aeruginosa in China underlined the crucial need for continuous monitoring of blaKPC-3 for prevention and control of its further dissemination in China.
Collapse
Affiliation(s)
- Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahao Zheng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Ceftazidime-Avibactam (C/A) Resistant, Meropenem Sensitive KPC-Producing Klebsiella pneumoniae in ICU Setting: We Are What We Are Treated with? Int J Mol Sci 2023; 24:ijms24054767. [PMID: 36902196 PMCID: PMC10002972 DOI: 10.3390/ijms24054767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The continuous spread of carbapenem-resistant Klebsiella pneumoniae (CP-Kp) strains presents a severe challenge to the healthcare system due to limited therapeutic options and high mortality. Since its availability, ceftazidime/avibactam (C/A) has become a first-line option against KPC-Kp, but C/A-resistant strains have been reported increasingly, especially with pneumonia or prior suboptimal blood exposure to C/A treatment. A retrospective, observational study was conducted with all patients admitted to the Intensive Care Unit (ICU) dedicated to COVID-19 patients at the City of Health & Sciences in Turin, between 1 May 2021 and 31 January 2022, with the primary endpoint to study strains with resistance to C/A, and secondly to describe the characteristics of this population, with or without previous exposure to C/A. Seventeen patients with colonization or invasive infection due to Klebsiella pneumoniae, C/A resistance, and susceptibility to meropenem (MIC = 2 µg/L) were included; the blaKPC genotype was detected in all isolates revealing D179Y mutation in the blaKPC-2 (blaKPC-33) gene. Cluster analysis showed that 16 out of the 17 C/A-resistant KPC-Kp isolates belonged to a single clone. Thirteen strains (76.5%) were isolated in a 60-day period. Only some patients had a previous infection with non-mutant KPC at other sites (5; 29.4%). Eight patients (47.1%) underwent previous large-spectrum antibiotic treatment, and four patients (23.5%) had prior treatment with C/A. The secondary spread of the D179Y mutation in the blaKPC-2 during the COVID-19 pandemic needs to be addressed constantly by an interdisciplinary interaction between microbiologists, infection control personnel, clinicians, and infectious diseases consultants to properly diagnose and treat patients.
Collapse
|
9
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
10
|
Ertapenem Supplemented Selective Media as a New Strategy to Distinguish β-Lactam-Resistant Enterobacterales: Application to Clinical and Wastewater Samples. Antibiotics (Basel) 2023; 12:antibiotics12020392. [PMID: 36830303 PMCID: PMC9952050 DOI: 10.3390/antibiotics12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The increase in carbapenem-resistant Enterobacterales (CRE) is mostly driven by the spread of carbapenemase-producing (CP) strains. In New Caledonia, the majority of carbapenemases found are IMP-type carbapenemases that are difficult to detect on routine selective media. In this study, a culture-based method with ertapenem selection is proposed to distinguish non-CRE, non-CP-CRE, and CP-CRE from samples with very high bacterial loads. Firstly, assays were carried out with phenotypically well-characterized β-lactam-resistant Enterobacterales isolates. Then, this approach was applied to clinical and environmental samples. Presumptive CP-CRE isolates were finally identified, and the presence of a carbapenemase was assessed. In a collection of 27 phenotypically well-characterized β-lactam-resistant Enterobacterales, an ertapenem concentration of 0.5 µg·mL-1 allowed distinguishing CRE from non-CRE. A concentration of 4 µg·mL-1 allowed distinguishing CP-CRE from non-CP-CRE after nine hours of incubation. These methods allowed isolating 18 CP-CRE from hospital effluents, including the first detection of a KPC in New Caledonia. All these elements show that this cost-effective strategy to distinguish β-lactam-resistant Enterobacterales provides fast and reliable results. This could be applied in the Pacific islands or other resource-limited settings, where limited data are available.
Collapse
|
11
|
Outbreak of KPC-producing Klebsiella pneumoniae at a Portuguese university hospital: Epidemiological characterization and containment measures. Porto Biomed J 2022; 7:e186. [PMID: 37152080 PMCID: PMC10158887 DOI: 10.1097/j.pbj.0000000000000186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background KPC-producing K pneumoniae (KPC-Kp) is a public health problem with important clinical and epidemiological implications. We describe an outbreak of KPC-Kp at vascular surgery and neurosurgery wards in a central hospital in Porto, Portugal. Methods A case of KPC-Kp was considered to be a patient positive for KPC-Kp with strong epidemiological plausibility of having acquired this microorganism in the affected wards and/or with genetic relationship ≥92% between KPC-Kp isolates. Active surveillance cultures (ASCs) and real-time polymerase chain reaction were used for the detection of carbapenemase genes through rectal swab in a selected population. Molecular analysis was performed using pulsed-field gel electrophoresis at the National Reference Laboratory. Patient risk factors were collected from the electronic medical record system. Information regarding outbreak containment strategy was collected from the Infection Control Unit records. Results Of the 16 cases, 11 (69%) were identified through active screening, representing 1.4% of the total 766 ASCs collected. The most frequent risk factors identified were previous admission (63%), antibiotic exposure in the past 6 months (50%), and immunodepression (44%). The length of stay until KPC-Kp detection was high (0-121 days, mean 35.6), as was the total length of stay (5-173 days, mean 56.6). Three patients (19%) were infected by KPC-Kp, 2 of whom died. One previously colonized patient died later because of KPC-Kp infection. Conclusions Multifactorial strategy based on contact precautions (with patient and healthcare professional cohorts) and ASC, as well as Antibiotic Stewardship Program reinforcement, allowed to contain this KPC-Kp outbreak.
Collapse
|
12
|
Tam VH, Merlau PR, Hudson CS, Kline EG, Eales BM, Smith J, Sofjan AK, Shields RK. Optimal ceftazidime/avibactam dosing exposure against KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2022; 77:3130-3137. [PMID: 36031868 PMCID: PMC10205629 DOI: 10.1093/jac/dkac294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Infections due to carbapenem-resistant Enterobacterales are considered urgent public health threats and often treated with a β-lactam/β-lactamase inhibitor combination. However, clinical treatment failure and resistance emergence have been attributed to inadequate dosing. We used a novel framework to provide insights of optimal dosing exposure of ceftazidime/avibactam. METHODS Seven clinical isolates of Klebsiella pneumoniae producing different KPC variants were examined. Ceftazidime susceptibility (MIC) was determined by broth dilution using escalating concentrations of avibactam. The observed MICs were characterized as response to avibactam concentrations using an inhibitory sigmoid Emax model. Using the best-fit parameter values, %fT>MICi was estimated for various dosing regimens of ceftazidime/avibactam. A hollow-fibre infection model (HFIM) was subsequently used to ascertain the effectiveness of selected regimens over 120 h. The drug exposure threshold associated with bacterial suppression was identified by recursive partitioning. RESULTS In all scenarios, ceftazidime MIC reductions were well characterized with increasing avibactam concentrations. In HFIM, bacterial regrowth over time correlated with emergence of resistance. Overall, suppression of bacterial regrowth was associated with %fT>MICi ≥ 76.1% (100% versus 18.2%; P < 0.001). Using our framework, the optimal drug exposure could be achieved with ceftazidime/avibactam 2.5 g every 12 h in 5 out of 7 isolates. Furthermore, ceftazidime/avibactam 2.5 g every 8 h can suppress an isolate deemed resistant based on conventional susceptibility testing method. CONCLUSIONS An optimal drug exposure to suppress KPC-producing bacteria was identified. The novel framework is informative and may be used to guide optimal dosing of other β-lactam/β-lactamase inhibitor combinations. Further in vivo investigations are warranted.
Collapse
Affiliation(s)
- Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Paul R Merlau
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Cole S Hudson
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Ellen G Kline
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brianna M Eales
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - James Smith
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Amelia K Sofjan
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Wangkheimayum J, Phonglo P, Singha KM, Chanda DD, Bhattacharjee A. Escherichia coli harbouring strAB with reduced susceptibility towards gentamicin and amikacin: a single centre study from India. Access Microbiol 2022; 4:acmi000446. [PMID: 36415738 PMCID: PMC9675172 DOI: 10.1099/acmi.0.000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023] Open
Abstract
In this study we report the presence of streptomycin resistance gene strAB within clinical isolates of Escherichia coli where streptomycin is not used to treat Gram-negative infections. In total, 135 E. coli isolates were obtained for the study. PCR based detection of strAB was performed in the study isolates followed by assessment of horizontal transferability. Cloning of strAB was done in laboratory strain E. coli DH5α. Pre-cloning and post-cloning susceptibility of the strain was done for assessment of acquired resistance. Among tested isolates, 89 were found to harbour strAB and it was encoded within a IncI1 type plasmid. Cloning experiments revealed the strAB gene showed unusual non-susceptibility towards amikacin and gentamicin. The study highlighted that strAB, which has a role in streptomycin resistance, may also have a role in reduced susceptibility towards gentamicin and amikacin within a clinical setting.
Collapse
Affiliation(s)
| | - Prynali Phonglo
- Department of Microbiology, Assam University, Silchar, India
| | - K. Melson Singha
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | | | |
Collapse
|
14
|
Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother 2022; 66:e0044722. [PMID: 35980232 PMCID: PMC9487638 DOI: 10.1128/aac.00447-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
First variants of the Klebsiella pneumoniae carbapenemase (KPC), KPC-2 and KPC-3, have encountered a worldwide success, particularly in K. pneumoniae isolates. These beta-lactamases conferred resistance to most beta-lactams including carbapenems but remained susceptible to new beta-lactam/beta-lactamase inhibitors, such as ceftazidime-avibactam. After the marketing of ceftazidime-avibactam, numerous variants of KPC resistant to this association have been described among isolates recovered from clinical samples or derived from experimental studies. In KPC variants resistant to ceftazidime-avibactam, point mutations, insertions and/or deletions have been described in various hot spots. Deciphering the impact of these mutations is crucial, not only from a therapeutic point of view, but also to follow the evolution in time and space of KPC variants resistant to ceftazidime-avibactam. In this review, we describe the mutational landscape of the KPC beta-lactamase toward ceftazidime-avibactam resistance based on a multidisciplinary approach including epidemiology, microbiology, enzymology, and thermodynamics. We show that resistance is associated with three hot spots, with a high representation of insertions and deletions compared with other class A beta-lactamases. Moreover, extension of resistance to ceftazidime-avibactam is associated with a trade-off in the resistance to other beta-lactams and a decrease in enzyme stability. Nevertheless, the high natural stability of KPC could underlay the propensity of this enzyme to acquire in vivo mutations conferring resistance to ceftazidime-avibactam (CAZavi), particularly via insertions and deletions.
Collapse
|
15
|
Hussein NH, Mohammed Kareem S, Hussein Al-Kakei SN, Taha BM. The predominance of Klebsiella pneumoniae carbapenemase (KPC-type) gene among high-level carbapenem-resistant Klebsiella pneumoniae isolates in Baghdad, Iraq. Mol Biol Rep 2022; 49:4653-4658. [PMID: 35471622 DOI: 10.1007/s11033-022-07314-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The serine carbapenemase enzymes (KPC) which produce from bacteria klebsiella pneumoniae today have been emerged as one of the β-lactamase enzymes that is capable to inactivating the last line of carbapenems. The gene encoding the K. pneumonia (blaKPC) belongs to gene carried on plasmid among Enterobacteriaceae family, which has modulation for the infections control so this study is aimed to spot the presence and evaluate blaKPC gene expression by real-time PCR in local isolates of K. pneumonia. METHODS Forty-seven of K. pneumonia isolates were isolated from different clinical samples (blood, sputum, urine, wounds and burns) from patients in separate hospitals in Baghdad., Antimicrobial sensitivity test was carried out by vitik-2 system and Kirby- Bauer method. The PCR was employed to detect carbapenemase gene. RESULTS The results of this study showed that all explored isolates were resistant to Ertapenem, Meropenem and imipenem 47(100%). Phenotypically, all the isolates had carbapenemase which hydrolyzed the carbapenem antibiotics. Furthermore, the isolates showed (100%) resistance to Cefazolin, Ampicillin and Amoxicillin/ Clavulic acid. However, the most effective antibiotic was Levofloxacin (91.5%). The results of conventional PCR technique for the detection of blaKPC gene showed that 38 (80.9%) isolates of carbapenem-resistant K. pneumoniae harboured blaKPC gene (1010 bp), while none carried other carbapenemase genes including blaNDM1, blaVIM and blaIMP genes. High levels of carbapenem resistance was clarified by the imipenem and meropenem MICs determination. All 38 isolates were positive in CNPT. Furthermore, the 38 isolates showed over expression of blaKPC gene compared with housekeeping rpo gene in Real-Time PCR. CONCLUSIONS According to these results, the resistant isolates to carbapenem were belong to the present and high level expression of blaKPC gene in our local isolates.
Collapse
Affiliation(s)
| | - Sawsan Mohammed Kareem
- Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq.
| | | | - Buthainah Mohammed Taha
- Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| |
Collapse
|
16
|
Mechanisms of Action of Carbapenem Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030421. [PMID: 35326884 PMCID: PMC8944602 DOI: 10.3390/antibiotics11030421] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Carbapenem antibiotics are the most effective antimicrobials for the treatment of infections caused by the most resistant bacteria. They belong to the category of β-lactams that include the penicillins, cephalosporins, monobactams and carbapenems. This class of antimicrobials has a broader spectrum of activity than most other beta-lactams antibiotics and are the most effective against Gram-positive and Gram-negative bacteria. All β-lactams antibiotics have a similar molecular structure: the carbapenems together with the β-lactams. This combination gives an extraordinary stability to the molecule against the enzymes inactivating the β-lactams. They are safe to use and therefore widespread use in many countries has given rise to carbapenem resistance which is a major global public health problem. The carbapenem resistance in some species is intrinsic and consists of the capacity to resist the action of antibiotics with several mechanisms: for the absence of a specific target, or an intrinsic difference in the composition of cytoplasmatic membrane or the inability to cross the outer membrane. In addition to intrinsic resistance, bacteria can develop resistance to antibiotics with several mechanisms that can be gathered in three main groups. The first group includes antibiotics with poor penetration into the outer membrane of bacterium or antibiotic efflux. The second includes bacteria that modify the target of the antibiotics through genetic mutations or post-translational modification of the target. The third includes bacteria that act with enzyme-catalyzed modification and this is due to the production of beta-lactamases, that are able to inactivate carbapenems and so called carbapenemases. In this review, we focus on the mode of action of carbapenem and the mechanisms of carbapenem resistance.
Collapse
|
17
|
Klebsiella pneumoniae Mutants Resistant to Ceftazidime-Avibactam Plus Aztreonam, Imipenem-Relebactam, Meropenem-Vaborbactam, and Cefepime-Taniborbactam. Antimicrob Agents Chemother 2022; 66:e0217921. [PMID: 35293781 DOI: 10.1128/aac.02179-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that a previously described Klebsiella pneumoniae variant that is resistant to ceftazidime-avibactam plus meropenem-vaborbactam, has a ramR plus ompK36 mutation, and produces the V239G variant KPC-3 (V240G per the standard numbering system) exhibits resistance to ceftazidime-avibactam plus aztreonam and imipenem-relebactam but not cefepime-taniborbactam. The V239G variant does not generate collateral β-lactam susceptibility like many KPC-3 variants associated with ceftazidime-avibactam resistance. Additional mutation of ompK35 and production of the OXA-48-like carbapenemase OXA-232 were required to confer cefepime-taniborbactam resistance.
Collapse
|
18
|
Hong Nguyen M, Shields RK, Chen L, William Pasculle A, Hao B, Cheng S, Sun J, Kline EG, Kreiswirth BN, Clancy CJ. Molecular Epidemiology, Natural History, and Long-Term Outcomes of Multidrug-Resistant Enterobacterales Colonization and Infections Among Solid Organ Transplant Recipients. Clin Infect Dis 2022; 74:395-406. [PMID: 33970222 PMCID: PMC8834656 DOI: 10.1093/cid/ciab427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multidrug-resistant Enterobacterales (MDR-E), including carbapenem-resistant and third-generation cephalosporin-resistant Enterobacterales (CRE, CefR-E), are major pathogens following solid organ transplantation (SOT). METHODS We prospectively studied patients who underwent lung, liver, and small bowel transplant from February 2015 through March 2017. Weekly perirectal swabs (up to 100 days post-transplant) were cultured for MDR-E. Whole-genome sequencing (WGS) was performed on gastrointestinal (GI) tract-colonizing and disease-causing isolates. RESULTS Twenty-five percent (40 of 162) of patients were MDR-E GI-colonized. Klebsiella pneumoniae was the most common CRE and CefR-E. Klebsiella pneumoniae carbapenemases and CTX-M were leading causes of CR and CefR, respectively. Thirty-five percent of GI colonizers developed MDR-E infection vs 2% of noncolonizers (P < .0001). The attack rate was higher among CRE colonizers than CefR-E colonizers (53% vs 21%, P = .049). GI colonization and high body mass index were independent risk factors for MDR-E infection (P ≤ .004). Thirty-day mortality among infected patients was 6%. However, 44% of survivors developed recurrent infections; 43% of recurrences were late (285 days to 3.9 years after the initial infection). Long-term survival (median, 4.3 years post-transplant) did not differ significantly between MDR-E-infected and MDR-E-noninfected patients (71% vs 77%, P = .56). WGS phylogenetic analyses revealed that infections were caused by GI-colonizing strains and suggested unrecognized transmission of novel clonal group-258 sublineage CR-K. pneumoniae and horizontal transfer of resistance genes. CONCLUSIONS MDR-E GI colonization was common following SOT and predisposed patients to infections by colonizing strains. MDR-E infections were associated with low short- and long-term mortality, but recurrences were frequent and often occurred years after initial infections. Findings provide support for MDR-E surveillance in our SOT program.
Collapse
Affiliation(s)
- M Hong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Transplant Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - A William Pasculle
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Binghua Hao
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Shaoji Cheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan Sun
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ellen G Kline
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Barry N Kreiswirth
- Division of Infectious Diseases, Transplant Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Department of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Kyung SM, Choi SW, Lim J, Shim S, Kim S, Im YB, Lee NE, Hwang CY, Kim D, Yoo HS. Comparative genomic analysis of plasmids encoding metallo-β-lactamase NDM-5 in Enterobacterales Korean isolates from companion dogs. Sci Rep 2022; 12:1569. [PMID: 35091689 PMCID: PMC8799648 DOI: 10.1038/s41598-022-05585-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenems are broad-spectrum antibiotics widely used for the treatment of human infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, emerging carbapenemase-producing Enterobacterales (CPE) are rising as a public threat to human and animal health. We screened clinical bacterial isolates from 241 dogs and 18 cats hospitalized at Veterinary Medical Teaching Hospital, Seoul National University, from 2018 to 2020 for carbapenemase production. In our study, 5 strains of metallo-β-lactamase NDM-5-producing Escherichia coli and Klebsiella pneumoniae were isolated from 4 different dogs. Multilocus sequence typing (MLST) results showed that all E. coli strains were ST410 and all K. pneumoniae strains were ST378. Whole genome analysis of the plasmid showed that blaNDM-5 is carried on a IncX3 plasmid, showing a high concordance rate with plasmids detected worldwide in human and animal isolates. The blaNDM gene was associated with the bleMBL gene and the ISAba125 element, truncated with the IS5 element. The results of this study show that CPE has already become as a threat to both animals and humans in our society, posing the necessity to solve it in terms of "One Health". Therefore, preventive strategies should be developed to prevent the spread of CPE in animal and human societies.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung-Woon Choi
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soojin Shim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Bin Im
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae subsp. pneumoniae Isolates in a Tertiary Italian Hospital: Identification of a New Mutation of the Carbapenemase Type 3 (KPC-3) Gene Conferring Ceftazidime/Avibactam Resistance. Microorganisms 2021; 9:microorganisms9112356. [PMID: 34835481 PMCID: PMC8624296 DOI: 10.3390/microorganisms9112356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
Several Klebsiella pneumoniae carpabenemase (KPC) gene mutations are associated with ceftazidime/avibactam (CAZ-AVI) resistance. Here, we describe four Klebsiella pneumoniae subsp. pneumoniae CAZ-AVI-resistant clinical isolates, collected at the University Hospital of Tor Vergata, Rome, Italy, from July 2019 to February 2020. These resistant strains were characterized as KPC-3, having the transition from cytosine to thymine (CAC-TAC) at nucleotide position 814, with histidine that replaces tyrosine (H272Y). In addition, two different types of KPC gene mutations were detected. The first one, common to three strains, was the D179Y (G532T), associated with CAZ-AVI resistance. The second mutation, found only in one strain, is a new mutation of the KPC-3 gene: a transversion from thymine to adenine (CTG-CAG) at nucleotide position 553. This mutation causes a KPC variant in which glutamine replaces leucine (Q168L). None of the isolates were detected by a rapid immunochromatographic assay for detection of carbapenemase (NG Biotech, Guipry, France) and were unable to grow on a selective chromogenic medium Carba SMART (bioMerieux, Firenze, Italy). Thus, they escaped common tests used for the prompt detection of Klebsiella pneumoniae KPC-producing.
Collapse
|
21
|
OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. BIOLOGY 2021; 10:biology10090889. [PMID: 34571766 PMCID: PMC8469419 DOI: 10.3390/biology10090889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP carbapenemase genes. The blaOXA-48 gene was detected in 24 (77.4%) of the tested isolates while blaVIM gene was detected in 8 (25.8%), both blaKPC and blaNDM genes were co-present in 1 (3.2%) isolate. Plasmids carrying the blaOXA-48 gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).
Collapse
|
22
|
Kearney A, Boyle MA, Curley GF, Humphreys H. Preventing infections caused by carbapenemase-producing bacteria in the intensive care unit - Think about the sink. J Crit Care 2021; 66:52-59. [PMID: 34438134 DOI: 10.1016/j.jcrc.2021.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Outbreaks caused by carbapenemase-producing bacteria (CPB) are challenging to manage in critical care settings and can be protracted due to inadvertent and ubiquitous ecological niches within the built unit environment, such as handwashing sinks. We discuss evidence from a narrative review on transmission pathways and interventions for critical care practitioners. METHODS A literature review was undertaken using Pubmed, CINAHL and Embase and included outbreaks of CPB, and equivalent bacteria in critical care units, between 1998 and May 2020. Intervention studies targeting elements of sinks that were employed in response to outbreaks in critical care units were included (n = 30). FINDINGS We found control measures included sink removal, use of physical barriers or design modification to protect patients from sinks, engineering controls to mitigate bacterial dispersal and administrative controls. A multi-disciplinary approach involving practitioners from critical care, infection prevention and control, engineering and other staff, should be involved in ongoing measures and in outbreak control activities. Ascertaining the optimal method to end CPB outbreaks in critical care is challenging due to the lack of prospective studies available. However, the literature suggests that sinks can and do serve as reservoirs of CPB near critically ill patients, and should be considered hazardous, especially when sub-optimally designed or used.
Collapse
Affiliation(s)
- A Kearney
- Department of Clinical Microbiology, the Royal College of Surgeons in Ireland, Ireland.
| | - M A Boyle
- Department of Clinical Microbiology, the Royal College of Surgeons in Ireland, Ireland
| | - G F Curley
- Department of Anaesthesia and Critical Care, the Royal College of Surgeons in Ireland, Ireland
| | - H Humphreys
- Department of Clinical Microbiology, the Royal College of Surgeons in Ireland, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
23
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
24
|
Akeda Y. Current situation of carbapenem-resistant Enterobacteriaceae and Acinetobacter in Japan and Southeast Asia. Microbiol Immunol 2021; 65:229-237. [PMID: 33913535 DOI: 10.1111/1348-0421.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
In the recent years, issues related to drug-resistant bacteria have evolved worldwide, and various countermeasures have been taken to control their spread. Among a wide variety of drug-resistant bacterial species, carbapenem-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAb), are those for which countermeasures are particularly important. Carbapenems are the last resort antibiotics for any bacterial infection; therefore, infectious diseases caused by these drug-resistant bacteria are difficult to treat. In the case of CRE, since carbapenemases responsible for carbapenem resistance are mostly encoded on transmissible plasmids, it is known that susceptible bacteria can easily become carbapenem-resistant by transfer of plasmids between Enterobacteriaceae. In addition, Enterobacteriaceae are common bacterial species found in the guts of animals, including humans. Acinetobacter is ubiquitously isolated in the environment. Due to these characteristics, it is quite difficult to prevent the intrusion of multi-drug resistant pathogens in hospitals. Therefore, effective countermeasures should be developed and utilized against such dangerous pathogens based on molecular epidemiological analyses. In this review, there are also some examples presented on how to manage to monitor and control those troublesome drug-resistant bacteria conducted in Japan and Southeast Asia.
Collapse
Affiliation(s)
- Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Multimodal Interventions to Prevent and Control Carbapenem-Resistant Enterobacteriaceae and Extended-Spectrum β-Lactamase Producer-Associated Infections at a Tertiary Care Hospital in Egypt. Antibiotics (Basel) 2021; 10:antibiotics10050509. [PMID: 33946253 PMCID: PMC8146387 DOI: 10.3390/antibiotics10050509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
The current rise of multidrug-resistant (MDR) Gram-negative Enterobacteriaceae including the extended-spectrum β-lactamase (ESBL)-producing organisms and carbapenem-resistant Enterobacteriaceae (CRE) has been increasingly reported worldwide, posing new challenges to health care facilities. Accordingly, we evaluated the impact of multimodal infection control interventions at one of the major tertiary healthcare settings in Egypt for the aim of combating infections by the respective pathogens. During the 6-month pre-intervention period, the incidence rate of CRE and ESBL-producing clinical cultures were 1.3 and 0.8/1000 patient days, respectively. During the post-intervention period, the incidence of CRE and ESBL producers continued to decrease, reaching 0.5 and 0.28/1000 patient days, respectively. The susceptibility rate to carbapenems among ESBL producers ranged from 91.4% (ertapenem) to 98.3% (imipenem), amikacin (93%), gentamicin (56.9%), and tobramycin (46.6%). CRE showed the highest resistance pattern toward all of the tested β-lactams and aminoglycosides, ranging from 87.3% to 94.5%. Both CRE and ESBL producers showed a high susceptibility rate (greater than 85.5%) to colistin and tigecycline. In conclusion, our findings revealed the effectiveness of implementing multidisciplinary approaches in controlling and treating infections elicited by CRE and ESBL producers.
Collapse
|
26
|
Prevalence of blaKPC-2, blaKPC-3 and blaKPC-30-Carrying Plasmids in Klebsiella pneumoniae Isolated in a Brazilian Hospital. Pathogens 2021; 10:pathogens10030332. [PMID: 33809215 PMCID: PMC7998191 DOI: 10.3390/pathogens10030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) actively hydrolyzes carbapenems, antibiotics often used a last-line treatment for multidrug-resistant bacteria. KPC clinical relevance resides in its widespread dissemination. In this work, we report the genomic context of KPC coding genes blaKPC-2, blaKPC-3 and blaKPC-30 in multidrug-resistant Klebsiellapneumoniae isolates from Brazil. Plasmids harboring blaKPC-3 and blaKPC-30 were identified. Fifteen additional carbapenem-resistant K. pneumoniae isolates were selected from the same tertiary hospital, collected over a period of 8 years. Their genomes were sequenced in order to evaluate the prevalence and dissemination of blaKPC-harboring plasmids. We found that blaKPC genes were mostly carried by one of two isoforms of transposon Tn4401 (Tn4401a or Tn4401b) that were predominantly located on plasmids highly similar to the previously described plasmid pKPC_FCF3SP (IncN). The identified pKPC_FCF3SP-like plasmids carried either blaKPC-2 or blaKPC-30. Two K. pneumoniae isolates harbored pKpQIL-like (IncFII) plasmids, only recently identified in Brazil; one of them harbored blaKPC-3 in a Tn4401a transposon. Underlining the risk of horizontal spread of KPC coding genes, this study reports the prevalence of blaKPC-2 and the recent spread of blaKPC-3, and blaKPC-30, in association with different isoforms of Tn4401, together with high synteny of plasmid backbones among isolates studied here and in comparison with previous reports.
Collapse
|
27
|
Magpantay HD, Malaluan IN, Manzano JAH, Quimque MT, Pueblos KR, Moor N, Budde S, Bangcaya PS, Lim-Valle D, Dahse HM, Khan A, Wei DQ, Alejandro GJD, Macabeo APG. Antibacterial and COX-2 Inhibitory Tetrahydrobisbenzylisoquinoline Alkaloids from the Philippine Medicinal Plant Phaeanthus ophthalmicus. PLANTS (BASEL, SWITZERLAND) 2021; 10:462. [PMID: 33804446 PMCID: PMC7999448 DOI: 10.3390/plants10030462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
Phaeanthus ophthalmicus (Roxb. ex G.Don) J.Sinclair (previously known as P. ebracteolatus (Presl) Merr) is a Philippine medicinal plant occurring as evergreen shrub in the lowland forests of Luzon islands. It is used traditionally by Filipinos to treat bacterial conjunctivitis, ulcer and wound infections. Based on previous investigations where cyclooxygenase-2 (COX-2) functions as immune-linked factor in infectious sensitivities to bacterial pathogens by triggering pro-inflammatory immune-associated reactions, we investigated the antimicrobial and COX inhibitory activities of the extracts and tetrahydrobisbenzylisoquinoline alkaloids of P. ophthalmicus in vitro and in silico to validate its ethnomedicinal uses. Thus, the dichloromethane-methanol (DCM-MeOH) crude extract and alkaloid extracts exhibiting antibacterial activities against drug-resistant bacterial strains such as methicillin-resistance Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Klebsiella pneumoniae + CRE and Pseudomonas aeruginosa + MBL afforded (+)-tetrandrine (1) and (+)-limacusine (2) as the major biologically active tetrahydrobisbenzylisoquinoline alkaloidal constituents after purification. Both tetrahydrobisbenzylisoquinoline alkaloids 1 and 2 showed broad spectrum antibacterial activity with strongest inhibition against the Gram-negative bacteria MβL-Pseudomonas aeruginosa Klebsiella pneumoniae + CRE. Interestingly, the alkaloid limacusine (2) showed selective inhibition against ovine COX-2 in vitro. These results were ascertained by molecular docking and molecular dynamics simulation experiments where alkaloid 2 showed strong affinity in the catalytic sites of Gram-negative bacterial enzymes P. aeruginosa elastase and K. pneumoniae KPC-2 carbapenemase (enzymes involved in infectivity mechanisms), and of ovine COX-2. Overall, our study provides credence on the ethnomedicinal use of the Philippine medicinal plant P. ophthalmicus as traditional plant-based adjuvant to treat bacterial conjunctivitis and other related infections. The antibacterial activities and selective COX-2 inhibition observed for limacusine (2) point to its role as the biologically active constituent of P. ophthalmicus. A limited number of drugs with COX-2 inhibitory properties like celecoxib also confer antibacterial activity. Thus, tetrahydrobisbenzyl alkaloids, especially 2, are promising pharmaceutical inspirations for developing treatments of bacterial/inflammation-related infections.
Collapse
Affiliation(s)
- Hilbert D. Magpantay
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| | - Ivane N. Malaluan
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Chemistry Department, College of Science, Bicol University, Rizal St., Legazpi City 4500, Philippines
| | - Joe Anthony H. Manzano
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Mark Tristan Quimque
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Chemistry Department, College of Science, MSU-Iligan State University, Iligan City 9200, Philippines
| | - Kirstin Rhys Pueblos
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Chemistry Department, College of Science, MSU-Iligan State University, Iligan City 9200, Philippines
| | - Natalija Moor
- Institut für Organische Chemie, Universität Regensburg, Universitätstrasse 31, D-93053 Regensburg, Germany; (N.M.); (S.B.)
| | - Simon Budde
- Institut für Organische Chemie, Universität Regensburg, Universitätstrasse 31, D-93053 Regensburg, Germany; (N.M.); (S.B.)
| | - Porferio S. Bangcaya
- Biological Science Department, College of Teacher Education—University of Antique, Tario-Lim Memorial Campus, Tibiao, Antique 5707, Philippines;
| | - Demi Lim-Valle
- Clinical Microbiology Laboratory, Department of Pathology and Laboratories, Makati Medical Center, Amorsolo St., Legaspi Village, Makati City 1229, Philippines;
| | - Hans-Martin Dahse
- Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), D-07745 Jena, Germany;
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Bldg. 8, Xili St., Nashan District, Shenzhen 518055, China
| | - Grecebio Jonathan D. Alejandro
- Plant Sciences Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
| |
Collapse
|
28
|
Zurabov F, Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J 2021; 18:9. [PMID: 33407669 PMCID: PMC7789013 DOI: 10.1186/s12985-020-01485-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background Nowadays, hundreds of thousands of deaths per year are caused by antibiotic resistant nosocomial infections and the prognosis for future years is much worse, as evidenced by modern research. Bacteria of the Klebsiella genus are one of the main pathogens that cause nosocomial infections. Among the many antimicrobials offered to replace or supplement traditional antibiotics, bacteriophages are promising candidates. Methods This article presents microbiological, physicochemical and genomic characterization of 4 virulent bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. Phages were studied by electron microscopy; their host range, lytic activity, adsorption rate, burst size, latent period, frequency of phage-resistant forms generation, lysis dynamics and sensitivity of phage particles to temperature and pH were identified; genomes of all 4 bacteriophages were studied by restriction digestion and complete genome sequence. Results Studied phages showed wide host range and high stability at different temperature and pH values. In contrast with single phages, a cocktail of bacteriophages lysed all studied bacterial strains, moreover, no cases of the emergence of phage-resistant bacterial colonies were detected. Genomic data proved that isolated viruses do not carry antibiotic resistance, virulence or lysogenic genes. Three out of four bacteriophages encode polysaccharide depolymerases, which are involved in the degradation of biofilms and capsules. Conclusions The bacteriophages studied in this work are promising for further in vivo studies and might be used in phage therapy as part of a complex therapeutic and prophylactic phage preparation. The conducted studies showed that the complex preparation is more effective than individual phages. The use of the complex phage cocktail allows to extend the lytic spectrum, and significantly reduces the possibility of phage-resistant forms generation.
Collapse
Affiliation(s)
- Fedor Zurabov
- Research and Production Center "MicroMir", LLC, Moscow, Russia. .,Department of Virology, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
29
|
Mehta SC, Furey IM, Pemberton OA, Boragine DM, Chen Y, Palzkill T. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem 2021; 296:100155. [PMID: 33273017 PMCID: PMC7895804 DOI: 10.1074/jbc.ra120.015050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023] Open
Abstract
Serine active-site β-lactamases hydrolyze β-lactam antibiotics through the formation of a covalent acyl-enzyme intermediate followed by deacylation via an activated water molecule. Carbapenem antibiotics are poorly hydrolyzed by most β-lactamases owing to slow hydrolysis of the acyl-enzyme intermediate. However, the emergence of the KPC-2 carbapenemase has resulted in widespread resistance to these drugs, suggesting it operates more efficiently. Here, we investigated the unusual features of KPC-2 that enable this resistance. We show that KPC-2 has a 20,000-fold increased deacylation rate compared with the common TEM-1 β-lactamase. Furthermore, kinetic analysis of active site alanine mutants indicates that carbapenem hydrolysis is a concerted effort involving multiple residues. Substitution of Asn170 greatly decreases the deacylation rate, but this residue is conserved in both KPC-2 and non-carbapenemase β-lactamases, suggesting it promotes carbapenem hydrolysis only in the context of KPC-2. X-ray structure determination of the N170A enzyme in complex with hydrolyzed imipenem suggests Asn170 may prevent the inactivation of the deacylating water by the 6α-hydroxyethyl substituent of carbapenems. In addition, the Thr235 residue, which interacts with the C3 carboxylate of carbapenems, also contributes strongly to the deacylation reaction. In contrast, mutation of the Arg220 and Thr237 residues decreases the acylation rate and, paradoxically, improves binding affinity for carbapenems. Thus, the role of these residues may be ground state destabilization of the enzyme-substrate complex or, alternatively, to ensure proper alignment of the substrate with key catalytic residues to facilitate acylation. These findings suggest modifications of the carbapenem scaffold to avoid hydrolysis by KPC-2 β-lactamase.
Collapse
Affiliation(s)
- Shrenik C Mehta
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ian M Furey
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Orville A Pemberton
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - David M Boragine
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
30
|
Riley LW. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol Spectr 2020; 8:10.1128/microbiolspec.ame-0014-2020. [PMID: 33385193 PMCID: PMC10773148 DOI: 10.1128/microbiolspec.ame-0014-2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of E. coli that cause diarrhea are often described as intestinal pathogenic E. coli (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic E. coli (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of E. coli or pathovars. While IPEC can be distinguished from commensal E. coli based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal E. coli that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of E. coli based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by E. coli. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
31
|
Dynamics of bla KPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrob Agents Chemother 2020; 64:AAC.01743-20. [PMID: 32958711 DOI: 10.1128/aac.01743-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) pose a significant threat to global public health. The most important mechanism for carbapenem resistance is the production of carbapenemases. Klebsiella pneumoniae carbapenemase (KPC) represents one of the main carbapenemases worldwide. Complex mechanisms of bla KPC dissemination have been reported in Colombia, a country with a high endemicity of carbapenem resistance. Here, we characterized the dynamics of dissemination of bla KPC gene among CRE infecting and colonizing patients in three hospitals localized in a highly endemic area of Colombia (2013 and 2015). We identified the genomic characteristics of KPC-producing Enterobacterales recovered from patients infected/colonized and reconstructed the dynamics of dissemination of bla KPC-2 using both short and long read sequencing. We found that spread of bla KPC-2 among Enterobacterales in the participating hospitals was due to intra- and interspecies horizontal gene transfer (HGT) mediated by promiscuous plasmids associated with transposable elements that was originated from a multispecies outbreak of KPC-producing Enterobacterales in a neonatal intensive care unit. The plasmids were detected in isolates recovered in other units within the same hospital and nearby hospitals. The gene "epidemic" was driven by IncN-pST15-type plasmids carrying a novel Tn4401b structure and non-Tn4401 elements (NTEKPC) in Klebsiella spp., Escherichia coli, Enterobacter spp., and Citrobacter spp. Of note, mcr-9 was found to coexist with bla KPC-2 in species of the Enterobacter cloacae complex. Our findings suggest that the main mechanism for dissemination of bla KPC-2 is HGT mediated by highly transferable plasmids among species of Enterobacterales in infected/colonized patients, presenting a major challenge for public health interventions in developing countries such as Colombia.
Collapse
|
32
|
Ong KM, Phillips MS, Peskin CS. A mathematical model and inference method for bacterial colonization in hospital units applied to active surveillance data for carbapenem-resistant enterobacteriaceae. PLoS One 2020; 15:e0231754. [PMID: 33180781 PMCID: PMC7660488 DOI: 10.1371/journal.pone.0231754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
Widespread use of antibiotics has resulted in an increase in antimicrobial-resistant microorganisms. Although not all bacterial contact results in infection, patients can become asymptomatically colonized, increasing the risk of infection and pathogen transmission. Consequently, many institutions have begun active surveillance, but in non-research settings, the resulting data are often incomplete and may include non-random testing, making conventional epidemiological analysis problematic. We describe a mathematical model and inference method for in-hospital bacterial colonization and transmission of carbapenem-resistant Enterobacteriaceae that is tailored for analysis of active surveillance data with incomplete observations. The model and inference method make use of the full detailed state of the hospital unit, which takes into account the colonization status of each individual in the unit and not only the number of colonized patients at any given time. The inference method computes the exact likelihood of all possible histories consistent with partial observations (despite the exponential increase in possible states that can make likelihood calculation intractable for large hospital units), includes techniques to improve computational efficiency, is tested by computer simulation, and is applied to active surveillance data from a 13-bed rehabilitation unit in New York City. The inference method for exact likelihood calculation is applicable to other Markov models incorporating incomplete observations. The parameters that we identify are the patient-patient transmission rate, pre-existing colonization probability, and prior-to-new-patient transmission probability. Besides identifying the parameters, we predict the effects on the total prevalence (0.07 of the total colonized patient-days) of changing the parameters and estimate the increase in total prevalence attributable to patient-patient transmission (0.02) above the baseline pre-existing colonization (0.05). Simulations with a colonized versus uncolonized long-stay patient had 44% higher total prevalence, suggesting that the long-stay patient may have been a reservoir of transmission. High-priority interventions may include isolation of incoming colonized patients and repeated screening of long-stay patients.
Collapse
Affiliation(s)
- Karen M. Ong
- New York University School of Medicine, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York, New York, United States of America
- * E-mail:
| | - Michael S. Phillips
- New York University School of Medicine, New York, New York, United States of America
| | - Charles S. Peskin
- Courant Institute of Mathematical Sciences, New York, New York, United States of America
| |
Collapse
|
33
|
Adesanya OA, Igwe HA. Carbapenem-resistant Enterobacteriaceae (CRE) and gram-negative bacterial infections in south-west Nigeria: a retrospective epidemiological surveillance study. AIMS Public Health 2020; 7:804-815. [PMID: 33294483 PMCID: PMC7719558 DOI: 10.3934/publichealth.2020062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Background Carbapenem-resistant Enterobacteriaceae (CRE) are often responsible for severe, life-threatening infections and they represent a critical threat to the available antibiotic agents and to global health. An understanding of the epidemiology of these infections will be indispensable to the development of appropriate case management as well as infection prevention and control (IPC) measures in any healthcare setting. Objectives The objective of this study was to investigate and describe the epidemiology of carbapenem-resistant Enterobacteriaceae (CRE) and other gram-negative bacteria in a tertiary hospital in south west Nigeria using routinely collected microbiological laboratory data. Methods A retrospective collection of microbiological laboratory records from the January to June 2018 was performed. All culture and antimicrobial susceptibility test results of patients who required laboratory tests were collected. Other information collected include: patient demographics, clinical specimen types and the requesting hospital department. The data was analyzed using SPSS Windows version 24. Comparison between categorical variables was done using chi-square tests while independent sample t-test was used to determine significant mean differences between groups. A p < 0.05 was taken to be statistically significant. Results The prevalence of carbapenem-resistance among Enterobacteriaceae and gram-negative bacteria isolates was 22% (n = 39/177). Of these, 35.9% (n = 14) were Klebsiella pneumonia, 30.8% (n = 12) were Pseudomonas aeruginosa and 15.4% (n = 6) were Klebsiella oxytoca. 87.2% (n = 34) of these were also multi-drug resistant, with a mean total resistance score of 3.92 (SD = ± 1.44). There were differences observed in proportion of carbapenem-resistance across clinical specialties and age groups; however, these differences were not statistically significant. Independent sample t-test revealed that carbapenem-resistant isolates exhibited more drug resistance than carbapenem-sensitive isolates (3.93 vs. 2.30; p < 0.001). Conclusion Carbapenem resistance is an important threat to the current antibiotic armory. Active surveillance, particularly in the healthcare setting is required to identify high risk groups, inform better treatment options and infection prevention and control measures.
Collapse
Affiliation(s)
- Oluwafolajimi Adetoye Adesanya
- Institute for Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Clinical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hilda Amauche Igwe
- Department of Clinical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
34
|
Resistance to Ceftazidime/Avibactam plus Meropenem/Vaborbactam When Both Are Used Together Is Achieved in Four Steps in Metallo-β-Lactamase-Negative Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00409-20. [PMID: 32660988 DOI: 10.1128/aac.00409-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Serine β-lactamases are dominant causes of β-lactam resistance in Klebsiella pneumoniae isolates. Recently, this has driven clinical deployment of the β-lactam-β-lactamase inhibitor pairs ceftazidime/avibactam and meropenem/vaborbactam. We show that four steps, i.e., ompK36 and ramR mutation plus carriage of OXA-232 and KPC-3-D178Y variant β-lactamases, confer ceftazidime/avibactam and meropenem/vaborbactam resistance when both pairs are used together. These findings have implications for decision making about sequential and combinatorial use of these β-lactam-β-lactamase inhibitor pairs to treat K. pneumoniae infections.
Collapse
|
35
|
Wang J, Xu W, Xue S, Yu T, Xie H. A minor structure modification serendipitously leads to a highly carbapenemase-specific fluorogenic probe. Org Biomol Chem 2020; 18:4029-4033. [PMID: 32432265 DOI: 10.1039/d0ob00114g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a fluorogenic probe for the detection of carbapenemase activity. This reagent features carbapenem as an enzyme recognition motif and a carbon-carbon double bond between carbapenem and the fluorophore, exhibiting high specificity to all carbapenemases, including metallo carbapenemases and serine carbapenemases, over other β-lactamases.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
36
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
37
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
38
|
Abstract
In general, foodborne diseases present themselves with gastrointestinal symptoms caused by bacterial, viral, and parasitic pathogens well established to be foodborne. These pathogens are also associated with extraintestinal clinical manifestations. Recent studies have suggested that Escherichia coli and Klebsiella pneumoniae, which both cause common extraintestinal infections such as urinary tract and bloodstream infections, may also be foodborne. The resolution and separation of these organisms into pathotypes versus commensals by modern genotyping methods have led to the identification of key lineages of these organisms causing outbreaks of extraintestinal infections. These epidemiologic observations suggested common- or point-source exposures, such as contaminated food. Here, we describe the spectrum of extraintestinal illnesses caused by recognized enteric pathogens and then review studies that demonstrate the potential role of extraintestinal pathogenic E. coli (ExPEC) and K. pneumoniae as foodborne pathogens. The impact of global food production and distribution systems on the possible foodborne spread of these pathogens is discussed.
Collapse
Affiliation(s)
- Lee W. Riley
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
39
|
Gajamer VR, Bhattacharjee A, Paul D, Ingti B, Sarkar A, Kapil J, Singh AK, Pradhan N, Tiwari HK. High prevalence of carbapenemase, AmpC β-lactamase and aminoglycoside resistance genes in extended-spectrum β-lactamase-positive uropathogens from Northern India. J Glob Antimicrob Resist 2020; 20:197-203. [DOI: 10.1016/j.jgar.2019.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
|
40
|
Abstract
β-Lactam antibiotics have been widely used as therapeutic agents for the past 70 years, resulting in emergence of an abundance of β-lactam-inactivating β-lactamases. Although penicillinases in Staphylococcus aureus challenged the initial uses of penicillin, β-lactamases are most important in Gram-negative bacteria, particularly in enteric and nonfermentative pathogens, where collectively they confer resistance to all β-lactam-containing antibiotics. Critical β-lactamases are those enzymes whose genes are encoded on mobile elements that are transferable among species. Major β-lactamase families include plasmid-mediated extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases now appearing globally, with geographic preferences for specific variants. CTX-M enzymes include the most common ESBLs that are prevalent in all areas of the world. In contrast, KPC serine carbapenemases are present more frequently in the Americas, the Mediterranean countries, and China, whereas NDM metallo-β-lactamases are more prevalent in the Indian subcontinent and Eastern Europe. As selective pressure from β-lactam use continues, multiple β-lactamases per organism are increasingly common, including pathogens carrying three different carbapenemase genes. These organisms may be spread throughout health care facilities as well as in the community, warranting close attention to increased infection control measures and stewardship of the β-lactam-containing drugs in an effort to control selection of even more deleterious pathogens.
Collapse
|
41
|
Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci OA 2020; 6:FSO438. [PMID: 32140243 PMCID: PMC7050608 DOI: 10.2144/fsoa-2019-0098] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Carbapenems are a class of antimicrobial agents reserved for infections caused by multidrug-resistant microorganisms. The emergence of carbapenem resistance has become a serious public health threat. This type of antimicrobial resistance is spreading at an alarming rate, resulting in major outbreaks and treatment failure of community-acquired and nosocomial infections caused by the clinically relevant carbapenem-producing Enterobacteriaceae or carbapenem-resistant Enterobacteriaceae. This review is focused on carbapenem resistance, including mechanisms of resistance, history and epidemiology, phenotypic and genotypic detection in the clinically relevant bacterial pathogens and the possible treatment options available.
Collapse
Affiliation(s)
- Ann A Elshamy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, POB 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, POB 11566, Cairo, Egypt
| |
Collapse
|
42
|
Fida M, Cunningham SA, Murphy MP, Bonomo RA, Hujer KM, Hujer AM, Kreiswirth BN, Chia N, Jeraldo PR, Nelson H, Zinsmaster NM, Toraskar N, Chang W, Patel R. Core genome MLST and resistome analysis of Klebsiella pneumoniae using a clinically amenable workflow. Diagn Microbiol Infect Dis 2020; 97:114996. [PMID: 32098688 DOI: 10.1016/j.diagmicrobio.2020.114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Whole genome sequencing (WGS) is replacing traditional microbiological typing methods for investigation of outbreaks in clinical settings. Here, we used a clinical microbiology laboratory core genome multilocus sequence typing (cgMLST) workflow to analyze 40 isolates of K. pneumoniae which are part of the Antimicrobial Resistance Leadership Group (ARLG) isolate collection, alongside 10 Mayo Clinic K. pneumoniae isolates, comparing results to those of pulsed-field gel electrophoresis (PFGE). Additionally, we used the WGS data to predict phenotypic antimicrobial susceptibility (AST). Thirty-one of 40 ARLG K. pneumoniae isolates belonged to the same PFGE type, all of which, alongside 3 isolates of different PFGE types, formed a large cluster by cgMLST. PFGE and cgMLST were completely concordant for the 10 Mayo Clinic K. pneumoniae isolates. For AST prediction, the overall agreement between phenotypic AST and genotypic prediction was 95.6%.
Collapse
Affiliation(s)
- Madiha Fida
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN.
| | | | | | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University, Cleveland, OH; Departments of Pharmacology, Biochemistry, Molecular Biology and Microbiology, and the Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH
| | - Kristine M Hujer
- Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Andrea M Hujer
- Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN
| | - Heidi Nelson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN
| | | | | | | | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN; Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
43
|
Galbadage T, Liu D, Alemany LB, Pal R, Tour JM, Gunasekera RS, Cirillo JD. Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem. ACS NANO 2019; 13:14377-14387. [PMID: 31815423 PMCID: PMC6933815 DOI: 10.1021/acsnano.9b07836] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 05/22/2023]
Abstract
Multidrug resistance in pathogenic bacteria is an increasing problem in patient care and public health. Molecular nanomachines (MNMs) have the ability to open cell membranes using nanomechanical action. We hypothesized that MNMs could be used as antibacterial agents by drilling into bacterial cell walls and increasing susceptibility of drug-resistant bacteria to recently ineffective antibiotics. We exposed extensively drug-resistant Klebsiella pneumoniae to light-activated MNMs and found that MNMs increase the susceptibility to Meropenem. MNMs with Meropenem can effectively kill K. pneumoniae that are considered Meropenem-resistant. We examined the mechanisms of MNM action using permeability assays and transmission electron microscopy, finding that MNMs disrupt the cell wall of extensively drug-resistant K. pneumoniae, exposing the bacteria to Meropenem. These observations suggest that MNMs could be used to make conventional antibiotics more efficacious against multi-drug-resistant pathogens.
Collapse
Affiliation(s)
- Thushara Galbadage
- Department of Microbial
Pathogenesis and Immunology, Texas A&M
Health Science Center, Bryan, Texas 77807, United States
| | - Dongdong Liu
- Department of Chemistry, Department of Materials
Science and NanoEngineering, Smalley-Curl Institute, NanoCarbon Center, Department of BioSciences, and Shared Equipment
Authority, Rice University, Houston, Texas 77005, United States
| | - Lawrence B. Alemany
- Department of Chemistry, Department of Materials
Science and NanoEngineering, Smalley-Curl Institute, NanoCarbon Center, Department of BioSciences, and Shared Equipment
Authority, Rice University, Houston, Texas 77005, United States
| | - Robert Pal
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - James M. Tour
- Department of Chemistry, Department of Materials
Science and NanoEngineering, Smalley-Curl Institute, NanoCarbon Center, Department of BioSciences, and Shared Equipment
Authority, Rice University, Houston, Texas 77005, United States
- E-mail:
| | - Richard S. Gunasekera
- Department of Chemistry, Department of Materials
Science and NanoEngineering, Smalley-Curl Institute, NanoCarbon Center, Department of BioSciences, and Shared Equipment
Authority, Rice University, Houston, Texas 77005, United States
- Department Biological Science, Biola University, La Mirada, California 90639, United States
- E-mail:
| | - Jeffrey D. Cirillo
- Department of Microbial
Pathogenesis and Immunology, Texas A&M
Health Science Center, Bryan, Texas 77807, United States
- E-mail:
| |
Collapse
|
44
|
Hala S, Antony CP, Alshehri M, Althaqafi AO, Alsaedi A, Mufti A, Kaaki M, Alhaj-Hussein BT, Zowawi HM, Al-Amri A, Pain A. First report of Klebsiella quasipneumoniae harboring bla KPC-2 in Saudi Arabia. Antimicrob Resist Infect Control 2019; 8:203. [PMID: 31890159 PMCID: PMC6923860 DOI: 10.1186/s13756-019-0653-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Background Nosocomial infections caused by multi-drug resistant Enterobacteriaceae are a global public health threat that ought to be promptly identified, reported, and addressed accurately. Many carbapenem-resistant Enterobacteriaceae-associated genes have been identified in Saudi Arabia but not the endemic Klebsiella pneumoniae carbapenemases (KPCs), which are encoded by blaKPC-type genes. KPCs are known for their exceptional spreading potential. Methods We collected n = 286 multi-drug resistant (MDR) Klebsiella spp. isolates as part of screening for resistant patterns from a tertiary hospital in Saudi Arabia between 2014 and 2018. Antimicrobial susceptibility testing was carried out using both VITEK II and the broth microdilution of all collected isolates. Detection of resistance-conferring genes was carried out using Illumina whole-genome shotgun sequencing and PacBio SMRT sequencing protocols. Results A Carbapenem-resistant Enterobacteriaceae (CRE) Klebsiella quasipneumoniae subsp. similipneumoniae strain was identified as a novel ST-3510 carrying a blaKPC-2 carbapenemase encoding gene. The isolate, designated as NGKPC-421, was obtained from shotgun Whole Genome Sequencing (WGS) surveillance of 286 MDR Klebsiella spp. clinical isolates. The NGKPC-421 isolate was collected from a septic patient in late 2017 and was initially misidentified as K. pneumoniae. The sequencing and assembly of the NGKPC-421 genome resulted in the identification of a putative ~ 39.4 kb IncX6 plasmid harboring a blaKPC-2 gene, flanked by transposable elements (ISKpn6-blaKPC-2–ISKpn27). Conclusion This is the first identification of a KPC-2-producing CRE in the Gulf region. The impact on this finding is of major concern to the public health in Saudi Arabia, considering that it is the religious epicenter with a continuous mass influx of pilgrims from across the world. Our study strongly highlights the importance of implementing rapid sequencing-based technologies in clinical microbiology for precise taxonomic classification and monitoring of antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Sharif Hala
- 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Clinical Microbiology Department, King Abdullah International Medical Research Centre - Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Chakkiath Paul Antony
- 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,7Red Sea Research Center, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammed Alshehri
- Clinical Microbiology Department, King Abdullah International Medical Research Centre - Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Abdulhakeem O Althaqafi
- 3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,WHO Collaborating Centre for Infection Prevention and Control, and GCC Center for Infection Control, Riyadh, Saudi Arabia
| | - Asim Alsaedi
- 3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,WHO Collaborating Centre for Infection Prevention and Control, and GCC Center for Infection Control, Riyadh, Saudi Arabia
| | - Areej Mufti
- 3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mai Kaaki
- 3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | | | - Hosam M Zowawi
- Clinical Microbiology Department, King Abdullah International Medical Research Centre - Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,WHO Collaborating Centre for Infection Prevention and Control, and GCC Center for Infection Control, Riyadh, Saudi Arabia.,5UQ Centre for Clinical Research, Herston, Queensland, The University of Queensland, Queensland, Australia
| | - Abdulfattah Al-Amri
- 3King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Arnab Pain
- 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,6Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Thuwal, Japan
| |
Collapse
|
45
|
Hassan MZ, Sturm-Ramirez K, Rahman MZ, Hossain K, Aleem MA, Bhuiyan MU, Islam MM, Rahman M, Gurley ES. Contamination of hospital surfaces with respiratory pathogens in Bangladesh. PLoS One 2019; 14:e0224065. [PMID: 31658279 PMCID: PMC6816543 DOI: 10.1371/journal.pone.0224065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
With limited infection control practices in overcrowded Bangladeshi hospitals, surfaces may play an important role in the transmission of respiratory pathogens in hospital wards and pose a serious risk of infection for patients, health care workers, caregivers and visitors. In this study, we aimed to identify if surfaces near hospitalized patients with respiratory infections were contaminated with respiratory pathogens and to identify which surfaces were most commonly contaminated. Between September-November 2013, we collected respiratory (nasopharyngeal and oropharyngeal) swabs from patients hospitalized with respiratory illness in adult medicine and paediatric medicine wards at two public tertiary care hospitals in Bangladesh. We collected surface swabs from up to five surfaces near each case-patient including: the wall, bed rail, bed sheet, clinical file, and multipurpose towel used for care giving purposes. We tested swabs using real-time multiplex PCR for 19 viral and 12 bacterial pathogens. Case-patients with at least one pathogen detected had corresponding surface swabs tested for those same pathogens. Of 104 patients tested, 79 had a laboratory-confirmed respiratory pathogen. Of the 287 swabs collected from surfaces near these patients, 133 (46%) had evidence of contamination with at least one pathogen. The most commonly contaminated surfaces were the bed sheet and the towel. Sixty-two percent of patients with a laboratory-confirmed respiratory pathgen (49/79) had detectable viral or bacterial nucleic acid on at least one surface. Klebsiella pneumoniae was the most frequently detected pathogen on both respiratory swabs (32%, 33/104) and on surfaces near patients positive for this organism (97%, 32/33). Surfaces near patients hospitalized with respiratory infections were frequently contaminated by pathogens, with Klebsiella pneumoniae being most common, highlighting the potential for transmission of respiratory pathogens via surfaces. Efforts to introduce routine cleaning in wards may be a feasible strategy to improve infection control, given that severe space constraints prohibit cohorting patients with respiratory illness.
Collapse
Affiliation(s)
- Md. Zakiul Hassan
- icddr,b (formerly, International Centre for Diarrheal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Katharine Sturm-Ramirez
- icddr,b (formerly, International Centre for Diarrheal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Ziaur Rahman
- icddr,b (formerly, International Centre for Diarrheal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Kamal Hossain
- icddr,b (formerly, International Centre for Diarrheal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Abdul Aleem
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mejbah Uddin Bhuiyan
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Md. Muzahidul Islam
- icddr,b (formerly, International Centre for Diarrheal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
46
|
Whole-Genome Sequencing To Identify Drivers of Carbapenem-Resistant Klebsiella pneumoniae Transmission within and between Regional Long-Term Acute-Care Hospitals. Antimicrob Agents Chemother 2019; 63:AAC.01622-19. [PMID: 31451495 DOI: 10.1128/aac.01622-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an antibiotic resistance threat of the highest priority. Given the limited treatment options for this multidrug-resistant organism (MDRO), there is an urgent need for targeted strategies to prevent transmission. Here, we applied whole-genome sequencing to a comprehensive collection of clinical isolates to reconstruct regional transmission pathways and analyzed this transmission network in the context of statewide patient transfer data and patient-level clinical data to identify drivers of regional transmission. We found that high regional CRKP burdens were due to a small number of regional introductions, with subsequent regional proliferation occurring via patient transfers among health care facilities. While CRKP was predicted to have been imported into each facility multiple times, there was substantial variation in the ratio of intrafacility transmission events per importation, indicating that amplification occurs unevenly across regional facilities. While myriad factors likely influence intrafacility transmission rates, an understudied one is the potential for clinical characteristics of colonized and infected patients to influence their propensity for transmission. Supporting the contribution of high-risk patients to elevated transmission rates, we observed that patients colonized and infected with CRKP in high-transmission facilities had higher rates of carbapenem use, malnutrition, and dialysis and were older. This report highlights the potential for regional infection prevention efforts that are grounded in genomic epidemiology to identify the patients and facilities that make the greatest contribution to regional MDRO prevalence, thereby facilitating the design of precision interventions of maximal impact.
Collapse
|
47
|
Lai YC, Lu MC, Hsueh PR. Hypervirulence and carbapenem resistance: two distinct evolutionary directions that led high-risk Klebsiella pneumoniae clones to epidemic success. Expert Rev Mol Diagn 2019; 19:825-837. [PMID: 31343934 DOI: 10.1080/14737159.2019.1649145] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Over the past few decades, Klebsiella pneumoniae has become a significant threat to public health and is now listed as an ESKAPE pathogen. Evolving with versatile capabilities, K. pneumoniae is a population composed of genetically and phenotypically diverse bacteria. However, epidemic K. pneumoniae are restricted to specific clonal lineages. The clonal group CG23 comprises hypervirulent K. pneumoniae displaying limited resistance to antimicrobials and is frequently associated with the community-acquired invasive syndrome. On the other hand, CG258 is another clonal group of K. pneumoniae that has evolved resistance to carbapenems, primarily by acquiring the carbapenemase-encoding genes through nosocomial carriage. Areas covered: With a focus on the high-risk K. pneumoniae clonal lineages CG23 and CG258, we review recent advances including the newly discovered lineage-specific genomic features, and the molecular basis of K. pneumoniae-associated epidemiology, antimicrobial resistance, and hypervirulence. Expert opinion: Both CG23 and CG258 can establish reservoirs in susceptible individuals. Empirical antimicrobial regimens that are prescribed for immediate treatments frequently create selective pressures that favor the high-risk lineages to develop into prominent colonizers. This dilemma reinforces the need for effective therapies that require rapid and accurate diagnosis of epidemic K. pneumoniae.
Collapse
Affiliation(s)
- Yi-Chyi Lai
- Department of Internal Medicine, Chung Shan Medical University Hospital , Taichung , Taiwan.,Department of Microbiology and Immunology, Chung Shan Medical University , Taichung , Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University , Taichung , Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital , Taichung , Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei , Taiwan.,Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
48
|
Hu YJ, Ogyu A, Cowling BJ, Fukuda K, Pang HH. Available evidence of antibiotic resistance from extended-spectrum β-lactamase-producing Enterobacteriaceae in paediatric patients in 20 countries: a systematic review and meta-analysis. Bull World Health Organ 2019; 97:486-501B. [PMID: 31258218 PMCID: PMC6593334 DOI: 10.2471/blt.18.225698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To make a systematic review of risk factors, outcomes and prevalence of extended-spectrum β-lactamase-associated infection in children and young adults in South-East Asia and the Western Pacific. METHODS Up to June 2018 we searched online databases for published studies of infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in individuals aged 0-21 years. We included case-control, cohort, cross-sectional and observational studies reporting patients positive and negative for these organisms. For the meta-analysis we used random-effects modelling of risk factors and outcomes for infection, and meta-regression for analysis of subgroups. We mapped the prevalence of these infections in 20 countries and areas using available surveillance data. FINDINGS Of 6665 articles scanned, we included 40 studies from 11 countries and areas in the meta-analysis. The pooled studies included 2411 samples testing positive and 2874 negative. A higher risk of infection with extended-spectrum β-lactamase-producing bacteria was associated with previous hospital care, notably intensive care unit stays (pooled odds ratio, OR: 6.5; 95% confidence interval, CI: 3.04 to 13.73); antibiotic exposure (OR: 4.8; 95% CI: 2.25 to 10.27); and certain co-existing conditions. Empirical antibiotic therapy was protective against infection (OR: 0.29; 95% CI: 0.11 to 0.79). Infected patients had longer hospital stays (26 days; 95% CI: 12.81 to 38.89) and higher risk of death (OR: 3.2; 95% CI: 1.82 to 5.80). The population prevalence of infection was high in these regions and surveillance data for children were scarce. CONCLUSION Antibiotic stewardship policies to prevent infection and encourage appropriate treatment are needed in South-East Asia and the Western Pacific.
Collapse
Affiliation(s)
- Yanhong Jessika Hu
- School of Public Health, Patrick Manson Building (North Wing), 7 Sassoon Road, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anju Ogyu
- School of Public Health, Patrick Manson Building (North Wing), 7 Sassoon Road, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- School of Public Health, Patrick Manson Building (North Wing), 7 Sassoon Road, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Keiji Fukuda
- School of Public Health, Patrick Manson Building (North Wing), 7 Sassoon Road, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Herbert H Pang
- School of Public Health, Patrick Manson Building (North Wing), 7 Sassoon Road, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
49
|
Vinueza-Burgos C, Ortega-Paredes D, Narváez C, De Zutter L, Zurita J. Characterization of cefotaxime resistant Escherichia coli isolated from broiler farms in Ecuador. PLoS One 2019; 14:e0207567. [PMID: 30951531 PMCID: PMC6450624 DOI: 10.1371/journal.pone.0207567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic usage in food animals is expected in Latin American countries. The poultry industry is an increasingly important segment of food production and contributor to AR. The objective of this study was to evaluate the prevalence, AR patterns and the characterization of relevant resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC-producing E. coli from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014 in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In total, 176 isolates were analyzed for AR patterns by the disk diffusion method and for blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that 98.3% of the cefotaxime-resistant isolates were multi-resistant to antibiotics. Low resistance was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the ones belonging to the blaCTX-M group (90.9%), specifically the blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates showed the mcr-1 gene. Poultry production systems represent a hotspot for AR in Ecuador, possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and regional plans of AR surveillance should therefore be considered.
Collapse
Affiliation(s)
- Christian Vinueza-Burgos
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencias a los Antibióticos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - David Ortega-Paredes
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencias a los Antibióticos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- Unidad de Investigaciones en Biomedicina, Zurita&Zurita Laboratorios, Quito, Ecuador
| | - Cristian Narváez
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencias a los Antibióticos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary, Ghent University, Merelbeke, Belgium
| | - Jeannete Zurita
- Unidad de Investigaciones en Biomedicina, Zurita&Zurita Laboratorios, Quito, Ecuador
| |
Collapse
|
50
|
Vinueza-Burgos C, Baquero M, Medina J, De Zutter L. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. Int J Food Microbiol 2019; 299:1-7. [PMID: 30933685 DOI: 10.1016/j.ijfoodmicro.2019.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 11/25/2022]
Abstract
Salmonella is a common foodborne pathogen in the poultry production systems. Its presence in this food industry is determined by the fact that it can survive and pass throughout the different steps in the poultry production. In this study we aimed to study the occurrence, genotypes and antimicrobial resistance of Salmonella collected from the broiler production chain within an integrated poultry company. Three hundred fourteen samples were collected in the feeding plant, farms and the slaughterhouse. Samples were cultured for Salmonella isolation according to the ISO6579/Amd 1. Isolates were further typed by Kauffmann-White scheme and pulse field gel electrophoresis (PFGE). Antimicrobial resistance to 11 antimicrobials was studied by disk diffusion tests and sequencing of ESBL genes. From the collected samples 70 (22%) were found to be Salmonella positive. The lowest Salmonella rates were found in feed samples while in farm and slaughterhouse samples Salmonella presence ranged from 5% to 88%. S. Infantis was the most common serotype (94%, 66/70). PFGE demonstrated that isolates belonged to 11 genotypes. Some genotypes were continuously identified throughout the production chain. 97% of the isolates showed resistance to at least one antimicrobial. Moreover, all S. Infantis isolates and one auto-agglutinable isolate showed resistance to at least 6 antimicrobials. 30 and 8 isolates were positive to blaCTX-M-65 and blaCTX-M-14 genes respectively. No blaKPC resistance genes were identified in any isolate. This study highlights the predominance of S. Infantis in the integrated poultry company. Genotypes showed that cross-contamination between stages of poultry production can occur, stressing the importance of implementing good hygiene practices in every level of the production. Moreover, multidrug resistance patterns and the presence of important ESBL genes have public health implications that need to be deeply discussed with a one health approach.
Collapse
Affiliation(s)
| | - María Baquero
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - José Medina
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary, Ghent University, Merelbeke, Belgium
| |
Collapse
|