1
|
Jiang M, Zhu L, Xie S, Ren Z, Chen X, Liu M, Yin G. Transcriptome Profiling, Cloning, and Characterization of AnGlu04478, a Ginsenoside Hydrolyzing β-Glucosidase from Aspergillus niger NG1306. Curr Microbiol 2024; 82:56. [PMID: 39718650 PMCID: PMC11668888 DOI: 10.1007/s00284-024-04012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024]
Abstract
β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.5 kDa, pI = 5.1), as a participant in the ginsenosides biotransformation process. This gene was cloned and expressed in Escherichia coli BL21 Transetta (DE3). The AnGlu04478 protein was purified using a Ni2+ column, and its enzymatic properties were characterized. Purified AnGlu04478 exhibited a specific activity of 32.97 U/mg when assayed against pNPG. Under optimal conditions (pH 4.5, temperature 40 °C), the kinetic parameters, Km and Vmax, for pNPG were 1.55 mmol/L and 0.014 mmol/min, respectively. Cu2+ displayed an inhibitory effect on AnGlu04478, whereas Ca2+, Co2+, and Ni2+ ions had minimal impact. The enzyme showed tolerance to ethanol and was largely unaffected by glucose feedback inhibition. Testing with ginsenosides as substrates revealed selective hydrolysis at the C3 position of ginsenosides Rb1, Rb2, Rb3, and Rc, with the metabolic pathway delineated as Rb1 → GypXVII, Rb2 → C-O, Rb3 → C-Mx1 → C-Mx, and Rc → C-Mc1. The conversion rates of ginsenosides Rb1, Rb2, Rb3, and Rc varied from 2.58 to 20.63%. With 0.5 U purified enzyme and 0.5 mg total ginsenosides, incubated at 40 °C for 12 h, the conversion rates were 42.6% for GypXVII, 10.4% for C-O, 6.27% for C-Mx1, 26.96% for C-Mx, and 90% for Rc. These results suggest that AnGlu04478 displays substrate promiscuity as a β-glucosidase, thus broadening the potential for ginsenoside biotransformation.
Collapse
Affiliation(s)
- Mingxing Jiang
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Ling Zhu
- College of Biological Resources and Food Engineering, Qujing Normal University, 222 San Jiang Road, Qujing, 655000, Yunnan, China
| | - Shuhan Xie
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Zhen Ren
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Xiu Chen
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Minjiao Liu
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Genshen Yin
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China.
| |
Collapse
|
2
|
Hu Y, Li Y, Cao Y, Shen Y, Zou X, Liu J, Zhao J. Advancements in enzymatic biotransformation and bioactivities of rare ginsenosides: A review. J Biotechnol 2024; 392:78-89. [PMID: 38945483 DOI: 10.1016/j.jbiotec.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Ginsenoside, the principal active constituent of ginseng, exhibits enhanced bioavailability and medicinal efficacy in rare ginsenosides compared to major ginsenosides. Current research is focused on efficiently and selectively removing sugar groups attached to the major ginsenoside sugar chains to convert them into rare ginsenosides that meet the demands of medical industry and functional foods. The methods for preparing rare ginsenosides encompass chemical, microbial, and enzymatic approaches. Among these, the enzyme conversion method is highly favored by researchers due to its exceptional specificity and robust efficiency. This review summarizes the biological activities of different rare ginsenosides, explores the various glycosidases used in the biotransformation of different major ginsenosides as substrates, and elucidates their respective corresponding biotransformation pathways. These findings will provide valuable references for the development, utilization, and industrial production of ginsenosides.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yiming Li
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi Cao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yuzhu Shen
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Xianjun Zou
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130012, China
| | - Jun Zhao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China.
| |
Collapse
|
3
|
Goodwin PH, Hsiang T. Cell-Free Extracts of the Ginseng Soil Bacterium Pseudomonas plecoglossicida Promote Suppression of Resistance of American Ginseng ( Panax quinquefolius) to Root Rot Caused by Ilyonectria mors-panacis. BIOLOGY 2024; 13:671. [PMID: 39336098 PMCID: PMC11428298 DOI: 10.3390/biology13090671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024]
Abstract
A prior report showed that soil previously planted with American ginseng (Panax quinquefolius) contained compound(s) which could reduce ginseng resistance to root infection by Ilyonectria mors-panacis, and this was not found in extracts from ginseng roots or soils not previously planted with ginseng. However, the origin of this ginseng-related factor in ginseng soils is unknown. An isolate of Pseudomonas plecoglossicida obtained from soil where P. quinquefolius had been harvested grew more in culture media when ginseng root extract was included, indicating the use of compounds in the extract as nutrients. Treatment with cell-free extracts from media containing ginseng root extracts where P. plecoglossicida had been cultured resulted in root lesions caused by I. mors-panacis being significantly larger than roots treated with fresh media containing root extract or with cell-free media inoculated with the same bacterial isolate without root extract. Levels of ginsenosides in the media decreased over time with incubation. Genome sequencing revealed that the bacterium had genes homologous to those reported for ginsenoside metabolism, which can release sugars for microbial growth. Thus, a ginseng soil bacterium, P. plecoglossicida, can create compound(s) suppressive to root rot resistance, similar to that found in soils previously planted with ginseng, indicating that the activity suppressing root rot resistance in soil previously planted with ginseng may be of microbial origin, utilizing compounds from ginseng roots.
Collapse
Affiliation(s)
- Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Yang YY, Jing SL, Shao JL, Chen JX, Zhang WF, Wan SY, Shen YP, Yang H, Yu W. Purification and immobilization of β-glucosidase using surface modified mesoporous silica Santa Barbara Amorphous 15 for eco-friendly preparation of sagittatoside A. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:50. [PMID: 39177672 PMCID: PMC11343960 DOI: 10.1007/s13659-024-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Functionalized mesoporous materials have become a promising carrier for enzyme immobilization. In this study, Santa Barbara Amorphous 15 (SBA-15) was modified by N-aminoethyl-γ-aminopropyl trimethoxy (R). R-SBA-15 was employed to purify and immobilize recombinant β-glucosidase from Terrabacter ginsenosidimutans (BgpA) in one step for the first time. Optimum pH of the constructed R-SBA-15@BgpA were 7.0, and it has 20 ℃ higher optimal temperature than free enzyme. Relative activity of R-SBA-15@BgpA still retained > 70% at 42 ℃ after 8-h incubation. The investigation on organic reagent resistance revealed that the immobilized enzyme can maintain strong stability in 15% DMSO. In leaching test and evaluation of storage stability, only trace amount of protein was detected in buffer of the immobilized enzyme after storage at 4 ℃ for 33 days, and the immobilized BgpA still maintained > 50% relative activity. It also demonstrated good reusability, with 76.1% relative activity remaining after fourteen successive enzymatic hydrolyses of epimedin A to sagittatoside A. The newly proposed strategy is an effective approach for the purification and immobilization of BgpA concurrently. In addition, R-SBA-15@BgpA was demonstrated to have high efficiency and stability in this application, suggesting its great feasibility and potential to produce bioactive compounds such as secondary glycosides or aglycones from natural products.
Collapse
Affiliation(s)
- Ya-Ya Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Shun-Li Jing
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Jia-Li Shao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Ji-Xuan Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Wei-Feng Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Si-Yuan Wan
- Development Department, Jiangsu Grand Xianle Pharmaceutical Co., Ltd, Yancheng, 224555, People's Republic of China
| | - Yu-Ping Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
| | - Wei Yu
- Development Department, Jiangsu Grand Xianle Pharmaceutical Co., Ltd, Yancheng, 224555, People's Republic of China.
| |
Collapse
|
5
|
Morshed MN, Akter R, Karim MR, Iqbal S, Kang SC, Yang DC. Bioconversion, Pharmacokinetics, and Therapeutic Mechanisms of Ginsenoside Compound K and Its Analogues for Treating Metabolic Diseases. Curr Issues Mol Biol 2024; 46:2320-2342. [PMID: 38534764 DOI: 10.3390/cimb46030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.
Collapse
Affiliation(s)
- Md Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
6
|
Zhou K, Zhang Y, Zhou Y, Xu M, Yu S. Production of Gypenoside XVII from Ginsenoside Rb1 by Enzymatic Transformation and Their Anti-Inflammatory Activity In Vitro and In Vivo. Molecules 2023; 28:7001. [PMID: 37836844 PMCID: PMC10574100 DOI: 10.3390/molecules28197001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The enzymatic transformation of the sugar moiety of the gypenosides provides a new way to obtain more pharmacologically active components. A gene encoding a family 1 glycosyl hydrolase from Bifidobacterium dentium was cloned and expressed in Escherichia coli. The recombinant enzyme was purified, and its molecular weight was approximately 44 kDa. The recombinant BdbglB exhibited an optimal activity at 35 °C and pH 5.4. The purified recombinant enzyme, exhibiting β-glucosidase activity, was used to produce gypenoside XVII (Gyp XVII) via highly selective and efficient hydrolysis of the outer glucose moiety linked to the C-3 position in ginsenoside Rb1 (G-Rb1). Under the optimal reaction conditions for large scale production of gypenoside XVII, 40 g ginsenoside Rb1 was transformed by using 45 g crude enzyme at pH 5.4 and 35 °C for 10 h with a molar yield of 100%. Furthermore, the anti-inflammatory effects of the product gypenoside XVII and its conversion precursor ginsenoside Rb1 were evaluated by using lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages and the xylene-induced acute inflammation model of mouse ear edema, respectively. Gypenoside XVII showed improved anti-inflammatory activity, which significantly inhibited the generation of TNF-α and IL-6 more effectively than its precursor ginsenoside Rb1. In addition, the swelling inhibition rate of gypenoside XVII was 80.55%, while the rate of its precursor was 40.47%, the results also indicated that gypenoside XVII had better anti-inflammatory activity than ginsenoside Rb1. Hence, this enzymatic method would be useful in the large-scale production of gypenoside XVII, which may become a new potent anti-inflammatory candidate drug.
Collapse
Affiliation(s)
| | | | | | | | - Shanshan Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (K.Z.); (Y.Z.); (Y.Z.); (M.X.)
| |
Collapse
|
7
|
Zhang L, Wang L, Chen Y, Yang Y, Xia G, Guo Y, Yang H, Shen Y, Meyer AS. Biotransformation of ginsenoside Rb 1 and Rd to four rare ginsenosides and evaluation of their anti-melanogenic effects. J Nat Med 2023; 77:939-952. [PMID: 37329418 DOI: 10.1007/s11418-023-01719-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Improving physiological activity of primary ginsenosides through biotransformation is of great significance for food applications. In this study, gynostapenoside XVII, gynostapenoside LXXV, ginsenoside F2, and ginsenoside CK were obtained by enzymolysis of an accessible extract composed of ginsenoside Rb1 and Rd. Their effects on melanin content and tyrosinase activity were compared in vitro, and molecular docking simulation was employed to elucidate the interaction between tyrosinase and individual saponin. The results indicated that four rare ginsenosides decreased tyrosinase activity, melanin content and microphthalmia-associated transcription factor (MITF) expression level, more greatly than their primary ginsenosides, and they were more readily to bind with ASP10 and GLY68 at active site of tyrosinase to inhibit tyrosinase activity as well. These findings suggested that the rare ginsenosides obtained by enzymolysis had excellent anti-melanogenic effect, which could expand the application of ginsenosides in the field of functional foods and health supplements.
Collapse
Affiliation(s)
- Le Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liwei Wang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yufei Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yaya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Guohua Xia
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yuao Guo
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
8
|
Chu LL, Hanh NTY, Quyen ML, Nguyen QH, Lien TTP, Do KV. Compound K Production: Achievements and Perspectives. Life (Basel) 2023; 13:1565. [PMID: 37511939 PMCID: PMC10381408 DOI: 10.3390/life13071565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Compound K (CK) is one of the major metabolites found in mammalian blood and organs following oral administration of Panax plants. CK, also known as minor ginsenoside, can be absorbed in the systemic circulation. It has garnered significant attention in healthcare and medical products due to its pharmacological activities, such as antioxidation, anticancer, antiproliferation, antidiabetics, neuroprotection, and anti-atherogenic activities. However, CK is not found in natural ginseng plants but in traditional chemical synthesis, which uses toxic solvents and leads to environmental pollution during the harvest process. Moreover, enzymatic reactions are impractical for industrial CK production due to low yield and high costs. Although CK could be generated from major ginsenosides, most ginsenosides, including protopanaxatriol-oleanane and ocotillol-type, are not converted into CK by catalyzing β-glucosidase. Therefore, microbial cell systems have been used as a promising solution, providing a safe and efficient approach to CK production. This review provides a summary of various approaches for the production of CK, including chemical and enzymatic reactions, biotransformation by the human intestinal bacteria and endophytes as well as engineered microbes. Moreover, the approaches for CK production have been discussed to improve the productivity of target compounds.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Trinh Yen Hanh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - My Linh Quyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Tran Thi Phuong Lien
- Faculty of Biology and Agricultural Engineering, Hanoi Pagadogical University 2, Vinh Yen City 283460, Vietnam
| | - Khanh Van Do
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
9
|
Zhu H, Zhang R, Huang Z, Zhou J. Progress in the Conversion of Ginsenoside Rb1 into Minor Ginsenosides Using β-Glucosidases. Foods 2023; 12:foods12020397. [PMID: 36673490 PMCID: PMC9858181 DOI: 10.3390/foods12020397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, minor ginsenosides have received increasing attention due to their outstanding biological activities, yet they are of extremely low content in wild ginseng. Ginsenoside Rb1, which accounts for 20% of the total ginsenosides, is commonly used as a precursor to produce minor ginsenosides via β-glucosidases. To date, many research groups have used different approaches to obtain β-glucosidases that can hydrolyze ginsenoside Rb1. This paper provides a compilation and analysis of relevant literature published mainly in the last decade, focusing on enzymatic hydrolysis pathways, enzymatic characteristics and molecular mechanisms of ginsenoside Rb1 hydrolysis by β-glucosidases. Based on this, it can be concluded that: (1) The β-glucosidases that convert ginsenoside Rb1 are mainly derived from bacteria and fungi and are classified as glycoside hydrolase (GH) families 1 and 3, which hydrolyze ginsenoside Rb1 mainly through the six pathways. (2) Almost all of these β-glucosidases are acidic and neutral enzymes with molecular masses ranging from 44-230 kDa. Furthermore, the different enzymes vary widely in terms of their optimal temperature, degradation products and kinetics. (3) In contrast to the GH1 β-glucosidases, the GH3 β-glucosidases that convert Rb1 show close sequence-function relationships. Mutations affecting the substrate binding site might alter the catalytic efficiency of enzymes and yield different prosapogenins. Further studies should focus on elucidating molecular mechanisms and improving overall performances of β-glucosidases for better application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hongrong Zhu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-6592-0830; Fax: +86-871-6592-0952
| |
Collapse
|
10
|
Murugesan M, Mathiyalagan R, Boopathi V, Kong BM, Choi SK, Lee CS, Yang DC, Kang SC, Thambi T. Production of Minor Ginsenoside CK from Major Ginsenosides by Biotransformation and Its Advances in Targeted Delivery to Tumor Tissues Using Nanoformulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193427. [PMID: 36234555 PMCID: PMC9565578 DOI: 10.3390/nano12193427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 05/13/2023]
Abstract
For over 2000 years, ginseng (roots of Panax ginseng C.A. Meyer) has been used as a traditional herbal medicine. Ginsenosides are bioactive compounds present in ginseng responsible for the pharmacological effects and curing various acute diseases as well as chronic diseases including cardiovascular disease, cancer and diabetes. Structurally, ginsenosides consist of a hydrophobic aglycone moiety fused with one to four hydrophilic glycoside moieties. Based on the position of sugar units and their abundance, ginsenosides are classified into major and minor ginsenosides. Despite the great potential of ginsenosides, major ginsenosides are poorly absorbed in the blood circulation, resulting in poor bioavailability. Interestingly, owing to their small molecular weight, minor ginsenosides exhibit good permeability across cell membranes and bioavailability. However, extremely small quantities of minor ginsenosides extracted from ginseng plants cannot fulfill the requirement of scientific and clinical studies. Therefore, the production of minor ginsenosides in mass production is a topic of interest. In addition, their poor solubility and lack of targetability to tumor tissues limits their application in cancer therapy. In this review, various methods used for the transformation of major ginsenosides to minor ginsenoside compound K (CK) are summarized. For the production of CK, various transformation methods apply to major ginsenosides. The challenges present in these transformations and future research directions for producing bulk quantities of minor ginsenosides are discussed. Furthermore, attention is also paid to the utilization of nanoformulation technology to improve the bioavailability of minor ginsenoside CK.
Collapse
Affiliation(s)
- Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Sung-Keun Choi
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Chang-Soon Lee
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| |
Collapse
|
11
|
Binary Effects of Gynostemma Gold Nanoparticles on Obesity and Inflammation via Downregulation of PPARγ/CEPBα and TNF-α Gene Expression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092795. [PMID: 35566145 PMCID: PMC9104634 DOI: 10.3390/molecules27092795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoscience is a multidisciplinary skill with elucidated nanoscale particles and their advantages in applications to various fields. Owing to their economical synthesis, biocompatible nature, and widespread biomedical and environmental applications, the green synthesis of metal nanoparticles using medicinal plants has become a potential research area in biomedical research and functional food formulations. Gynostemma pentaphyllum (GP) has been extensively used in traditional Chinese medicine to cure several diseases, including diabetes mellitus (DM). This is the first study in which we examined the efficacy of G. pentaphyllum gold nanoparticles (GP-AuNPs) against obesity and related inflammation. GP extract was used as a capping agent to reduce Au2+ to Au0 to form stable gold nanoparticles. The nanoparticles were characterized by using UV–VIS spectroscopy, and TEM images were used to analyze morphology. In contrast, the existence of the functional group was measured using FTIR, and size and shape were examined using XRD analysis. In vitro analysis on GP-AuNPs was nontoxic to RAW 264.7 cells and 3T3-L1 cells up to a specific concentration. It significantly decreased lipid accumulation in 3T3-L1 obese and reduced NO production in Raw 264.7 macrophage cells. The significant adipogenic genes PPARγ and CEPBα and a major pro-inflammatory cytokine TNF-α expression were quantified using RT-PCR. The GP-AuNPs decreased the face of these genes remarkably, revealing the antiadipogenic and anti-inflammatory activity of our synthesized GP-AuNPs. This study represents thorough research on the antiobesity effect of Gynostemma pentaphyllum gold nanoparticles synthesized using a green approach and the efficacy instead of related inflammatory responses.
Collapse
|
12
|
Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN. Bioengineered microbial platforms for biomass-derived biofuel production - A review. CHEMOSPHERE 2022; 288:132528. [PMID: 34637864 DOI: 10.1016/j.chemosphere.2021.132528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Global warming issues, rapid fossil fuel diminution, and increasing worldwide energy demands have diverted accelerated attention in finding alternate sources of biofuels and energy to combat the energy crisis. Bioconversion of lignocellulosic biomass has emerged as a prodigious way to produce various renewable biofuels such as biodiesel, bioethanol, biogas, and biohydrogen. Ideal microbial hosts for biofuel synthesis should be capable of using high substrate quantity, tolerance to inhibiting substances and end-products, fast sugar transportation, and amplified metabolic fluxes to yielding enhanced fermentative bioproduct. Genetic manipulation and microbes' metabolic engineering are fascinating strategies for the economical production of next-generation biofuel from lignocellulosic feedstocks. Metabolic engineering is a rapidly developing approach to construct robust biofuel-producing microbial hosts and an important component for future bioeconomy. This approach has been widely adopted in the last decade for redirecting and revamping the biosynthetic pathways to obtain a high titer of target products. Biotechnologists and metabolic scientists have produced a wide variety of new products with industrial relevance through metabolic pathway engineering or optimizing native metabolic pathways. This review focuses on exploiting metabolically engineered microbes as promising cell factories for the enhanced production of advanced biofuels.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Mengyuan Zhong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
13
|
Liu J, Wang Y, Yu Z, Lv G, Huang X, Lin H, Ma C, Lin Z, Qu P. Functional Mechanism of Ginsenoside Compound K on Tumor Growth and Metastasis. Integr Cancer Ther 2022; 21:15347354221101203. [PMID: 35615883 PMCID: PMC9152193 DOI: 10.1177/15347354221101203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, as the most important constituents of ginseng, have been extensively investigated in cancer chemoprevention and therapeutics. Among the ginsenosides, Compound K (CK), a rare protopanaxadiol type of ginsenoside, has been most broadly used for cancer treatment due to its high anticancer bioactivity. However, the functional mechanism of CK in cancer is not well known. This review describes the structure, transformation and pharmacological activity of CK and discusses the functional mechanisms of CK and its metabolites, which regulate signaling pathways related to tumor growth and metastasis. CK inhibits tumor growth by inducing tumor apoptosis and tumor cell differentiation, regulates the tumor microenvironment by suppressing tumor angiogenesis-related proteins, and downregulates the roles of immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs). There is currently much research on the potential development of CK as a new strategy when administered alone or in combination with other compounds.
Collapse
Affiliation(s)
- Jinlong Liu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuchen Wang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhun Yu
- Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangfu Lv
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaowei Huang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - He Lin
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chao Ma
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Peng Qu
- National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
14
|
Efficient Production of Various Minor Ginsenosides from PPD- and PPT-type Major Ginsenosides Using a Single Recombinant BglFc Isolated from Flavobacterium chilense. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0099-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Cloning and Characterization of a Ginsenoside-Hydrolyzing α-L-Arabinofuranosidase, CaAraf51, From Cellulosimicrobium aquatile Lyp51. Curr Microbiol 2020; 77:2783-2791. [PMID: 32535650 DOI: 10.1007/s00284-020-02078-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Moutai Jiuqu is a famous aromatic raw material of Maotai flavor liquor in China. It is brewed at high temperature and contains many kinds of bacteria, molds, and yeasts. There are many useful glycoside hydrolases in these microfloras, from which efficient glycoside hydrolases can be screened for biotransformation of natural saponins. In this study, an α-L-arabinofuranosidase gene (CaAraf51, 1524 bp, 507 amino acid, 55.07 kDa, and pI = 4.8) was cloned from Cellulosimicrobium aquatile Lyp51, which was isolated from the Maotai Jiuqu. The CaAraf51 was heterogeneously expressed in E. coli BL21 (DE3) and purified by N-terminal His-tag with the Ni2+-affinity column chromatography. The results show that purified CaAraf51 has a 6.8-fold purification factor and specific activity of 15 U/mg. Under optimal conditions (pH 5.0, temperature 40 °C), kinetic parameters Km of CaAraf51 for pNPαAraf and Rc were 1.1 and 0.57 mM, the Vmax were 25 and 6.25 μmol/min/mg, respectively. 90% of 0.87 mg Rc substrate can be transformed by 9.6 U purified CaAraf51 in 1 mL reaction system under suitable conditions (30 °C, pH 7.5 phosphate buffer, 1 h). In addition, we also tested the effects of metal ions and chemical agents on the activity of CaAraf51. According to systematically studied its function and enzymatic properties, CaAraf51 has excellent value and potential of biotransformation Rc into Rd.
Collapse
|
16
|
Zhang Y, Qiu Z, Qiu Y, Su T, Qu P, Jia A. Functional Regulation of Ginsenosides on Myeloid Immunosuppressive Cells in the Tumor Microenvironment. Integr Cancer Ther 2020; 18:1534735419886655. [PMID: 31729239 PMCID: PMC6859683 DOI: 10.1177/1534735419886655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ginsenosides, the key components isolated from ginseng, have been extensively studied in antitumor treatment. Numerous studies have shown that ginsenosides have direct function in tumor cells through the induction of cancer cell apoptosis and the inhibition of cancer cell growth and enhance the antitumor immunity through the activation of cytotoxic T lymphocytes and natural killer cells. However, little is known about the function of ginsenosides on myeloid immunosuppressive cells including dendritic cells in tumor, tumor-associated macrophages, and myeloid-derived suppressor cells in the tumor microenvironments. Those myeloid immunosuppressive cells play important roles in promoting tumor angiogenesis, invasion, and metastasis. In the review, we summarize the regulatory functions of ginsenosides on myeloid immunosuppressive cells in tumor microenvironment, providing the novel therapeutic methods for clinical cancer treatment.
Collapse
Affiliation(s)
- Yanfei Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Zhidong Qiu
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ye Qiu
- Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Ting Su
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Peng Qu
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ailing Jia
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
17
|
Kim JH, Oh JM, Chun S, Park HY, Im WT. Enzymatic Biotransformation of Ginsenoside Rb 2 into Rd by Recombinant α-L-Arabinopyranosidase from Blastococcus saxobsidens. J Microbiol Biotechnol 2020; 30:391-397. [PMID: 31893597 PMCID: PMC9728169 DOI: 10.4014/jmb.1910.10065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we used a novel α-L-arabinopyranosidase (AbpBs) obtained from ginsenoside-converting Blastococcus saxobsidens that was cloned and expressed in Escherichia coli BL21 (DE3), and then applied it in the biotransformation of ginsenoside Rb2 into Rd. The gene, termed AbpBs, consisting of 2,406 nucleotides (801 amino acid residues), and with a predicted translated protein molecular mass of 86.4 kDa, was cloned into a pGEX4T-1 vector. A BLAST search using the AbpBs amino acid sequence revealed significant homology with a family 2 glycoside hydrolase (GH2). The over-expressed recombinant AbpBs in Escherichia coli BL21 (DE3) catalyzed the hydrolysis of the arabinopyranose moiety attached to the C-20 position of ginsenoside Rb2 under optimal conditions (pH 7.0 and 40°;C). Kinetic parameters for α-Larabinopyranosidase showed apparent Km and Vmax values of 0.078 ± 0.0002 micrometer and 1.4 ± 0.1 μmol/min/mg of protein against p-nitrophenyl-α-L-arabinopyranoside. Using a purified AbpBs (1 μg/ml), 0.1% of ginsenoside Rb2 was completely converted to ginsenoside Rd within 1 h. The recombinant AbpBs could be useful for high-yield, rapid, and low-cost preparation of ginsenoside Rd from Rb2.
Collapse
Affiliation(s)
- Ju-Hyeon Kim
- Department of Biotechnology, Hankyong National University, Anseong 7579, Republic of Korea,HK Ginseng Research Center, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Wan Taek Im
- Department of Biotechnology, Hankyong National University, Anseong 7579, Republic of Korea,HK Ginseng Research Center, Hankyong National University, Anseong 17579, Republic of Korea,AceEMzyme Co., Ltd., Anseong 1779, Republic of Korea,Corresponding author Phone: +82-31-6705335 Fax: +82-31-6705339 E-mail:
| |
Collapse
|
18
|
Enzymatic Bioconversion of Cycloastragenol-6-O-β-D-glucoside into Cycloastragenol by a Novel Recombinant β-Glucosidase from Phycicoccus sp. Soil748. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Siddiqi MZ, Srinivasan S, Park HY, Im WT. Exploration and Characterization of Novel Glycoside Hydrolases from the Whole Genome of Lactobacillus ginsenosidimutans and Enriched Production of Minor Ginsenoside Rg3( S) by a Recombinant Enzymatic Process. Biomolecules 2020; 10:biom10020288. [PMID: 32059542 PMCID: PMC7072194 DOI: 10.3390/biom10020288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Several studies have reported that ginsenoside Rg3(S) is effective in treating metastatic diseases, obesity, and various cancers, however, its presence in white ginseng cannot be estimated, and only a limited amount is present in red ginseng. Therefore, the use of recombinant glycosidases from a Generally Recognized As Safe (GRAS) host strain is a promising approach to enhance production of Rg3(S), which may improve nutritional activity, human health, and quality of life. Method: Lactobacillus ginsenosidimutans EMML 3041T, which was isolated from Korean fermented pickle (kimchi), presents ginsenoside-converting abilities. The strain was used to enrich the production of Rg3(S) by fermenting protopanaxadiol (PPD)-mix-type major ginsenosides (Rb1, Rb2, Rc, and Rd) in four different types of food-grade media (1, MRS; 2, Basel Food-Grade medium; 3, Basel Food-Grade medium-I, and 4, Basel Food-Grade medium-II). Due to its tendency to produce Rg3(S), the presence of glycoside hydrolase in Lactobacillus ginsenosidimutans was proposed, the whole genome was sequenced, and the probable glycoside hydrolase gene for ginsenoside conversion was cloned. Results: The L. ginsenosidimutans EMML 3041T strain was whole genome sequenced to identify the target genes. After genome sequencing, 12 sets of glycoside hydrolases were identified, of which seven sets (α,β-glucosidase and α,β-galactosidase) were cloned in Escherichia coli BL21 (DE3) using the pGEX4T-1 vector system. Among the sets of clones, only one clone (BglL.gin-952) showed ginsenoside-transforming abilities. The recombinant BglL.gin-952 comprised 952 amino acid residues and belonged to glycoside hydrolase family 3. The enzyme exhibited optimal activity at 55 °C and a pH of 7.5 and showed a promising conversion ability of major ginsenoside Rb1→Rd→Rg3(S). The recombinant enzyme (GST-BglL.gin-952) was used to mass produce Rg3(S) from major ginsenoside Rb1. Scale-up of production using 50 g of Rb1 resulted in 30 g of Rg3(S) with 74.3% chromatography purity. Conclusion: Our preliminary data demonstrated that this enzyme would be beneficial in the preparation of pharmacologically active minor ginsenoside Rg3(S) in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Korea;
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Jungang-ro Anseong-si, Gyeonggi-do Anseong-si, Gyeonggi-do 17579, Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 139-774, Korea;
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon 22689, Korea;
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Korea;
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Jungang-ro Anseong-si, Gyeonggi-do Anseong-si, Gyeonggi-do 17579, Korea
- Correspondence: ; Tel.: +82-31-6705335; Fax: +82-31-6705339
| |
Collapse
|
20
|
Geraldi A, Ni'matuzahroh, Fatimah, Cui CH, Nguyen TT, Kim SC. Enzymatic biotransformation of ginsenoside Rb1 by recombinant β-glucosidase of bacterial isolates from Indonesia. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Siddiqi MZ, Jin M, Song BK, Park HY, Oh JM, Chun S, Jin F, Yu H, Im WT. Enhanced Production of Protopanaxatriol from Ginsenoside Re and Rg1 Using a Recombinant Bacterial β-glucosidase. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0090-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Cui CH, Jeon BM, Fu Y, Im WT, Kim SC. High-density immobilization of a ginsenoside-transforming β-glucosidase for enhanced food-grade production of minor ginsenosides. Appl Microbiol Biotechnol 2019; 103:7003-7015. [PMID: 31289903 PMCID: PMC6690934 DOI: 10.1007/s00253-019-09951-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Use of recombinant glycosidases is a promising approach for the production of minor ginsenosides, e.g., Compound K (CK) and F1, which have potential applications in the food industry. However, application of these recombinant enzymes for food-grade preparation of minor ginsenosides are limited by the lack of suitable expression hosts and low productivity. In this study, Corynebacterium glutamicum ATCC13032, a GRAS strain that has been used extensively for the industrial-grade production of additives for foodstuffs, was employed to express a novel β-glucosidase (MT619) from Microbacterium testaceum ATCC 15829 with high ginsenoside-transforming activity. A cellulose-binding module was additionally fused to the N-terminus of MT619 for immobilization on cellulose, which is an abundant and safe material. Via one-step immobilization, the fusion protein in cell lysates was efficiently immobilized on regenerated amorphous cellulose at a high density (maximum 984 mg/g cellulose), increasing the enzyme concentration by 286-fold. The concentrated and immobilized enzyme showed strong conversion activities against protopanaxadiol- and protopanaxatriol-type ginsenosides for the production of CK and F1. Using gram-scale ginseng extracts as substrates, the immobilized enzyme produced 7.59 g/L CK and 9.42 g/L F1 in 24 h. To the best of our knowledge, these are the highest reported product concentrations of CK and F1, and this is the first time that a recombinant enzyme has been immobilized on cellulose for the preparation of minor ginsenosides. This safe, convenient, and efficient production method could also be effectively exploited in the preparation of food-processing recombinant enzymes in the pharmaceutical, functional food, and cosmetics industries.
Collapse
Affiliation(s)
- Chang-Hao Cui
- Intelligent Synthetic Biology Center, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Korea.,The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101 Shanghai Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Byeong-Min Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Korea
| | - Yaoyao Fu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101 Shanghai Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, 327 Chungang-Ro, Anseong City, Kyonggi-Do, 456-749, Korea
| | - Sun-Chang Kim
- Intelligent Synthetic Biology Center, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Korea. .,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Korea. .,KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Korea.
| |
Collapse
|
23
|
Kang JI, Choi Y, Cui CH, Lee D, Kim SC, Kim HM. Pro-angiogenic Ginsenosides F1 and Rh1 Inhibit Vascular Leakage by Modulating NR4A1. Sci Rep 2019; 9:4502. [PMID: 30872732 PMCID: PMC6418182 DOI: 10.1038/s41598-019-41115-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, but VEGF-induced angiogenesis is often accompanied by a vascular permeability response. Ginsenosides are triterpenoid saponins from the well-known medicinal plant, ginseng, and have been considered a candidate for modulating angiogenesis. Here, we systemically investigated the effects of 10 different ginsenosides on human umbilical vein endothelial cells and newly identified that two PPT-type ginsenosides, F1 and Rh1 induce the migration and proliferation of endothelial cells. Interestingly, RNA transcriptome analysis showed that gene regulation induced by VEGF in endothelial cells is distinct from that of ginsenoside F1 and Rh1. In addition, F1 and Rh1 significantly inhibited vascular leakage both in vitro and in vivo, which are induced by vascular endothelial growth factor. Furthermore, comparative transcriptome analysis revealed that these effects of F1 and Rh1 on vascular leakage restoration are mainly caused by changes in VEGF-mediated TNFα signaling via NFκB, particularly by the suppression of expression and transcriptional activity of NR4A1 by F1 and Rh1, even in the presence of VEGF. These findings demonstrate that ginsenosides F1 and Rh1 can be a promising herbal remedy for vessel normalization in ischemic disease and cancer and that NR4A1 is the key target.
Collapse
Affiliation(s)
- Ji In Kang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yoonjung Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Chang-Hau Cui
- Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea. .,Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea. .,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Korea. .,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
24
|
Liu J, Chang R, Zhang X, Wang Z, Wen J, Zhou T. Non-isoflavones Diet Incurred Metabolic Modifications Induced by Constipation in Rats via Targeting Gut Microbiota. Front Microbiol 2018; 9:3002. [PMID: 30564225 PMCID: PMC6288237 DOI: 10.3389/fmicb.2018.03002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 01/03/2023] Open
Abstract
Isoflavones, presenting in leguminous plants and the normal chow diet, are known to alter intestinal microbiota, yet their deficiency has not been widely studied for its effect on constipation in biochemical state of rats. Our previous study discovered the differences in pharmacokinetic traits of isoflavones from Semen sojae praeparatum fed with normal chow diet (ISO) and non-isoflavones diet (NISO). To gain insight into the key role of intestinal microbiota in constipation and metabolic differences caused by isoflavones deficiency, we observed a significant decrease in fecal pellet numbers, fecal water content, intestinal transit rate together with the serum concentrations of substance P (SP) and vasoactive intestinal peptide (VIP) in NISO group, compared with those in the ISO group. Following 16S rRNA compositional sequencing, results excluded the changes in intestinal microbiota over time and highlighted that a total of 5 phyla and 21 genera changed significantly, among which Firmicutes, Bacteroidetes, Blautia, Prevotella, Lactobacillus and Bifidobacterium were closely related to constipation. In addition, Lactobacillus, produceing β-glucosidase which contribute to biotransform glycosides into aglycons and exert the bioactivities consequently, was decreased after non-isoflavones diet intake. Meanwhile, predicted metagenomics indicated that the pathway of glycan biosynthesis and metabolism was markedly down-regulated after non-isoflavones diet intake. Taken together, the findings suggested that the changes in the dietary components could alter the biochemical state of rats, which may be triggered by the abnormal modifications facilitated by β-glucosidase-producing bacteria. Our study shed a new strategy to explore the relationship among disease phenotypes (D), intestinal microbiota (I), enzymes (E) and traits of metabolism (T) named as "DIET," which can provide a reference for further study of the mechanism in regulation of intestinal bacteria-mediated diet on diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
25
|
Terrabacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. J Microbiol 2018; 56:331-336. [PMID: 29721830 DOI: 10.1007/s12275-018-8098-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
A Gram-positive, strictly aerobic, nonmotile, yellowish, coccus-rod-shaped bacterium (designated Gsoil 653T) isolated from ginseng cultivating soil was characterized using a polyphasic approach to clarify its taxonomic position. The strain Gsoil 653T exhibited optimal growth at pH 7.0 on R2A agar medium at 30°C. Phylogenetic analysis based on 16S rRNA gene sequence similarities, indicated that Gsoil 653T belongs to the genus Terrabacter of the family Humibacillus, and was closely related to Terrabacter tumescens DSM 20308T (98.9%), Terrabacter carboxydivorans PY2T (98.9%), Terrabacter terrigena ON10T (98.8%), Terrabacter terrae PPLBT (98.6%), and Terrabacter lapilli LR-26T (98.6%). The DNA G + C content was 70.5 mol%. The major quinone was MK-8(H4). The primary polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyl-ethanolamine. The predominant fatty acids were iso-C15:0, iso-C16:0, iso-C14:0, and anteiso-C15:0, as in the case of genus Terrabacter, thereby supporting the categorization of strain Gsoil 653T. However, the DNA-DNA relatedness between Gsoil 653T and closely related strains of Terrabacter species was low at less than 31%. Moreover, strain Gsoil 653T could be both genotypically and phenotypically distinguished from the recognized species of the genus Terrabacter. This isolate, therefore, represents a novel species, for which the name Terrabacter ginsengisoli sp. nov. is proposed with the type strain Gsoil 653T (= KACC 19444T = LMG 30325T).
Collapse
|
26
|
Aguirre A, Eberhardt F, Hails G, Cerminati S, Castelli ME, Rasia RM, Paoletti L, Menzella HG, Peiru S. The production, properties, and applications of thermostable steryl glucosidases. World J Microbiol Biotechnol 2018; 34:40. [PMID: 29468428 DOI: 10.1007/s11274-018-2423-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/19/2018] [Indexed: 11/29/2022]
Abstract
Extremophilic microorganisms are a rich source of enzymes, the enzymes which can serve as industrial catalysts that can withstand harsh processing conditions. An example is thermostable β-glucosidases that are addressing a challenging problem in the biodiesel industry: removing steryl glucosides (SGs) from biodiesel. Steryl glucosidases (SGases) must be tolerant to heat and solvents in order to function efficiently in biodiesel. The amphipathic nature of SGs also requires enzymes with an affinity for water/solvent interfaces in order to achieve efficient hydrolysis. Additionally, the development of an enzymatic process involving a commodity such as soybean biodiesel must be cost-effective, necessitating an efficient manufacturing process for SGases. This review summarizes the identification of microbial SGases and their applications, discusses biodiesel refining processes and the development of analytical methods for identifying and quantifying SGs in foods and biodiesel, and considers technologies for strain engineering and process optimization for the heterologous production of a SGase from Thermococcus litoralis. All of these technologies might be used for the production of other thermostable enzymes. Structural features of SGases and the feasibility of protein engineering for novel applications are explored.
Collapse
Affiliation(s)
- Andres Aguirre
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
- Keclon S.A., Tucuman 7180, 2000, Rosario, Argentina
| | - Florencia Eberhardt
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Guillermo Hails
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Sebastian Cerminati
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - María Eugenia Castelli
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Rodolfo M Rasia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, predio CONICET, Rosario, 2000, Argentina
| | - Luciana Paoletti
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Hugo G Menzella
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina
- Keclon S.A., Tucuman 7180, 2000, Rosario, Argentina
| | - Salvador Peiru
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Suipacha 531, 2000, Rosario, Argentina.
- Keclon S.A., Tucuman 7180, 2000, Rosario, Argentina.
| |
Collapse
|
27
|
Genome sequencing of strain Cellulosimicrobium sp. TH-20 with ginseng biotransformation ability. 3 Biotech 2017; 7:237. [PMID: 28698996 DOI: 10.1007/s13205-017-0850-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Biotransformation for increasing the pharmaceutical effect of ginsenosides is getting more and more attractions. Strain Cellulosimicrobium sp. TH-20 isolated from ginseng soil samples was identified to produce enzymes contributing to its excellent biotransformation activity against ginsenosides, the main active components of ginseng. Based on phylogenetic tree and homology analysis, the strain can be designated as Cellulosimicrobium sp. Genome sequencing was performed using the Illumina Miseq to explore the functional genes involved in ginsenoside transformation. The draft genome of Cellulosimicrobium sp. TH-20 encoded 3450 open reading frames, 51 tRNA, and 9 rRNA. All ORFs were annotated using NCBI BLAST with non-redundant proteins, Gene Ontology, Cluster of Orthologous Gene, and Kyoto Encyclopedia of Genes and Genomes databases. A total of 11 genes were selected based on the functional annotation analysis. These genes are relevant to ginsenoside biotransformation, including 6 for beta-glucosidase, 1 for alpha-N-arabinofuranosidase, 1 for alpha-1,6-glucosidase, 1 for endo-1,4-beta-xylanase, 1 for alpha-L-arabinofuranosidase, and 1 for beta-galactosidase. These glycosidases were predicted to catalyze the hydrolysis of sugar moieties attached to the aglycon of ginsenosides and led to the transformation of PPD-type and PPT-type ginsenosides.
Collapse
|
28
|
Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property. Molecules 2017; 22:molecules22050844. [PMID: 28534845 PMCID: PMC6153937 DOI: 10.3390/molecules22050844] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/07/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022] Open
Abstract
Minor ginsenosides, such as compound K, Rg3(S), which can be produced by deglycosylation of ginsenosides Rb1, showed strong anti-cancer effects. However, the anticancer effects of gypenoside LXXV, which is one of the deglycosylated shapes of ginsenoside Rb1, is still unknown due to the rarity of its content in plants. Here, we cloned and characterized a novel ginsenoside-transforming β-glucosidase (BglG167b) derived from Microbacterium sp. Gsoil 167 which can efficiently hydrolyze gypenoside XVII into gypenoside LXXV, and applied it to the production of gypenoside LXXV at the gram-scale with high specificity. In addition, the anti-cancer activity of gypenoside LXXV was investigated against three cancer cell lines (HeLa, B16, and MDA-MB231) in vitro. Gypenoside LXXV significantly reduced cell viability, displaying an enhanced anti-cancer effect compared to gypenoside XVII and Rb1. Taken together, this enzymatic method would be useful in the preparation of gypenoside LXXV for the functional food and pharmaceutical industries.
Collapse
|
29
|
Biswas T, Mathur AK, Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 2017; 101:4009-4032. [PMID: 28411325 DOI: 10.1007/s00253-017-8279-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.
Collapse
Affiliation(s)
- Tanya Biswas
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - A K Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - Archana Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India.
| |
Collapse
|
30
|
Siddiqi MZ, Shafi SM, Im WT. Complete genome sequencing of Arachidicoccus ginsenosidimutans sp. nov., and its application for production of minor ginsenosides by finding a novel ginsenoside-transforming β-glucosidase. RSC Adv 2017. [DOI: 10.1039/c7ra02612a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bacterial strain (BS20T), which has ginsenoside-transforming ability, was whole genome sequenced for the identification of a target gene.
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology
- Hankyong National University
- Anseong-si
- Republic of Korea
- Center for Genetic Information
| | | | - Wan-Taek Im
- Department of Biotechnology
- Hankyong National University
- Anseong-si
- Republic of Korea
- Center for Genetic Information
| |
Collapse
|
31
|
Zhao Y, Lee HG, Kim SK, Yu H, Jin F, Im WT. Mucilaginibacter pocheonensis sp. nov., with ginsenoside-converting activity, isolated from soil of a ginseng-cultivating field. Int J Syst Evol Microbiol 2016; 66:2862-2868. [DOI: 10.1099/ijsem.0.001069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yan Zhao
- Department of Biotechnology, Hankyong National University, 327 Chungang-no, Anseong-si, Kyonggi-do 456-749, South Korea
- College of Biotechnology, Dalian Polytechnic University, Qinggong-yuan No. 1, Ganjingzi-qu, Dalian 116034, PR China
| | - Hyung-Gwan Lee
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-yuan No. 1, Ganjingzi-qu, Dalian 116034, PR China
| | - Fengxie Jin
- College of Biotechnology, Dalian Polytechnic University, Qinggong-yuan No. 1, Ganjingzi-qu, Dalian 116034, PR China
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Chungang-no, Anseong-si, Kyonggi-do 456-749, South Korea
- Genomic Informatics Center, Hankyong National University, 327 Chungang-no, Anseong-si, Kyonggi-do, 456-749, Republic of Korea
| |
Collapse
|
32
|
Xie J, Zhao D, Zhao L, Pei J, Xiao W, Ding G, Wang Z, Xu J. Characterization of a novel arabinose-tolerant α
-l-
arabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. J Appl Microbiol 2016; 120:647-60. [DOI: 10.1111/jam.13040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/13/2015] [Accepted: 12/28/2015] [Indexed: 11/30/2022]
Affiliation(s)
- J. Xie
- College of Chemical Engineering; Nanjing Forestry University; Nanjing China
| | - D. Zhao
- College of Chemical Engineering; Nanjing Forestry University; Nanjing China
| | - L. Zhao
- College of Chemical Engineering; Nanjing Forestry University; Nanjing China
- Jiangsu Key Laboratory of Biomass Based Green Fuels and Chemicals; Nanjing China
| | - J. Pei
- College of Chemical Engineering; Nanjing Forestry University; Nanjing China
- Jiangsu Key Laboratory of Biomass Based Green Fuels and Chemicals; Nanjing China
| | - W. Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd.; Lianyungang China
| | - G. Ding
- Jiangsu Kanion Pharmaceutical Co., Ltd.; Lianyungang China
| | - Z. Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd.; Lianyungang China
| | - J. Xu
- University of Massachusetts Lowell; Lowell MA USA
| |
Collapse
|
33
|
Akram F, Haq IU, Khan MA, Hussain Z, Mukhtar H, Iqbal K. Cloning with kinetic and thermodynamic insight of a novel hyperthermostable β-glucosidase from Thermotoga naphthophila RKU-10T with excellent glucose tolerance. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Liu XB, Liu M, Tao XY, Zhang ZX, Wang FQ, Wei DZ. Metabolic engineering of Pichia pastoris for the production of dammarenediol-II. J Biotechnol 2015; 216:47-55. [DOI: 10.1016/j.jbiotec.2015.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
|
35
|
Overexpression and characterization of a glycoside hydrolase family 1 enzyme from Cellulosimicrobium cellulans sp. 21 and its application for minor ginsenosides production. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Kim JK, Kang MS, Park SC, Kim KM, Choi K, Yoon MH, Im WT. Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2015; 53:435-41. [DOI: 10.1007/s12275-015-5087-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022]
|
37
|
Sphingomonas flavus sp. nov. isolated from road soil. Arch Microbiol 2015; 197:883-8. [DOI: 10.1007/s00203-015-1123-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/29/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
|
38
|
An amino acid at position 512 in β-glucosidase from Clavibacter michiganensis determines the regioselectivity for hydrolyzing gypenoside XVII. Appl Microbiol Biotechnol 2015; 99:7987-96. [PMID: 25820645 DOI: 10.1007/s00253-015-6549-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
A recombinant β-glucosidase from Clavibacter michiganensis specifically hydrolyzed the outer and inner glucose linked to the C-3 position in protopanaxadiol (PPD)-type ginsenosides and the C-6 position in protopanaxatriol (PPT)-type ginsenosides except for the hydrolysis of gypenoside LXXV (GypLXXV). The enzyme converted gypenoside XVII (GypXVII) to GypLXXV by hydrolyzing the inner glucose linked to the C-3 position. The substrate-binding residues obtained from the GypXVII-docked homology models of β-glucosidase from C. michiganensis were replaced with alanine, and the amino acid residue at position 512 was selected because of the changed regioselectivity of W512A. Site-directed mutagenesis for the amino acid residue at position 512 was performed. W512A and W512K hydrolyzed the inner glucose linked to the C-3 position and the outer glucose linked to the C-20 position of GypXVII to produce GypLXXV and F2. W512R hydrolyzed only the outer glucose linked to the C-20 position of GypXVII to produce F2. However, W512E and W512D exhibited no activity for GypXVII. Thus, the amino acid at position 512 is a critical residue to determine the regioselectivity for the hydrolysis of GypXVII. These wild-type and variant enzymes produced diverse ginsenosides, including GypXVII, GypLXXV, F2, and compound K, from ginsenoside Rb1. To the best of our knowledge, this is the first report of the alteration of regioselectivity on ginsenoside hydrolysis by protein engineering.
Collapse
|
39
|
Wang RF, Zheng MM, Cao YD, Li H, Li CX, Xu JH, Wang ZT. Enzymatic transformation of vina-ginsenoside R₇ to rare notoginsenoside ST-4 using a new recombinant glycoside hydrolase from Herpetosiphon aurantiacus. Appl Microbiol Biotechnol 2015; 99:3433-42. [PMID: 25676336 DOI: 10.1007/s00253-015-6446-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 11/25/2022]
Abstract
An eco-friendly and convenient preparation method for notoginsenoside ST-4 has been established by completely transforming vina-ginsenoside R7 using a recombinant glycosidase hydrolyzing enzyme (HaGH03) from Herpetosiphon aurantiacus. This enzyme specifically hydrolyzed the glucose at the C-20 position but not the external xylose or two inner glucoses at position C-3. Protein sequence BLAST revealed that HaGH03, composed of 749 amino acids and presumptively listed as a member of the family 3 glycoside hydrolases, has highest identity (48 %) identity with a thermostable β-glucosidase B, which was not known of any functions for ginsenoside transformation. The steady state kinetic parameters for purified HaGH03 measured against p-nitrophenyl β-D-glucopyranoside and vina-ginsenoside R7 were K M = 5.67 ± 0.24 μM and 0.59 ± 0.23 mM, and k cat = 69.2 ± 0.31/s and 2.15 ± 0.46/min, respectively. HaGH03 converted 2.5 mg/mL of vina-ginsenoside R7 to ST-4 with a molar yield of 100 % and a space-time yield of 104 mg/L/h in optimized conditions. These results underscore that HaGH03 has much potential for the effective preparation of target ginsenosides possessing valuable pharmacological activities. This is the first report identifying an enzyme that has the ability to transform vina-ginsenoside R7 and provides an approach to preparing rare notoginsenoside ST-4.
Collapse
Affiliation(s)
- Ru-Feng Wang
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Gao F, Zhang JM, Wang ZG, Peng W, Hu HL, Fu CM. Biotransformation, a promising technology for anti-cancer drug development. Asian Pac J Cancer Prev 2015; 14:5599-608. [PMID: 24289549 DOI: 10.7314/apjcp.2013.14.10.5599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
With the high morbidity and mortality caused by cancer, finding new and more effective anti-cancer drugs is very urgent. In current research, biotransformation plays a vital role in the research and development of cancer drugs and has obtained some achievements. In this review, we have summarized four applications as follows: to exploit novel anti-cancer drugs, to improve existing anti-cancer drugs, to broaden limited anti-cancer drug resources and to investigate correlative mechanisms. Three different groups of important anti-cancer compounds were assessed to clarify the current practical applications of biotransformation in the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China E-mail : ,
| | | | | | | | | | | |
Collapse
|
41
|
Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015; 100:208-20. [PMID: 25449425 DOI: 10.1016/j.fitote.2014.11.019] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022]
|
42
|
Streptomyces panaciradicis sp. nov., a β-glucosidase-producing bacterium isolated from ginseng rhizoplane. Int J Syst Evol Microbiol 2014; 64:3816-3820. [DOI: 10.1099/ijs.0.061705-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-positive actinobacterium, designated strain 1MR-8T, was isolated from the rhizoplane of ginseng and its taxonomic status was determined using a polyphasic approach. The isolate formed long chains of spores that were straight, cylindrical and smooth-surfaced. Strain 1MR-8T grew at 10–37 °C (optimum 28 °C), whilst no growth was observed at 45 °C. The pH range for growth was 4.0–11.0 (optimum pH 6.0–8.0) and the NaCl range for growth was 0–7 % (w/v) with optimum growth at 1 % (w/v). Strain 1MR-8T had cell-wall peptidoglycans based on ll-diaminopimelic acid. Glucose, mannose and ribose were the whole-cell sugars. The predominant isoprenoid quinones were MK-9 (H4), MK-9 (H6) and MK-9 (H8) and the major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. 16S rRNA gene sequencing studies showed that the novel strain was closely related to the type strains of
Streptomyces caeruleatus
GIMN4T,
Streptomyces curacoi
NRRL B-2901T,
Streptomyces capoamus
JCM 4734T and
Streptomyces coeruleorubidus
NBRC 12761T with similarities of 98.8 %. However, DNA–DNA relatedness, as well as physiological and biochemical analyses, showed that strain 1MR-8T could be differentiated from its closest phylogenetic relatives. It is proposed that this strain should be classified as a representative of a novel species of the genus
Streptomyces
, with the suggested name Streptomyces panaciradicis sp. nov. The type strain is 1MR-8T ( = KACC 17632T = NBRC 109811T).
Collapse
|
43
|
Biotransformation of the Principal Ginsenosides of Panax ginseng Into Minor Glycosides Through the Action of Bacterium Paenibacillus sp. BG134. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-1054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Du J, Cui CH, Park SC, Kim JK, Yu HS, Jin FX, Sun C, Kim SC, Im WT. Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S). PLoS One 2014; 9:e96914. [PMID: 24911166 PMCID: PMC4049585 DOI: 10.1371/journal.pone.0096914] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
The ginsenoside Rg2(S), which is one of the pharmaceutical components of ginseng, is known to have neuroprotective, anti-inflammation, and anti-diabetic effects. However, the usage of ginsenoside Rg2(S) is restricted owing to the small amounts found in white and red ginseng. To enhance the production of ginsenoside Rg2(S) as a 100 gram unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the recombinant glycoside hydrolase (BglPC28), which is a ginsenoside-transforming recombinant β-glucosidase from Pseudonocardia sp. strain Gsoil 1536. The gene, termed bglPC28, encoding β-glucosidase (BglPC28) belonging to the glycoside hydrolase family 3 was cloned. bglPC28 consists of 2,232 bp (743 amino acid residues) with a predicted molecular mass of 78,975 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3) using a GST-fused pGEX 4T-1 vector system. The optimum conditions of the recombinant BglPC28 were pH 7.0 and 37°C. BglPC28 can effectively transform the ginsenoside Re to Rg2(S); the Km values of PNPG and Re were 6.36±1.10 and 1.42±0.13 mM, respectively, and the Vmax values were 40.0±2.55 and 5.62±0.21 µmol min−1 mg−1 of protein, respectively. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 7.0 and 30°C for 12 hours with a concentration of 20 mg/ml of ginsenoside Re from American ginseng roots. Finally, 113 g of Rg2(S) was produced from 150 g of Re with 84.0±1.1% chromatographic purity. These results suggest that this enzymatic method could be usefully exploited in the preparation of ginsenoside Rg2(S) in the cosmetics, functional food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Juan Du
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Chang-Hao Cui
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung Chul Park
- Intelligent Synthetic Biology Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-Kwang Kim
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hong-Shan Yu
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Feng-Xie Jin
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Changkai Sun
- Institute for Brain Disorders, Dalian Medical University, Dalian, P.R. China
| | - Sun-Chang Kim
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Wan-Taek Im
- Department of Biotechnology, Hankyoung National University, Chungang-no Anseong-si, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Park MK, Cui CH, Park SC, Park SK, Kim JK, Jung MS, Jung SC, Kim SC, Im WT. Characterization of recombinant β-glucosidase from Arthrobacter chlorophenolicus and biotransformation of ginsenosides Rb1, Rb2, Rc, and Rd. J Microbiol 2014; 52:399-406. [DOI: 10.1007/s12275-014-3601-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022]
|
46
|
Grishko VV, Nogovitsina YM, Ivshina IB. Bacterial transformation of terpenoids. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n04abeh004396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Větrovský T, Steffen KT, Baldrian P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 2014; 9:e89108. [PMID: 24551229 PMCID: PMC3923840 DOI: 10.1371/journal.pone.0089108] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/18/2014] [Indexed: 11/25/2022] Open
Abstract
While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform 14C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic
| | - Kari Timo Steffen
- Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic
- * E-mail:
| |
Collapse
|
48
|
Cui CH, Kim JK, Kim SC, Im WT. Characterization of a ginsenoside-transforming β-glucosidase from Paenibacillus mucilaginosus and its application for enhanced production of minor ginsenoside F₂. PLoS One 2014; 9:e85727. [PMID: 24475050 PMCID: PMC3903488 DOI: 10.1371/journal.pone.0085727] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/01/2013] [Indexed: 02/06/2023] Open
Abstract
A novel β-glucosidase (BglPm) was identified from Paenibacillus mucilaginosus KCTC 3870(T) which has ginsenoside converting activity. The gene, termed bglPm, consists of 1,260 bp and belongs to glycoside hydrolase family 1 (GH1). After being overexpressed and purified from Escherichia coli, the enzymatic properties of BglPm were investigated. The enzyme exhibited an optimal activity at 45°C and pH 7.5 and showed high bioconversion ability for major ginsenoside Rb1 and Rd into ginsenoside F2. Thus, it was used for mass production of relatively high pure F2 from relatively abundant protopanaxadiol type ginsenosides mixture (PPDGM) with combined usage of ginsenoside Rc-hydrolyzing enzyme. Scale-up of production using 250 g of the PPDGM resulted in 152 g of F2 with 80.1% chromatography purity and 95.7% recovery. These results suggest that this enzyme would be useful in the preparation of pharmacologically active ginsenoside F2 in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chang-Hao Cui
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-Kwang Kim
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Yuseong-gu, Daejeon, Republic of Korea
- * E-mail: (SK); (WI)
| | - Wan-Taek Im
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- * E-mail: (SK); (WI)
| |
Collapse
|
49
|
Enzymatic hydrolysis of steryl glucosides, major contaminants of vegetable oil-derived biodiesel. Appl Microbiol Biotechnol 2013; 98:4033-40. [PMID: 24265025 DOI: 10.1007/s00253-013-5345-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Biodiesels are mostly produced from lipid transesterification of vegetable oils, including those from soybean, jatropha, palm, rapeseed, sunflower, and others. Unfortunately, transesterification of oil produces various unwanted side products, including steryl glucosides (SG), which precipitate and need to be removed to avoid clogging of filters and engine failures. So far, efficient and cost-effective methods to remove SGs from biodiesel are not available. Here we describe for the first time the identification, characterization and heterologous production of an enzyme capable of hydrolyzing SGs. A synthetic codon-optimized version of the lacS gene from Sulfolobus solfataricus was efficiently expressed and purified from Escherichia coli, and used to treat soybean derived biodiesel containing 100 ppm of SGs. After optimizing different variables, we found that at pH 5.5 and 87 °C, and in the presence of 0.9 % of the emulsifier polyglycerol polyricinoleate, 81 % of the total amount of SGs present in biodiesel were hydrolyzed by the enzyme. This remarkable reduction in SGs suggests a path for the removal of these contaminants from biodiesel on industrial scale using an environmentally friendly enzymatic process.
Collapse
|
50
|
Thuan NH, Sohng JK. Recent biotechnological progress in enzymatic synthesis of glycosides. J Ind Microbiol Biotechnol 2013; 40:1329-56. [PMID: 24005992 DOI: 10.1007/s10295-013-1332-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most important post-modification processes of small molecules and enables the parent molecule to have increased solubility, stability, and bioactivity. Enzyme-based glycosylation has achieved significant progress due to advances in protein engineering, DNA recombinant techniques, exploitation of biosynthetic gene clusters of natural products, and computer-based modeling programs. Our report summarizes glycosylation data that have been published within the past five years to provide an overall review of current progress. We also present the future trends and perspectives for glycosylation.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, #100, Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam, 336-708, Republic of Korea
| | | |
Collapse
|