1
|
Steffen K, Proux-Wéra E, Soler L, Churcher A, Sundh J, Cárdenas P. Whole genome sequence of the deep-sea sponge Geodia barretti (Metazoa, Porifera, Demospongiae). G3 (BETHESDA, MD.) 2023; 13:jkad192. [PMID: 37619978 PMCID: PMC10542158 DOI: 10.1093/g3journal/jkad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Sponges are among the earliest branching extant animals. As such, genetic data from this group are valuable for understanding the evolution of various traits and processes in other animals. However, like many marine organisms, they are notoriously difficult to sequence, and hence, genomic data are scarce. Here, we present the draft genome assembly for the North Atlantic deep-sea high microbial abundance species Geodia barretti Bowerbank 1858, from a single individual collected on the West Coast of Sweden. The nuclear genome assembly has 4,535 scaffolds, an N50 of 48,447 bp and a total length of 144 Mb; the mitochondrial genome is 17,996 bp long. BUSCO completeness was 71.5%. The genome was annotated using a combination of ab initio and evidence-based methods finding 31,884 protein-coding genes.
Collapse
Affiliation(s)
- Karin Steffen
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Estelle Proux-Wéra
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
2
|
Peters EE, Cahn JKB, Lotti A, Gavriilidou A, Steffens UAE, Loureiro C, Schorn MA, Cárdenas P, Vickneswaran N, Crews P, Sipkema D, Piel J. Distribution and diversity of 'Tectomicrobia', a deep-branching uncultivated bacterial lineage harboring rich producers of bioactive metabolites. ISME COMMUNICATIONS 2023; 3:50. [PMID: 37248312 PMCID: PMC10227082 DOI: 10.1038/s43705-023-00259-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Genomic and functional analyses of bacterial sponge symbionts belonging to the uncultivated candidate genus 'Entotheonella' has revealed them as the prolific producers of bioactive compounds previously identified from their invertebrate hosts. These studies also suggested 'Entotheonella' as the first members of a new candidate phylum, 'Tectomicrobia'. Here we analyzed the phylogenetic structure and environmental distribution of this as-yet sparsely populated phylum-like lineage. The data show that 'Entotheonella' and other 'Tectomicrobia' are not restricted to marine habitats but widely distributed among terrestrial locations. The inferred phylogenetic trees suggest several intra-phylum lineages with diverse lifestyles. Of these, the previously described 'Entotheonella' lineage can be more accurately divided into at least three different candidate genera with the terrestrial 'Candidatus Prasianella', the largely terrestrial 'Candidatus Allonella', the 'Candidatus Thalassonella' comprising sponge-associated members, and the more widely distributed 'Candidatus Entotheonella'. Genomic characterization of 'Thalassonella' members from a range of sponge hosts did not suggest a role as providers of natural products, despite high genomic similarity to 'Entotheonella' regarding primary metabolism and implied lifestyle. In contrast, the analysis revealed a correlation between the revised 'Entotheonella' 16S rRNA gene phylogeny and a specific association with sponges and their natural products. This feature might serve as a discovery method to accelerate the identification of new chemically rich 'Entotheonella' variants, and led to the identification of the first 'Entotheonella' symbiont in a non-tetractinellid sponge, Psammocinia sp., indicating a wide host distribution of 'Entotheonella'-based chemical symbiosis.
Collapse
Affiliation(s)
- Eike E Peters
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jackson K B Cahn
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alessandro Lotti
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Ursula A E Steffens
- Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Catarina Loureiro
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Michelle A Schorn
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, BioMedical Center, Uppsala University, Husargatan 3, 75124, Uppsala, Sweden
| | - Nilani Vickneswaran
- Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
3
|
Horna-Gray I, Lopez NA, Ahn Y, Saks B, Girer N, Hentschel U, McCarthy PJ, Kerkhof LJ, Häggblom MM. Desulfoluna spp. form a cosmopolitan group of anaerobic dehalogenating bacteria widely distributed in marine sponges. FEMS Microbiol Ecol 2022; 98:6596282. [PMID: 35641184 DOI: 10.1093/femsec/fiac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Host-specific microbial communities thrive within sponge tissues and this association between sponge and associated microbiota may be driven by the organohalogen chemistry of the sponge animal. Several sponge species produce diverse organobromine secondary metabolites (e.g. brominated phenolics, indoles, and pyrroles) that may function as a chemical defense against microbial fouling, infection or predation. In this study, anaerobic cultures prepared from marine sponges were amended with 2,6-dibromophenol as the electron acceptor and short chain organic acids as electron donors. We observed reductive dehalogenation from diverse sponge species collected at disparate temperate and tropical waters suggesting that biogenic organohalides appear to enrich for populations of dehalogenating microorganisms in the sponge animal. Further enrichment by successive transfers with 2,6-dibromophenol as the sole electron acceptor demonstrated the presence of dehalogenating bacteria in over 20 sponge species collected from temperate and tropical ecoregions in the Atlantic and Pacific Oceans and the Mediterranean Sea. The enriched dehalogenating strains were closely related to Desulfoluna spongiiphila and Desulfoluna butyratoxydans, suggesting a cosmopolitan association between Desulfoluna spp. and various marine sponges. In vivo reductive dehalogenation in intact sponges was also demonstrated. Organobromide-rich sponges may thus provide a specialized habitat for organohalide-respiring microbes and D. spongiiphila and/or its close relatives are responsible for reductive dehalogenation in geographically widely distributed sponge species.
Collapse
Affiliation(s)
- Isabel Horna-Gray
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Nora A Lopez
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Youngbeom Ahn
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Division of Microbiology , National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Brandon Saks
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Nathaniel Girer
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Peter J McCarthy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, USA
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, Handley KM, Steindler L. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. THE ISME JOURNAL 2021; 16:1163-1175. [PMID: 34876682 PMCID: PMC8941161 DOI: 10.1038/s41396-021-01165-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023]
Abstract
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
Collapse
Affiliation(s)
- I Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - V Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - M Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - B M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - K M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - L Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Waterworth SC, Parker-Nance S, Kwan JC, Dorrington RA. Comparative Genomics Provides Insight into the Function of Broad-Host Range Sponge Symbionts. mBio 2021; 12:e0157721. [PMID: 34519538 PMCID: PMC8546597 DOI: 10.1128/mbio.01577-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
The fossil record indicates that the earliest evidence of extant marine sponges (phylum Porifera) existed during the Cambrian explosion and that their symbiosis with microbes may have begun in their extinct ancestors during the Precambrian period. Many symbionts have adapted to their sponge host, where they perform specific, specialized functions. There are also widely distributed bacterial taxa such as Poribacteria, SAUL, and Tethybacterales that are found in a broad range of invertebrate hosts. Here, we added 11 new genomes to the Tethybacterales order, identified a novel family, and show that functional potential differs between the three Tethybacterales families. We compare the Tethybacterales with the well-characterized Entoporibacteria and show that these symbionts appear to preferentially associate with low-microbial abundance (LMA) and high-microbial abundance (HMA) sponges, respectively. Within these sponges, we show that these symbionts likely perform distinct functions and may have undergone multiple association events, rather than a single association event followed by coevolution. IMPORTANCE Marine sponges often form symbiotic relationships with bacteria that fulfil a specific need within the sponge holobiont, and these symbionts are often conserved within a narrow range of related taxa. To date, there exist only three known bacterial taxa (Entoporibacteria, SAUL, and Tethybacterales) that are globally distributed and found in a broad range of sponge hosts, and little is known about the latter two. We show that the functional potential of broad-host range symbionts is conserved at a family level and that these symbionts have been acquired several times over evolutionary history. Finally, it appears that the Entoporibacteria are associated primarily with high-microbial abundance sponges, while the Tethybacterales associate with low-microbial abundance sponges.
Collapse
Affiliation(s)
- Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Shirley Parker-Nance
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Environmental Observation Network, Elwandle Coastal Node, Gqeberha (Port Elizabeth), South Africa
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
6
|
Kumar G, Radha V, Jagadeeshwari U, Sasikala C, Venkata Ramana C. Bacterial communities of sponges from the wetland ecosystem of Little Rann of Kutch, India with particular reference to Planctomycetes. 3 Biotech 2020; 10:478. [PMID: 33094088 PMCID: PMC7568738 DOI: 10.1007/s13205-020-02449-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022] Open
Abstract
Five sponge specimens belonging to the genera Spongilla and Ciocalypta were collected from Little Rann of Kutch (in Gujarat, India) and analysed for associated microbiomes. Critical analysis was done with respect to members of the phylum Planctomycetes, using two different strategies; 1. Culture-independent metagenomic approach and 2. culture-dependent anaerobic enrichment for anammox-planctomycetes. The 16S rRNA gene (V1-V3 region) amplicon metagenome analysis revealed significant divergence in bacterial diversity, including Planctomycetes among the sponges analysed. Community metagenomics revealed a total of 376 Operational Taxonomic Units (OTUs) belonging to 41 different phyla. OTUs belonging to Proteobacteria was the most abundant (38%) among the sponge analysed. The KEGG annotation predicted a total of 6909 KEGG orthologs (KOs); most of the KOs are associated with membrane transport, xenobiotic degradation, production of secondary metabolites, amino acid metabolism and carbohydrate metabolism. In the culture-dependent study, FISH analysis confirmed the association of anammox-planctomycetes with sponges. Partial 16S rRNA gene sequences of two planctomycetes (JC545, JC543) were cladding with those of uncultured Phycisphaerae class. The other three putative anammox bacteria (JC541, JC542, JC544) formed a different clade with "Candidatus Brocadia anammoxidans". These three putative bacteria believably represent new species/genus related to "Candidatus Brocadia".
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046 India
| | - Vaddavalli Radha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046 India
| | - Uppadda Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085 India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085 India
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046 India
| |
Collapse
|
7
|
Oluwabusola ET, Tabudravu JN, Al Maqbali KS, Annang F, Pérez-Moreno G, Reyes F, Jaspars M. Antiparasitic Activity of Bromotyrosine Alkaloids and New Analogues Isolated from the Fijian Marine Sponge Aplysinella rhax. Chem Biodivers 2020; 17:e2000335. [PMID: 32697400 DOI: 10.1002/cbdv.202000335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Ten bromotyrosine alkaloids were isolated and characterised from the marine sponge Aplysinella rhax (de Laubenfels 1954) collected from the Fiji Islands, which included one new bromotyrosine analogue, psammaplin P and two other analogues, psammaplin O and 3-bromo-2-hydroxy-5-(methoxycarbonyl)benzoic acid, which have not been previously reported from natural sources. HR-ESI-MS, 1D and 2D NMR spectroscopic methods were used in the elucidation of the compounds. Bisaprasin, a biphenylic dimer of psammaplin A, showed moderate activity with IC50 at 19±5 and 29±6 μM against Trypanzoma cruzi Tulahuen C4, and the lethal human malaria species Plasmodium falciparum clone 3D7, respectively, while psammaplins A and D exhibited low activity against both parasites. This is the first report of the antimalarial and antitrypanosomal activity of the psammaplin-type compounds. Additionally, the biosynthesis hypotheses of three natural products were proposed.
Collapse
Affiliation(s)
- Emmanuel T Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, AB24 3UE, Old Aberdeen, UK
| | - Jioji N Tabudravu
- School of Forensic and Applied Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Khalid S Al Maqbali
- School of Forensic and Applied Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-, Armilla, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016-, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-, Armilla, Granada, Spain
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, AB24 3UE, Old Aberdeen, UK
| |
Collapse
|
8
|
Swierts T, Cleary DFR, de Voogd NJ. Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol Ecol 2019; 94:5115559. [PMID: 30289448 PMCID: PMC6196991 DOI: 10.1093/femsec/fiy194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
Sponges harbor complex communities of microorganisms that carry out essential roles for the functioning and survival of their hosts. In some cases, genetically related sponges from different geographic regions share microbes, while in other cases microbial communities are more similar in unrelated sponges collected from the same location. To better understand how geography and host phylogeny cause variation in the prokaryotic community of sponges, we compared the prokaryotic community of 44 giant barrel sponges (Xestospongia spp.). These sponges belonged to six reproductively isolated genetic groups from eight areas throughout the Indo-Pacific region. Using Illumina sequencing, we obtained 440 000 sequences of the 16S rRNA gene V3V4 variable region that were assigned to 3795 operational taxonomic units (OTUs). The prokaryotic community of giant barrel sponges was characterized by 71 core OTUs (i.e. OTUs present in each specimen) that represented 57.5% of the total number of sequences. The relative abundance of these core OTUs varied significantly among samples, and this variation was predominantly related to the geographic origin of the sample. These results show that in giant barrel sponges, the variation in the prokaryotic community is primarily associated with geography as opposed to phylogenetic relatedness.
Collapse
Affiliation(s)
- T Swierts
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands.,Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| | - D F R Cleary
- Departamento de Biologia CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - N J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands.,Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
9
|
Bibi F, Alvi SA, Al-Sofyani A, Naseer MI, Yasir M, Azhar EI. Pyrosequencing reveals sponge specific bacterial communities in marine sponges of Red Sea, Saudi Arabia. Saudi J Biol Sci 2019; 27:67-73. [PMID: 31889819 PMCID: PMC6933160 DOI: 10.1016/j.sjbs.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Bacterial communities of marine sponges are believed to be an important partner for host survival but remain poorly studied. Sponges show difference in richness and abundance of microbial population inhabiting them. Three marine sponges belonging to the species of Pione vastifica, Siphonochalina siphonella and Suberea mollis were collected from Red sea in Jeddah and were investigated using high throughput sequencing. Highly diverse communities containing 105 OTUs were identified in S. mollis host. Only 61 and 43 OTUs were found in P. vastifica and S. siphonella respectively. We identified 10 different bacterial phyla and 31 genera using 27,356 sequences. Most of the OTUs belong to phylum Proteobacteria (29%–99%) comprising of Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria where later two were only detected in HMA sponge, S. mollis. A number of 16S rRNA sequences (25%) were not identified to phylum level and may be novel taxa. Richness of bacterial community and Shannon, Simpson diversity revealed that sponge S. mollis harbors high diversity compared to other two LMA sponges. Dominance of Proteobacteria in sponges may indicate an ecological significance of this phylum in the Red sea sponges. These differences in bacterial composition may be due to difference in location site or host responses to environmental conditions. To the best of our knowledge, the microbial communities of these sponges have never been studied before and this is first attempt to unravel bacterial diversity using PCR-based 454-pyrosequencing method.
Collapse
Affiliation(s)
- Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King AbdulAziz University, 21589, Jeddah, Saudi Arabia
| | - Sana Akhtar Alvi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abdulmohsin Al-Sofyani
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King AbdulAziz University, 21589, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King AbdulAziz University, 21589, Jeddah, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King AbdulAziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Knobloch S, Jóhannsson R, Marteinsson V. Bacterial diversity in the marine spongeHalichondria paniceafrom Icelandic waters and host-specificity of its dominant symbiont “CandidatusHalichondribacter symbioticus”. FEMS Microbiol Ecol 2018; 95:5173036. [DOI: 10.1093/femsec/fiy220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Stephen Knobloch
- Microbiology Group, Department of Research and Innovation, Matís ohf., Vinlandsleid 12, 113 Reykjavik, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Saemundargata 2, 101 Reykjavík, Iceland
| | - Ragnar Jóhannsson
- Marine and Freshwater Research Institute, Hafrannsóknastofnun, Skúlagata 4, 101 Reykjavik, Iceland
| | - Viggó Marteinsson
- Microbiology Group, Department of Research and Innovation, Matís ohf., Vinlandsleid 12, 113 Reykjavik, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Saemundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
11
|
Podell S, Blanton JM, Neu A, Agarwal V, Biggs JS, Moore BS, Allen EE. Pangenomic comparison of globally distributed Poribacteria associated with sponge hosts and marine particles. ISME JOURNAL 2018; 13:468-481. [PMID: 30291328 DOI: 10.1038/s41396-018-0292-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/10/2023]
Abstract
Candidatus Poribacteria is a little-known bacterial phylum, previously characterized by partial genomes from a single sponge host, but never isolated in culture. We have reconstructed multiple genome sequences from four different sponge genera and compared them to recently reported, uncharacterized Poribacteria genomes from the open ocean, discovering shared and unique functional characteristics. Two distinct, habitat-linked taxonomic lineages were identified, designated Entoporibacteria (sponge-associated) and Pelagiporibacteria (free-living). These lineages differed in flagellar motility and chemotaxis genes unique to Pelagiporibacteria, and highly expanded families of restriction endonucleases, DNA methylases, transposases, CRISPR repeats, and toxin-antitoxin gene pairs in Entoporibacteria. Both lineages shared pathways for facultative anaerobic metabolism, denitrification, fermentation, organosulfur compound utilization, type IV pili, cellulosomes, and bacterial proteosomes. Unexpectedly, many features characteristic of eukaryotic host association were also shared, including genes encoding the synthesis of eukaryotic-like cell adhesion molecules, extracellular matrix digestive enzymes, phosphoinositol-linked membrane glycolipids, and exopolysaccharide capsules. Complete Poribacteria 16S rRNA gene sequences were found to contain multiple mismatches to "universal" 16S rRNA gene primer sets, substantiating concerns about potential amplification failures in previous studies. A newly designed primer set corrects these mismatches, enabling more accurate assessment of Poribacteria abundance in diverse marine habitats where it may have previously been overlooked.
Collapse
Affiliation(s)
- Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA
| | - Jessica M Blanton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA
| | - Alexander Neu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA
| | - Jason S Biggs
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA, USA
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA. .,Division of Biological Sciences, University of California, La Jolla, San Diego, CA, USA. .,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
12
|
Najafi A, Moradinasab M, Nabipour I. First Record of Microbiomes of Sponges Collected From the Persian Gulf, Using Tag Pyrosequencing. Front Microbiol 2018; 9:1500. [PMID: 30034382 PMCID: PMC6043863 DOI: 10.3389/fmicb.2018.01500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
The Persian Gulf is a special habitat of marine sponges whose bacterial communities are under-investigated. Recently, next-generation sequencing technology has comprehensively improved the knowledge of marine sponge-associated bacteria. For the first time, this study aimed to evaluate the diversity of the Persian Gulf sponge-associated bacteria using tag pyrosequencing in Iran. In this study, 10 sponge samples from 6 different taxonomic orders were collected from the Persian Gulf using SCUBA diving. The diversity of the bacteria associated with the marine sponges was investigated using the 16S rRNA gene PCR-tagged pyrosequencing method. A total of 68,628 high-quality sequences were obtained and clustered at a 97% similarity into 724 unique operational taxonomic units (OTUs), representing 17 bacterial phyla. Cyanobacteria was the most abundant phylum in the sponges, followed by Proteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria. Other phyla were detected as minor groups of bacteria. Bacterial community richness, Shannon, and Simpson indices revealed the highest diversity in sponge S11 (Dictyoceratida sp.) compared to other sponges. This study showed a diverse structure of bacterial communities associated with the Persian Gulf sponges. The dominance of Cyanobacteria may suggest an ecological importance of this phylum in the Persian Gulf sponges.
Collapse
Affiliation(s)
- Akram Najafi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Moradinasab
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
13
|
Steinert G, Gutleben J, Atikana A, Wijffels RH, Smidt H, Sipkema D. Coexistence of poribacterial phylotypes among geographically widespread and phylogenetically divergent sponge hosts. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:80-91. [PMID: 29194987 DOI: 10.1111/1758-2229.12609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Marine sponges are benthic 'filter-feeding' invertebrates that can host dense and diverse bacterial, archaeal and eukaryotic communities. Due to the finding of several genes encoding symbiosis factors, such as adhesins, ankyrin repeats and tetratricopeptide repeats, the candidate phylum 'Poribacteria' is considered as a promising model microorganism for studying the origin of host-symbiont interactions in sponges. However, relatively little is known about its global diversity and phylogenetic distribution among different sponge hosts. Therefore, in this study we investigated phylogenetic relationships among poribacterial phylotypes and generated a phylogenetic network to examine the distribution and intraspecific diversity of the phylotypes between phylogenetically divergent host-sponges at a global scale. For this study 361 poribacterial 16S rRNA gene sequences obtained by Sanger sequencing from 15 different countries and 8 marine regions were gathered. We could demonstrate that the candidate phylum 'Poribacteria' is composed of diverse phylotypes, which are distributed among a wide range of phylogenetically divergent sponge hosts. The current phylogenetic analyses found neither conclusive evidence for co-speciation with its hosts, nor biogeographical correlation. Moreover, we identified a novel poribacterial clade, which might represent a link between the previously established four 'Poribacteria' clades.
Collapse
Affiliation(s)
- Georg Steinert
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Wilhelmshaven, 26382, Germany
| | - Johanna Gutleben
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Akhirta Atikana
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong Science Center (CSC) Cibinong, Bogor, 16911, Indonesia
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, 6700 AA, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8026, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
14
|
Gao ZM, Zhou GW, Huang H, Wang Y. The Cyanobacteria-Dominated Sponge Dactylospongia elegans in the South China Sea: Prokaryotic Community and Metagenomic Insights. Front Microbiol 2017; 8:1387. [PMID: 28790992 PMCID: PMC5524777 DOI: 10.3389/fmicb.2017.01387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022] Open
Abstract
The South China Sea is a special reservoir of sponges of which prokaryotic communities are less studied. Here, a new record of the sponge Dactylospongia elegans is reported near the coast of Jinqing Island in the South China Sea, and its prokaryotic community is comprehensively investigated. Sponge specimens displayed lower microbial diversity compared with surrounding seawater. At the phylum level, prokaryotic communities were consistently dominated by Proteobacteria, followed by Cyanobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Gemmatimonadetes, Thaumarchaeota, and Poribacteria. Operational taxonomic unit (OTU) analysis alternatively showed that the most abundant symbiont was the sponge-specific cyanobacterial species “Candidatus Synechococcus spongiarum,” followed by OTUs belonging to the unidentified Chloroflexi and Acidobacteria. Phylogenetic tree based on 16S-23S internal transcribed spacer regions indicated that the dominated cyanobacterial OTU represented a new clade of “Ca. Synechococcus spongiarum.” More reliable metagenomic data further revealed that poribacterial symbionts were highly abundant and only secondary to the cyanobacterial symbiont. One draft genome for each of the Cyanobacteria, Chloroflexi and Acidobacteria and three poribacterial genomes were extracted from the metagenomes. Among them, genomes affiliated with the Chloroflexi and Acidobacteria were reported for the first time in sponge symbionts. Eukaryotic-like domains were found in all the binned genomes, indicating their potential symbiotic roles with the sponge host. The high quality of the six recovered genomes of sponge symbionts from the sponge D. elegans makes it possible to understand their symbiotic roles and interactions with the sponge host as well as among one another.
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Institute of Deep Sea Science and Engineering, Chinese Academy of SciencesSanya, China
| | - Guo-Wei Zhou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of SciencesSanya, China
| |
Collapse
|
15
|
Matcher GF, Waterworth SC, Walmsley TA, Matsatsa T, Parker‐Nance S, Davies‐Coleman MT, Dorrington RA. Keeping it in the family: Coevolution of latrunculid sponges and their dominant bacterial symbionts. Microbiologyopen 2017; 6:e00417. [PMID: 27781403 PMCID: PMC5387304 DOI: 10.1002/mbo3.417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 01/13/2023] Open
Abstract
The Latrunculiidae are a family of cold water sponges known for their production of bioactive pyrroloiminoquinone alkaloids. Previously it was shown that the bacterial community associated with a Tsitsikamma sponge species comprises unusual bacterial taxa and is dominated by a novel Betaproteobacterium. Here, we have characterized the bacterial communities associated with six latrunculid species representing three genera (Tsitsikamma, Cyclacanthia, and Latrunculia) as well as a Mycale species, collected from Algoa Bay on the South African southeast coast. The bacterial communities of all seven sponge species were dominated by a single Betaproteobacterium operational taxonomic unit (OTU0.03 ), while a second OTU0.03 was dominant in the Mycale sp. The Betaproteobacteria OTUs from the different latrunculid sponges are closely related and their phylogenetic relationship follows that of their hosts. We propose that the latrunculid Betaproteobacteria OTUs are members of a specialized group of sponge symbionts that may have coevolved with their hosts. A single dominant Spirochaetae OTU0.03 was present in the Tsitsikamma and Cyclacanthia sponge species, but absent from the Latrunculia and Mycale sponges. This study sheds new light on the interactions between latrunculid sponges and their bacterial communities and may point to the potential involvement of dominant symbionts in the biosynthesis of the bioactive secondary metabolites.
Collapse
Affiliation(s)
- Gwynneth F. Matcher
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| | | | - Tara A. Walmsley
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
- Department of BiotechnologyVaal University of TechnologyVanderbijlparkSouth Africa
| | - Tendayi Matsatsa
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| | - Shirley Parker‐Nance
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| | - Michael T. Davies‐Coleman
- Department of ChemistryRhodes UniversityGrahamstownSouth Africa
- Faculty of Natural ScienceUniversity of the Western CapeCape TownSouth Africa
| | | |
Collapse
|
16
|
Hestetun JT, Dahle H, Jørgensen SL, Olsen BR, Rapp HT. The Microbiome and Occurrence of Methanotrophy in Carnivorous Sponges. Front Microbiol 2016; 7:1781. [PMID: 27881974 PMCID: PMC5101230 DOI: 10.3389/fmicb.2016.01781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/24/2016] [Indexed: 12/03/2022] Open
Abstract
As shown by recent studies, filter-feeding sponges are known to host a wide variety of microorganisms. However, the microbial community of the non-filtering carnivorous sponges (Porifera, Cladorhizidae) has been the subject of less scrutiny. Here, we present the results from a comparative study of the methanotrophic carnivorous sponge Cladorhiza methanophila from a mud volcano-rich area at the Barbados Accretionary Prism, and five carnivorous species from the Jan Mayen Vent Field (JMVF) at the Arctic Mid-Ocean Ridge. Results from 16S rRNA microbiome data indicate the presence of a diverse assemblage of associated microorganisms in carnivorous sponges mainly from the Gamma- and Alphaproteobacteria, Flavobacteriaceae, and Thaumarchaeota. While the abundance of particular groups varied throughout the dataset, we found interesting similarities to previous microbiome results from non-carnivorous deep sea sponges, suggesting that the carnivorous sponges share characteristics of a previously hypothesized putative deep-sea sponge microbial community. Chemolithoautotrophic symbiosis was confirmed for C. methanophila through a microbial community with a high abundance of Methylococcales and very light isotopic δ13C and δ15N ratios (-60 to -66‰/3.5 to 5.2‰) compared to the other cladorhizid species (-22 to -24‰/8.5 to 10.5‰). We provide evidence for the presence of putative sulfur-oxidizing Gammaproteobacteria in the arctic cladorhizids; however, δ13C and δ15N signatures did not provide evidence for significant chemoautotrophic symbiosis in this case, and the slightly higher abundance of cladorhizids at the JMVF site compared to the nearby deep sea likely stem from an increased abundance of prey rather than a more direct vent association. The phylogenetic position of C. methanophila in relation to other carnivorous sponges was established using a three-gene phylogenetic analysis, and it was found to be closely related to other non-methanotrophic Cladorhiza species with a similar morphology included in the dataset, suggesting a recent origin for methanotrophy in this species. C. methanophila remains the only known carnivorous sponge with a strong, chemolithoautotrophic symbiont association, and methanotrophic symbiosis does not seem to be a widespread property within the Cladorhizidae.
Collapse
Affiliation(s)
- Jon T. Hestetun
- Marine Biodiversity Group, Department of Biology, University of BergenBergen, Norway
- Centre for Geobiology, University of BergenBergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of BergenBergen, Norway
| | | | - Bernt R. Olsen
- Marine Biodiversity Group, Department of Biology, University of BergenBergen, Norway
- Centre for Geobiology, University of BergenBergen, Norway
| | - Hans T. Rapp
- Marine Biodiversity Group, Department of Biology, University of BergenBergen, Norway
- Centre for Geobiology, University of BergenBergen, Norway
- Uni Research Environment, Uni Research ASBergen, Norway
| |
Collapse
|
17
|
Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Sci Rep 2016; 6:35860. [PMID: 27796326 PMCID: PMC5087111 DOI: 10.1038/srep35860] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/05/2016] [Indexed: 01/25/2023] Open
Abstract
Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.
Collapse
|
18
|
Souza DT, Genuário DB, Silva FSP, Pansa CC, Kavamura VN, Moraes FC, Taketani RG, Melo IS. Analysis of bacterial composition in marine sponges reveals the influence of host phylogeny and environment. FEMS Microbiol Ecol 2016; 93:fiw204. [PMID: 27702764 DOI: 10.1093/femsec/fiw204] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/14/2016] [Accepted: 10/02/2016] [Indexed: 01/10/2023] Open
Abstract
Bacterial communities associated with sponges are influenced by environmental factors; however, some degree of genetic influence of the host on the microbiome is also expected. In this work, 16S rRNA gene amplicon sequencing revealed diverse bacterial phylotypes based on the phylogenies of three tropical sponges (Aplysina fulva, Aiolochroia crassa and Chondrosia collectrix). Despite their sympatric occurrence, the studied sponges presented different bacterial compositions that differed from those observed in seawater. However, lower dissimilarities in bacterial communities were observed within sponges from the same phylogenetic group. The relationships between operational taxonomic units (OTUs) recovered from the sponges and database sequences revealed associations among sequences from unrelated sponge species and sequences retrieved from diverse environmental samples. In addition, one Proteobacteria OTU retrieved from A. fulva was identical to sequences previously reported from A. fulva specimens collected along the Brazilian coast. Based on these results, we conclude that bacterial communities associated with marine sponges are shaped by host identity, while environmental conditions seem to be less important in shaping symbiont communities. This is the first study to assess bacterial communities associated with marine sponges in the remote St. Peter and St. Paul Archipelago using amplicon sequencing of the 16S rRNA gene.
Collapse
Affiliation(s)
- Danilo T Souza
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Diego B Genuário
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| | - Fabio Sérgio P Silva
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Camila C Pansa
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Vanessa N Kavamura
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| | - Fernando C Moraes
- Rio de Janeiro Botanical Garden Research Institute, 22460-030, Rio de Janeiro, RJ, Brazil
- National Museum, Federal University of Rio de Janeiro, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Rodrigo G Taketani
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| | - Itamar S Melo
- Environmental Microbiology Laboratory, Embrapa Environment, 13820-000, Jaguariúna, SP, Brazil
| |
Collapse
|
19
|
Abstract
A paradigm shift has recently transformed the field of biological science; molecular advances have revealed how fundamentally important microorganisms are to many aspects of a host’s phenotype and evolution. In the process, an era of “holobiont” research has emerged to investigate the intricate network of interactions between a host and its symbiotic microbial consortia. Marine sponges are early-diverging metazoa known for hosting dense, specific, and often highly diverse microbial communities. Here we synthesize current thoughts about the environmental and evolutionary forces that influence the diversity, specificity, and distribution of microbial symbionts within the sponge holobiont, explore the physiological pathways that contribute to holobiont function, and describe the molecular mechanisms that underpin the establishment and maintenance of these symbiotic partnerships. The collective genomes of the sponge holobiont form the sponge hologenome, and we highlight how the forces that define a sponge’s phenotype in fact act on the genomic interplay between the different components of the holobiont.
Collapse
|
20
|
Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ, Hoggard M, Schupp PJ. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 2016; 4:e1936. [PMID: 27114882 PMCID: PMC4841226 DOI: 10.7717/peerj.1936] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 01/03/2023] Open
Abstract
Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges.
Collapse
Affiliation(s)
- Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Wilhelmshaven, Germany; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Peter Deines
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Rachel L Simister
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | - Michael Hoggard
- School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg , Wilhelmshaven , Germany
| |
Collapse
|
21
|
Cuvelier ML, Blake E, Mulheron R, McCarthy PJ, Blackwelder P, Thurber RLV, Lopez JV. Two distinct microbial communities revealed in the sponge Cinachyrella. Front Microbiol 2014; 5:581. [PMID: 25408689 PMCID: PMC4219487 DOI: 10.3389/fmicb.2014.00581] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/15/2014] [Indexed: 11/25/2022] Open
Abstract
Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.
Collapse
Affiliation(s)
- Marie L. Cuvelier
- Biological Sciences Department, Florida International UniversityMiami, FL, USA
| | - Emily Blake
- Oceanographic Center, Nova Southeastern UniversityDania Beach, FL, USA
| | - Rebecca Mulheron
- Oceanographic Center, Nova Southeastern UniversityDania Beach, FL, USA
| | - Peter J. McCarthy
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute, Florida Atlantic UniversityFort Pierce, FL, USA
| | - Patricia Blackwelder
- Oceanographic Center, Nova Southeastern UniversityDania Beach, FL, USA
- Marine Geosciences, Rosenstiel School of Marine and Atmospheric Science, University of MiamiMiami, FL, USA
| | | | - Jose V. Lopez
- Oceanographic Center, Nova Southeastern UniversityDania Beach, FL, USA
| |
Collapse
|
22
|
Steinert G, Whitfield S, Taylor MW, Thoms C, Schupp PJ. Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:594-603. [PMID: 24838766 DOI: 10.1007/s10126-014-9575-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
Marine sponges contain dense and diverse microbial communities, which are renowned as a source of bioactive metabolites. The biological activities of sponge-microbe natural products span a broad spectrum, from antibacterial and antifungal to antitumor and antiviral applications. However, the potential of sponge-derived compounds has not been fully realized, due largely to the acknowledged "supply issue." Most bacteria from environmental samples have resisted cultivation on artificial growth media, and cultivation of sponge-associated bacteria has been a major focus in the search for novel marine natural products. One approach to isolate so-called "uncultivable" microorganisms from different environments is the diffusion growth chamber method. Here, we describe the first application of diffusion growth chambers for the isolation of cultivable and previously uncultivated bacteria from sponges. The study was conducted by implanting diffusion growth chambers in the tissue of Rhabdastrella globostellata reef sponges. In total, 255 16S rRNA gene sequences were obtained, with phylogenetic analyses revealing their affiliations with the Alpha- and Gammaproteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. Fifteen sequences represented previously uncultivated bacteria belonging to the Bacteroidetes and Proteobacteria (Alpha and Gamma classes). Our results indicate that the diffusion growth chamber approach can be successfully applied in a natural, living marine environment such as sponges.
Collapse
Affiliation(s)
- Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Kamke J, Rinke C, Schwientek P, Mavromatis K, Ivanova N, Sczyrba A, Woyke T, Hentschel U. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features. PLoS One 2014; 9:e87353. [PMID: 24498082 PMCID: PMC3909097 DOI: 10.1371/journal.pone.0087353] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/19/2013] [Indexed: 01/02/2023] Open
Abstract
The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.
Collapse
Affiliation(s)
- Janine Kamke
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Rinke
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Patrick Schwientek
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kostas Mavromatis
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Alexander Sczyrba
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
24
|
Jeong IH, Kim KH, Lee HS, Park JS. Analysis of bacterial diversity in sponges collected from Chuuk and Kosrae Islands in Micronesia. J Microbiol 2014; 52:20-6. [PMID: 24390834 DOI: 10.1007/s12275-014-3619-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
The bacteria resident in sponges collected from Chuuk Lagoon and Kosrae Island of Micronesia were investigated using the 16S rRNA gene PCR-tagged pyrosequencing method. These sponges were clustered into 5 groups based on their bacterial composition. Diversity indexes and cumulative rank abundance curves showed the different compositions of bacterial communities in the various groups of sponges. Reads related to the phylum Chloroflexi were observed predominantly (9.7-68.2%) in 9 sponges of 3 groups and unobserved in the other 2 groups. The Chloroflexi-containing group had similar bacterial patterns at the phylum and lower taxonomic levels, for example, significant proportions of Acidobacteria, Gemmatimonadetes, SBR1093, and PAUC34f were observed in most members of this group. The three groups in the Chloroflexi-containing group, however, showed some minor differences in the composition and diversity. The other two groups contained high proportions of Proteobacteria (>87%) or Bacteroidetes (>61%) and different composition and diversity compared to the Chloroflexi-containing group and each other. Four pairs of specimens with the same species showed similar bacterial profiles, but, the bacteria in sponges were highly specific at the individual level.
Collapse
Affiliation(s)
- In-Hye Jeong
- Department of Biological Science and Biotechnology, Hannam University, Daejeon, 305-811, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Alex A, Silva V, Vasconcelos V, Antunes A. Evidence of unique and generalist microbes in distantly related sympatric intertidal marine sponges (Porifera: Demospongiae). PLoS One 2013; 8:e80653. [PMID: 24265835 PMCID: PMC3827218 DOI: 10.1371/journal.pone.0080653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (~81%), Spirochaetes (~7%) and Chloroflexi (~3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.
Collapse
Affiliation(s)
- Anoop Alex
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vitor Silva
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Vitor Vasconcelos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Analysis of bacterial diversity in sponges collected off Chujado, an Island in Korea, using barcoded 454 pyrosequencing: Analysis of a distinctive sponge group containing Chloroflexi. J Microbiol 2013; 51:570-7. [DOI: 10.1007/s12275-013-3426-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/04/2013] [Indexed: 01/10/2023]
|
27
|
Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME JOURNAL 2013; 7:2287-300. [PMID: 23842652 DOI: 10.1038/ismej.2013.111] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems.
Collapse
|
28
|
Hardoim CCP, Cox CJ, Peixoto RS, Rosado AS, Costa R, van Elsas JD. Diversity of the candidate phylum Poribacteria in the marine sponge Aplysina fulva. Braz J Microbiol 2013; 44:329-34. [PMID: 24159324 PMCID: PMC3804218 DOI: 10.1590/s1517-83822013000100048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 07/02/2012] [Indexed: 11/22/2022] Open
Abstract
Poribacterial clone libraries constructed for Aplysina fulva sponge specimens were analysed with respect to diversity and phylogeny. Results imply the coexistence of several, prevalently “intra-specific” poribacterial genotypes in a single sponge host, and suggest quantitative analysis as a desirable approach in studies of the diversity and distribution of poribacterial cohorts in marine sponges.
Collapse
Affiliation(s)
- C C P Hardoim
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve, Gambelas, Faro, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Karlińska-Batres K, Wörheide G. Phylogenetic diversity and community structure of the symbionts associated with the coralline sponge Astrosclera willeyana of the Great Barrier Reef. MICROBIAL ECOLOGY 2013; 65:740-752. [PMID: 23525793 DOI: 10.1007/s00248-013-0212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge-coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).
Collapse
Affiliation(s)
- Klementyna Karlińska-Batres
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
30
|
Arellano SM, Lee OO, Lafi FF, Yang J, Wang Y, Young CM, Qian PY. Deep sequencing of Myxilla (Ectyomyxilla) methanophila, an epibiotic sponge on cold-seep tubeworms, reveals methylotrophic, thiotrophic, and putative hydrocarbon-degrading microbial associations. MICROBIAL ECOLOGY 2013; 65:450-61. [PMID: 23052927 DOI: 10.1007/s00248-012-0130-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/26/2012] [Indexed: 05/20/2023]
Abstract
The encrusting sponge Myxilla (Ectyomyxilla) methanophila (Poecilosclerida: Myxillidae) is an epibiont on vestimentiferan tubeworms at hydrocarbon seeps on the upper Louisiana slope of the Gulf of Mexico. It has long been suggested that this sponge harbors methylotrophic bacteria due to its low δ(13)C value and high methanol dehydrogenase activity, yet the full community of microbial associations in M. methanophila remained uncharacterized. In this study, we sequenced 16S rRNA genes representing the microbial community in M. methanophila collected from two hydrocarbon-seep sites (GC234 and Bush Hill) using both Sanger sequencing and next-generation 454 pyrosequencing technologies. Additionally, we compared the microbial community in M. methanophila to that of the biofilm collected from the associated tubeworm. Our results revealed that the microbial diversity in the sponges from both sites was low but the community structure was largely similar, showing a high proportion of methylotrophic bacteria of the genus Methylohalomonas and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria of the genera Cycloclasticus and Neptunomonas. Furthermore, the sponge microbial clone library revealed the dominance of thioautotrophic gammaproteobacterial symbionts in M. methanophila. In contrast, the biofilm communities on the tubeworms were more diverse and dominated by the chemoorganotrophic Moritella at GC234 and methylotrophic Methylomonas and Methylohalomonas at Bush Hill. Overall, our study provides evidence to support previous suggestion that M. methanophila harbors methylotrophic symbionts and also reveals the association of PAH-degrading and thioautotrophic microbes in the sponge.
Collapse
Affiliation(s)
- Shawn M Arellano
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, Schmitt S, Webster NS. 'Sponge-specific' bacteria are widespread (but rare) in diverse marine environments. ISME JOURNAL 2012; 7:438-43. [PMID: 23038173 DOI: 10.1038/ismej.2012.111] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Numerous studies have reported the existence of sponge-specific 16S ribosomal RNA (rRNA) gene sequence clusters, representing bacteria found in sponges but not detected in other environments, such as seawater. The advent of deep-sequencing technologies allows us to examine the rare microbial biosphere in order to establish whether these bacteria are truly sponge specific, or are more widely distributed but only at abundances below the detection limit of conventional molecular approaches. We screened >12 million publicly available 16S rRNA gene pyrotags derived from 649 seawater, sediment, hydrothermal vent and coral samples from temperate, tropical and polar regions. We detected 77 of the 173 previously described sponge-specific clusters in seawater or other non-sponge samples, albeit generally at extremely low abundances. Sequences representing the candidate phylum 'Poribacteria', previously thought to be largely restricted to sponges, were recovered from 46 (out of 411) seawater and 41 (out of 129) sediment samples. While the presence of an organism does not imply that it is active in situ, our results do suggest that many 'sponge-specific' bacteria occur more widely outside of sponge hosts than previously thought.
Collapse
Affiliation(s)
- Michael W Taylor
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Inbaneson SJ, Ravikumar S. In vitro antiplasmodial activity of Clathria vulpina sponge associated bacteria against Plasmodium falciparum. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Kamke J, Bayer K, Woyke T, Hentschel U. Exploring symbioses by single-cell genomics. THE BIOLOGICAL BULLETIN 2012; 223:30-43. [PMID: 22983031 DOI: 10.1086/bblv223n1p30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-cell genomics has advanced the field of microbiology from the analysis of microbial metagenomes where information is "drowning in a sea of sequences," to recognizing each microbial cell as a separate and unique entity. Single-cell genomics employs Phi29 polymerase-mediated whole-genome amplification to yield microgram-range genomic DNA from single microbial cells. This method has now been applied to a handful of symbiotic systems, including bacterial symbionts of marine sponges, insects (grasshoppers, termites), and vertebrates (mouse, human). In each case, novel insights were obtained into the functional genomic repertoire of the bacterial partner, which, in turn, led to an improved understanding of the corresponding host. Single-cell genomics is particularly valuable when dealing with uncultivated microorganisms, as is still the case for many bacterial symbionts. In this review, we explore the power of single-cell genomics for symbiosis research and highlight recent insights into the symbiotic systems that were obtained by this approach.
Collapse
Affiliation(s)
- Janine Kamke
- Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs Platz 3, 97082 Würzburg, Germany
| | | | | | | |
Collapse
|
34
|
Jackson SA, Kennedy J, Morrissey JP, O'Gara F, Dobson ADW. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. MICROBIAL ECOLOGY 2012; 64:105-116. [PMID: 22281804 DOI: 10.1007/s00248-011-0002-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
Marine sponges are host to numerically vast and phylogenetically diverse bacterial communities, with 26 major phyla to date having been found in close association with sponge species worldwide. Analyses of these microbial communities have revealed many sponge-specific novel genera and species. These endosymbiotic microbes are believed to play significant roles in sponge physiology including the production of an array of bioactive secondary metabolites. Here, we report on the use of culture-based and culture-independent (pyrosequencing) techniques to elucidate the bacterial community profiles associated with the marine sponges Raspailia ramosa and Stelligera stuposa sampled from a single geographical location in Irish waters and with ambient seawater. To date, little is known about the microbial ecology of sponges of these genera. Culture isolation grossly underestimated sponge-associated bacterial diversity. Four bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) were represented amongst ~200 isolates, compared with ten phyla found using pyrosequencing. Long average read lengths of ~430 bp (V1-V3 region of 16S rRNA gene) allowed for robust resolution of sequences to genus level. Bacterial OTUs (2,109 total), at 95% sequence similarity, from ten bacterial phyla were recovered from R. ramosa, 349 OTUs were identified in S. stuposa representing eight phyla, while 533 OTUs from six phyla were found in surrounding seawater. Bacterial communities differed significantly between sponge species and the seawater. Analysis of the data for sponge-specific taxa revealed that 2.8% of classified reads from the sponge R. ramosa can be defined as sponge-specific, while 26% of S. stuposa sequences represent sponge-specific bacteria. Novel sponge-specific clusters were identified, whereas the majority of previously reported sponge-specific clusters (e.g. Poribacteria) were absent from these sponge species. This deep and robust analysis provides further evidence that the microbial communities associated with marine sponge species are highly diverse and divergent from one another and appear to be host-selected through as yet unknown processes.
Collapse
Affiliation(s)
- Stephen A Jackson
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
35
|
White JR, Patel J, Ottesen A, Arce G, Blackwelder P, Lopez JV. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One 2012; 7:e38204. [PMID: 22701613 PMCID: PMC3373494 DOI: 10.1371/journal.pone.0038204] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Background Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge “holobiont” system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. Methodology/Principal Findings We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs). Approximately 65,550 rRNA sequences (24%) could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa), and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. Conclusions/Significance Slight shifts in several bacterial taxa were observed between communities sampled during spring and fall seasons. New 16 S rDNA sequences and concomitant identifications greatly expand the microbial community profile for this model reef sponge, and will likely be useful as a baseline for any future comparisons regarding sponge microbial community dynamics.
Collapse
Affiliation(s)
- James R. White
- Nova Southeastern University Oceanographic Center, Dania Beach, Florida, United States of America
| | - Jignasa Patel
- Nova Southeastern University Oceanographic Center, Dania Beach, Florida, United States of America
| | - Andrea Ottesen
- Food and Drug Administration Office of Regulatory Science, Division of Microbiology, College Park, Maryland, United States of America
| | - Gabriela Arce
- Food and Drug Administration Office of Regulatory Science, Division of Microbiology, College Park, Maryland, United States of America
| | - Patricia Blackwelder
- Nova Southeastern University Oceanographic Center, Dania Beach, Florida, United States of America
- University of Miami Center for Advanced Microscopy and Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, United States of America
| | - Jose V. Lopez
- Nova Southeastern University Oceanographic Center, Dania Beach, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Roué M, Quévrain E, Domart-Coulon I, Bourguet-Kondracki ML. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat Prod Rep 2012; 29:739-51. [PMID: 22660834 DOI: 10.1039/c2np20040f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of the chemistry and microbiology of calcareous sponges (Calcispongiae) is provided, highlighting the potential of these sessile filter-feeding marine invertebrates and their associated bacteria for the discovery of new bioactive natural products. 103 compounds are presented and 116 references cited.
Collapse
Affiliation(s)
- Mélanie Roué
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, C.P. 54, 75005 Paris, France
| | | | | | | |
Collapse
|
37
|
Richardson C, Hill M, Marks C, Runyen-Janecky L, Hill A. Experimental manipulation of sponge/bacterial symbiont community composition with antibiotics: sponge cell aggregates as a unique tool to study animal/microorganism symbiosis. FEMS Microbiol Ecol 2012; 81:407-18. [DOI: 10.1111/j.1574-6941.2012.01365.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Malcolm Hill
- Department of Biology; University of Richmond; Richmond; VA; USA
| | - Carolyn Marks
- Department of Biology; University of Richmond; Richmond; VA; USA
| | | | - April Hill
- Department of Biology; University of Richmond; Richmond; VA; USA
| |
Collapse
|
38
|
In vitro antiplasmodial activity of marine sponge Clathria indica associated bacteria against Palsmodium falciparum. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60367-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME JOURNAL 2011; 6:564-76. [PMID: 21993395 DOI: 10.1038/ismej.2011.116] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.
Collapse
Affiliation(s)
- Susanne Schmitt
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schmitt S, Deines P, Behnam F, Wagner M, Taylor MW. Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiol Ecol 2011; 78:497-510. [DOI: 10.1111/j.1574-6941.2011.01179.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Peter Deines
- Centre for Microbial Innovation; School of Biological Sciences; The University of Auckland; Auckland; New Zealand
| | - Faris Behnam
- Department of Microbial Ecology; University of Vienna; Vienna; Austria
| | - Michael Wagner
- Department of Microbial Ecology; University of Vienna; Vienna; Austria
| | - Michael W. Taylor
- Centre for Microbial Innovation; School of Biological Sciences; The University of Auckland; Auckland; New Zealand
| |
Collapse
|
41
|
Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl Environ Microbiol 2011; 77:7207-16. [PMID: 21856832 DOI: 10.1128/aem.05285-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The giant barrel sponges Xestospongia muta and Xestospongia testudinaria are ubiquitous in tropical reefs of the Atlantic and Pacific Oceans, respectively. They are key species in their respective environments and are hosts to diverse assemblages of bacteria. These two closely related sponges from different oceans provide a unique opportunity to examine the evolution of sponge-associated bacterial communities. Mitochondrial cytochrome oxidase subunit I gene sequences from X. muta and X. testudinaria showed little divergence between the two species. A detailed analysis of the bacterial communities associated with these sponges, comprising over 900 full-length 16S rRNA gene sequences, revealed remarkable similarity in the bacterial communities of the two species. Both sponge-associated communities include sequences found only in the two Xestospongia species, as well as sequences found also in other sponge species and are dominated by three bacterial groups, Chloroflexi, Acidobacteria, and Actinobacteria. While these groups consistently dominate the bacterial communities revealed by 16S rRNA gene-based analysis of sponge-associated bacteria, the depth of sequencing undertaken in this study revealed clades of bacteria specifically associated with each of the two Xestospongia species, and also with the genus Xestospongia, that have not been found associated with other sponge species or other ecosystems. This study, comparing the bacterial communities associated with closely related but geographically distant sponge hosts, gives new insight into the intimate relationships between marine sponges and some of their bacterial symbionts.
Collapse
|
42
|
Hochmuth T, Niederkrüger H, Gernert C, Siegl A, Taudien S, Platzer M, Crews P, Hentschel U, Piel J. Linking chemical and microbial diversity in marine sponges: possible role for poribacteria as producers of methyl-branched fatty acids. Chembiochem 2011; 11:2572-8. [PMID: 21077090 DOI: 10.1002/cbic.201000510] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many marine sponges contain massive numbers of largely uncultivated, phylogenetically diverse bacteria that seem to be important contributors to the chemistry of these animals. Insights into the diversity, origin, distribution, and function of their metabolic gene communities are crucial to dissect the chemical ecology and biotechnological potential of sponge symbionts. This study reveals a sharp dichotomy between high and low microbial abundance sponges with respect to polyketide synthase (PKS) gene content, the presence of methyl-branched fatty acids, and the presence of members of the symbiotic candidate phylum "Poribacteria". For the symbiont-rich sponge Cacospongia mycofijiensis, a source of the tubulin-inhibiting fijianolides (=laulimalides), near-exhaustive large-scale sequencing of PKS gene-derived PCR amplicons was conducted. Although these amplicons exhibit high diversity at the sequence level, almost all of them belong to a single, architecturally unique group of PKSs present in "Poribacteria" and are proposed to synthesize methyl-branched fatty acids. Three components of this PKS were studied in vitro, providing initial insight into its biochemistry.
Collapse
Affiliation(s)
- Thomas Hochmuth
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Webster NS, Taylor MW. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 2011; 14:335-46. [PMID: 21443739 DOI: 10.1111/j.1462-2920.2011.02460.x] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many marine sponges harbour dense and diverse microbial communities of considerable ecological and biotechnological importance. While the past decade has seen tremendous advances in our understanding of the phylogenetic diversity of sponge-associated microorganisms (more than 25 bacterial phyla have now been reported from sponges), it is only in the past 3-4 years that the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with genomics and experimental approaches yielding novel insights into symbiont function. Key steps in the nitrogen cycle [denitrification, anaerobic ammonium oxidation (Anammox)] have recently been demonstrated in sponges for the first time, with diverse bacteria - including the sponge-associated candidate phylum 'Poribacteria'- being implicated in these processes. In this minireview we examine recent major developments in the microbiology of sponges, and identify several research areas (e.g. biology of viruses in sponges, effects of environmental stress) that we believe are deserving of increased attention.
Collapse
Affiliation(s)
- Nicole S Webster
- Australian Institute of Marine Science, PMB 3, Townsville Mail Centre, Qld 4810, Australia
| | | |
Collapse
|
44
|
Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 2010; 18:455-63. [PMID: 20674366 DOI: 10.1016/j.tim.2010.07.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Many marine organisms have coevolved symbiotic relationships with nitrogen-fixing bacteria in nitrogen limited environments such as coral reefs. In addition, some of these organisms also harbor microbes that carry out nitrification and denitrification. Prokaryotes involved in nitrogen fixation and other nitrogen transformations are symbionts in a range of eukaryotic hosts in the marine environment including shipworms, diatoms, corals and sponges. Molecular genetic approaches, and other analytical techniques, have provided exciting new insights into symbiont diversity and the relationship between host and symbiont. We review the current state of knowledge of these symbioses and highlight important avenues for future studies.
Collapse
Affiliation(s)
- Cara L Fiore
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | |
Collapse
|
45
|
Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME JOURNAL 2010; 5:61-70. [PMID: 20613790 DOI: 10.1038/ismej.2010.95] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we present a single-cell genomics approach for the functional characterization of the candidate phylum Poribacteria, members of which are nearly exclusively found in marine sponges. The microbial consortia of the Mediterranean sponge Aplysina aerophoba were singularized by fluorescence-activated cell sorting, and individual microbial cells were subjected to phi29 polymerase-mediated 'whole-genome amplification'. Pyrosequencing of a single amplified genome (SAG) derived from a member of the Poribacteria resulted in nearly 1.6 Mb of genomic information distributed among 554 contigs analyzed in this study. Approximately two-third of the poribacterial genome was sequenced. Our findings shed light on the functional properties and lifestyle of a possibly ancient bacterial symbiont of marine sponges. The Poribacteria are mixotrophic bacteria with autotrophic CO(2)-fixation capacities through the Wood-Ljungdahl pathway. The cell wall is of Gram-negative origin. The Poribacteria produce at least two polyketide synthases (PKSs), one of which is the sponge-specific Sup-type PKS. Several putative symbiosis factors such as adhesins (bacterial Ig-like domains, lamininin G domain proteins), adhesin-related proteins (ankyrin, fibronectin type III) and tetratrico peptide repeat domain-encoding proteins were identified, which might be involved in mediating sponge-microbe interactions. The discovery of genes coding for 24-isopropyl steroids implies that certain fossil biomarkers used to date the origins of metazoan life on earth may possibly be of poribacterial origin. Single-cell genomic approaches, such as those shown herein, contribute to a better understanding of beneficial microbial consortia, of which most members are, because of the lack of cultivation, inaccessible by conventional techniques.
Collapse
|
46
|
Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 2010; 8:608-28. [PMID: 20411118 PMCID: PMC2857354 DOI: 10.3390/md8030608] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/04/2010] [Accepted: 03/12/2010] [Indexed: 12/21/2022] Open
Abstract
The marine environment is extremely diverse, with huge variations in pressure and temperature. Nevertheless, life, especially microbial life, thrives throughout the marine biosphere and microbes have adapted to all the divergent environments present. Large scale DNA sequence based approaches have recently been used to investigate the marine environment and these studies have revealed that the oceans harbor unprecedented microbial diversity. Novel gene families with representatives only within such metagenomic datasets represent a large proportion of the ocean metagenome. The presence of so many new gene families from these uncultured and highly diverse microbial populations represents a challenge for the understanding of and exploitation of the biology and biochemistry of the ocean environment. The application of new metagenomic and single cell genomics tools offers new ways to explore the complete metabolic diversity of the marine biome.
Collapse
|