1
|
Akoa SP, Boulanger R, Manga Ndjaga J, Effa Onomo P, Lebrun M, Eyenga EF, Morel G, Ndip Nkongho R, Djocgoue PF. Discriminating three lab scale dark chocolate bars from fine Cameroon cocoa hybrids using sensorial evaluation and organic acid content. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2318-2331. [PMID: 39431186 PMCID: PMC11486886 DOI: 10.1007/s13197-024-05998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/13/2024] [Accepted: 05/02/2024] [Indexed: 10/22/2024]
Abstract
Previous studies have shown a correlation between chocolate sensory profile and certain (bio)chemical components. The aim of this study was to examine the sensorial profile and organic acid content of three lab scale chocolate brands produced from different cocoa genotypes. The sensorial evaluation was examined by a team of 12 panelists and evaluation of aroma volatiles was done by means of HS-SPME-GC-MS. On the other hand, organic acids were assessed using a high-performance ion chromatography coupled with an electrochemical detector (HPIC-ED). Results showed a variability in sensorial profile: SCA12×ICS40 chocolate (vanilla/sweet, spicy, and floral), ICS40 × SCA12 chocolate (fruity, bitter, and dry) and SNK16 × T60/887 chocolate (chocolate, honey-like, woody, sweet). Moreover, some aroma volatiles like (2-methyl, 3-methyl, iso) butanal (ICS), terpenes (SCA), and ketones (acetophenone and 2-nonanone) (SNK) allowed to discriminate dark chocolate sample according to their raw cocoa genetic group. Besides, the organic acid content differed from one chocolate brand to another, and it was obtained a high content of oxalic acid and a low lactic acid content which are good indicators of chocolate quality. Results of the current study highly recommend knowing the variety of cocoa beans with high content of some volatiles and high oxalic and low acetic acid and lactic contents to produce high aromatic (special flavor) chocolates.
Collapse
Affiliation(s)
- Simon Perrez Akoa
- Department of Food Science and Technology, Faculty of Agriculture and Veterinary Medicine, University of Buea, P.O.Box 63, Buea, Cameroon
- CIRAD, UMR Qualisud, TA B 96/16, 75 Avenue Jean-François Breton, Montpellier cedex 5, 34398 France
- Laboratory of Food Science and Technology, Institute of Agricultural Research for Development (IRAD), P.O.Box 2123, Yaounde, Cameroon
- Biotechnology Centre, University of Yaounde I, Etetak, P.O. Box 17673, Yaounde, Cameroon
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, TA B 96/16, 75 Avenue Jean-François Breton, Montpellier cedex 5, 34398 France
- QualiSud, Université de Montpellier, CIRAD, IRD, Université Réunion, Montpellier Agro, Université d’Avignon, Montpellier, France
| | - Jude Manga Ndjaga
- Biotechnology Centre, University of Yaounde I, Etetak, P.O. Box 17673, Yaounde, Cameroon
- Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Pierre Effa Onomo
- Biotechnology Centre, University of Yaounde I, Etetak, P.O. Box 17673, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Department of Agriculture and Agropastoral, Higher Technical Teacher’s Training College, University of Ebolowa, P.O. Box 886, Ebolowa, Cameroon
| | - Marc Lebrun
- CIRAD, UMR Qualisud, TA B 96/16, 75 Avenue Jean-François Breton, Montpellier cedex 5, 34398 France
- QualiSud, Université de Montpellier, CIRAD, IRD, Université Réunion, Montpellier Agro, Université d’Avignon, Montpellier, France
| | - Eliane Flore Eyenga
- Laboratory of Food Science and Technology, Institute of Agricultural Research for Development (IRAD), P.O.Box 2123, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Gilles Morel
- CIRAD, UMR Qualisud, TA B 96/16, 75 Avenue Jean-François Breton, Montpellier cedex 5, 34398 France
- QualiSud, Université de Montpellier, CIRAD, IRD, Université Réunion, Montpellier Agro, Université d’Avignon, Montpellier, France
| | - Raymond Ndip Nkongho
- Department of Food Science and Technology, Faculty of Agriculture and Veterinary Medicine, University of Buea, P.O.Box 63, Buea, Cameroon
| | - Pierre François Djocgoue
- Biotechnology Centre, University of Yaounde I, Etetak, P.O. Box 17673, Yaounde, Cameroon
- Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
2
|
Besançon L, Poirot P, Lebrun M, Ortiz-Julien A, Boulanger R. Investigating Key Volatile Compound Diffusion in Cocoa Beans during Yeast Fermentation-like Incubation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15788-15800. [PMID: 38976795 DOI: 10.1021/acs.jafc.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
An experimental setup was devised to investigate the permeability of cocoa bean seed coat and pulp to key volatile compounds during fermentation. Four labeled compounds (ethyl acetate-d3, ethyl octanoate-d15, 2-phenylethanol-d5, linalool-d5) and 2 unlabeled (beta-damascenone, delta-decalactone) were chosen for the investigation. The beans (cotyledons), depulped beans, or pulped beans were immersed separately in a concentrated solution of these volatile compounds at 36 or 46 °C for durations ranging from 3 to 120 h. The imbibed beans were dissected, and the cotyledons were analyzed by SPME-GC/MS. The diffusion of volatile compounds from the external solution to the seed was categorized into three groups: (1) not diffusible (ethyl octanoate-d15); (2) semidiffusible (ethyl acetate); and (3) totally diffusible (2-phenylethanol-d5, linalool-d5, beta-damascenone, delta-decalactone). The impact of the yeast on volatile compound diffusion was also investigated by immerging the pulped beans into the same concentrated solution with a yeast starter. Results highlighted the positive role of yeast in the diffusion of volatile compounds. The starter positively contributed to volatile compound diffusion after a transition phase occurring at approximately 48 h of fermentation, enriching the cocoa beans with key aromatic volatile compounds.
Collapse
Affiliation(s)
- Lydie Besançon
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, Univ Avignon, Univ La Réunion, IRD, Montpellier F-34398, France
| | | | - Marc Lebrun
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, Univ Avignon, Univ La Réunion, IRD, Montpellier F-34398, France
- CIRAD, UMR Qualisud 95, 73 Rue Jean François Breton, Montpellier F-34398, France
| | | | - Renaud Boulanger
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, Univ Avignon, Univ La Réunion, IRD, Montpellier F-34398, France
- CIRAD, UMR Qualisud 95, 73 Rue Jean François Breton, Montpellier F-34398, France
| |
Collapse
|
3
|
Walsh LH, Coakley M, Walsh AM, O'Toole PW, Cotter PD. Bioinformatic approaches for studying the microbiome of fermented food. Crit Rev Microbiol 2023; 49:693-725. [PMID: 36287644 DOI: 10.1080/1040841x.2022.2132850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.
Collapse
Affiliation(s)
- Liam H Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Ireland
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Cork, Ireland
| |
Collapse
|
4
|
Van de Voorde D, Díaz-Muñoz C, Hernandez CE, Weckx S, De Vuyst L. Yeast strains do have an impact on the production of cured cocoa beans, as assessed with Costa Rican Trinitario cocoa fermentation processes and chocolates thereof. Front Microbiol 2023; 14:1232323. [PMID: 37621398 PMCID: PMC10445768 DOI: 10.3389/fmicb.2023.1232323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiological and metabolic outcomes of good cocoa fermentation practices can be standardized and influenced through the addition of starter culture mixtures composed of yeast and bacterial strains. The present study performed two spontaneous and 10 starter culture-initiated (SCI) cocoa fermentation processes (CFPs) in Costa Rica with local Trinitario cocoa. The yeast strains Saccharomyces cerevisiae IMDO 050523, Hanseniaspora opuntiae IMDO 020003, and Pichia kudriavzevii IMDO 060005 were used to compose starter culture mixtures in combination with the lactic acid bacterium strain Limosilactobacillus fermentum IMDO 0611222 and the acetic acid bacterium strain Acetobacter pasteurianus IMDO 0506386. The microbial community and metabolite dynamics of the cocoa pulp-bean mass fermentation, the metabolite dynamics of the drying cocoa beans, and the volatile organic compound (VOC) profiles of the chocolate production were assessed. An amplicon sequence variant approach based on full-length 16S rRNA gene sequencing instead of targeting the V4 region led to a highly accurate monitoring of the starter culture strains added, in particular the Liml. fermentum IMDO 0611222 strain. The latter strain always prevailed over the background lactic acid bacteria. A similar approach, based on the internal transcribed spacer (ITS1) region of the fungal rRNA transcribed unit, was used for yeast strain monitoring. The SCI CFPs evolved faster when compared to the spontaneous ones. Moreover, the yeast strains applied did have an impact. The presence of S. cerevisiae IMDO 050523 was necessary for successful fermentation of the cocoa pulp-bean mass, which was characterized by the production of higher alcohols and esters. In contrast, the inoculation of H. opuntiae IMDO 020003 as the sole yeast strain led to underfermentation and a poor VOC profile, mainly due to its low competitiveness. The P. kudriavzevii IMDO 060005 strain tested in the present study did not contribute to a richer VOC profile. Although differences in VOCs could be revealed in the cocoa liquors, no significant effect on the final chocolates could be obtained, mainly due to a great impact of cocoa liquor processing during chocolate-making. Hence, optimization of the starter culture mixture and cocoa liquor processing seem to be of pivotal importance.
Collapse
Affiliation(s)
- Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Díaz-Muñoz C, Van de Voorde D, Tuenter E, Lemarcq V, Van de Walle D, Soares Maio JP, Mencía A, Hernandez CE, Comasio A, Sioriki E, Weckx S, Pieters L, Dewettinck K, De Vuyst L. An in-depth multiphasic analysis of the chocolate production chain, from bean to bar, demonstrates the superiority of Saccharomyces cerevisiae over Hanseniaspora opuntiae as functional starter culture during cocoa fermentation. Food Microbiol 2023; 109:104115. [DOI: 10.1016/j.fm.2022.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
6
|
Ecology and population dynamics of yeast starter cultures in cocoa beans fermentation. BIOTECHNOLOGIA 2022; 103:343-353. [PMID: 36685699 PMCID: PMC9837554 DOI: 10.5114/bta.2022.120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate controlled fermentation of cocoa beans with selected yeasts as starter cultures via integrating microbiological, biochemical, and chromatographic analyses. The steps involved in the yeast starter culture test were of the following order: 1) counting, isolation, purification, and biochemical identification of yeasts, 2) selection of ethanol-producing yeasts, 3) selection of thermotolerant yeasts, and 4) evaluation of physicochemical parameters of the selected yeasts in controlled fermentation of cocoa (F1 - Saccharomyces ssp. and Hanseniaspora ssp. and F2 - spontaneous fermentation - control). A total of 32 yeasts were isolated from three sampling points (M1, M2, and M3), which comprised 50% Candida ssp., 9.4% Rhodotorula ssp., 18.8% Saccharomyces ssp., and 18.8% Hanseniaspora ssp. The yeasts identified as Saccharomyces ssp. (n = 6) were subjected to the ethanol production test. Saccharomyces spp. CLV09 showed the highest concentration of ethanol in the simulated cocoa medium (3.5% v/v). Hanseniaspora spp. CVL20 and CVL19 strains showed the highest thermotolerance at 42°C after 72 h of growth. The starter cultures with Saccharomyces ssp. and Hanseniaspora ssp. showed a similar growth rate of the mesophilic aerobic population in both F1 and F2. Fermentation of the starter culture showed a higher production of organic acids than spontaneous fermentation (F2). Thus, Saccharomyces ssp. and Hanseniaspora ssp. can be used as a starter culture in cocoa fermentation.
Collapse
|
7
|
Wauters R, Herrera-Malaver B, Schreurs M, Bircham P, Cautereels C, Cortebeeck J, Duffin PM, Steensels J, Verstrepen KJ. Novel Saccharomyces cerevisiae variants slow down the accumulation of staling aldehydes and improve beer shelf-life. Food Chem 2022; 398:133863. [DOI: 10.1016/j.foodchem.2022.133863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
8
|
Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8070331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the fermentation of cocoa beans, the yeasts produce volatile organic compounds (VOCs). Through reactions associated with amino acid metabolism, yeasts generate important aroma precursors as acetate esters and fatty acid ethyl esters are essential in developing fruity flavors and aromas in the final product (usually chocolate). In addition, some yeasts may have pectinolytic and antifungal activity, which is desirable in the post-harvest process of cocoa. The main yeast species in cocoa fermentation are Saccharomyces cerevisiae, Pichia kudriavzevii, and Hanseniaspora opuntiae. These produce higher alcohols and acetyl-CoA to make acetate–esters, compounds that produce floral and fruity notes. However, there are still controversies in scientific reports because some mention that there are no significant differences in the sensory characteristics of the final product. Others mention that the fermentation of cocoa by yeast has a significant influence on improving the sensory attributes of the final product. However, using yeasts as starter cultures for cocoa bean fermentation is recommended to homogenize sensory attributes such as notes and flavors in chocolate.
Collapse
|
9
|
Ho PW, Piampongsant S, Gallone B, Del Cortona A, Peeters PJ, Reijbroek F, Verbaet J, Herrera B, Cortebeeck J, Nolmans R, Saels V, Steensels J, Jarosz DF, Verstrepen KJ. Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:211. [PMID: 34727964 PMCID: PMC8564995 DOI: 10.1186/s13068-021-02059-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The brewer's yeast Saccharomyces cerevisiae is exploited in several industrial processes, ranging from food and beverage fermentation to the production of biofuels, pharmaceuticals and complex chemicals. The large genetic and phenotypic diversity within this species offers a formidable natural resource to obtain superior strains, hybrids, and variants. However, most industrially relevant traits in S. cerevisiae strains are controlled by multiple genetic loci. Over the past years, several studies have identified some of these QTLs. However, because these studies only focus on a limited set of traits and often use different techniques and starting strains, a global view of industrially relevant QTLs is still missing. RESULTS Here, we combined the power of 1125 fully sequenced inbred segregants with high-throughput phenotyping methods to identify as many as 678 QTLs across 18 different traits relevant to industrial fermentation processes, including production of ethanol, glycerol, isobutanol, acetic acid, sulfur dioxide, flavor-active esters, as well as resistance to ethanol, acetic acid, sulfite and high osmolarity. We identified and confirmed several variants that are associated with multiple different traits, indicating that many QTLs are pleiotropic. Moreover, we show that both rare and common variants, as well as variants located in coding and non-coding regions all contribute to the phenotypic variation. CONCLUSIONS Our findings represent an important step in our understanding of the genetic underpinnings of industrially relevant yeast traits and open new routes to study complex genetics and genetic interactions as well as to engineer novel, superior industrial yeasts. Moreover, the major role of rare variants suggests that there is a plethora of different combinations of mutations that can be explored in genome editing.
Collapse
Affiliation(s)
- Ping-Wei Ho
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Supinya Piampongsant
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Brigida Gallone
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Andrea Del Cortona
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Pieter-Jan Peeters
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Frank Reijbroek
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jules Verbaet
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jeroen Cortebeeck
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Robbe Nolmans
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jan Steensels
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kevin J. Verstrepen
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
- Labo VIB-CMPG, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Heverlee Belgium
| |
Collapse
|
10
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiol 2021; 101:103896. [PMID: 34579856 DOI: 10.1016/j.fm.2021.103896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/11/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023]
Abstract
Cocoa fermentation is the key and most relevant process in the synthesis of aroma and flavor precursor molecules in dry beans or raw material for producing chocolate. Because this process occurs in an uncontrolled manner, the chemical and sensory quality of beans can vary and be negatively affected. One of the strategies for the standardization and improvement of the sensory quality of chocolate is the introduction of microbial starter cultures. Among these, yeasts involved in fermentation have been studied because of their pectinolytic and metabolic potential in the production of volatile compounds. This study was aimed at isolating and characterizing, both sensory and chemically, yeasts involved in cocoa fermentation that could be used as starter cultures from two agro-ecological regions for the cultivation of cocoa in Colombia. The microbiological analyses identified 22 species represented mostly by Saccharomyces cerevisiae, Wickerhamomyces anomalus and Pichia sp. The preliminary sensory analysis of eight of these species showed that Hanseniaspora thailandica and Pichia kluyveri presented sensory profiles characterized by high intensity levels of fruity notes, which could be ascribed to the production of ethyl acetate, isoamyl acetate, and 2-phenylethyl acetate.
Collapse
|
12
|
De Vuyst L, Leroy F. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev 2021; 44:432-453. [PMID: 32420601 DOI: 10.1093/femsre/fuaa014] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Cured cocoa beans are obtained through a post-harvest, batchwise process of fermentation and drying carried out on farms in the equatorial zone. Fermentation of cocoa pulp-bean mass is performed mainly in heaps or boxes. It is made possible by a succession of yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) activities. Yeasts ferment the glucose of the cocoa pulp into ethanol, perform pectinolysis and produce flavour compounds, such as (higher) alcohols, aldehydes, organic acids and esters. LAB ferment the glucose, fructose and citric acid of the cocoa pulp into lactic acid, acetic acid, mannitol and pyruvate, generate a microbiologically stable fermentation environment, provide lactate as carbon source for the indispensable growth of AAB, and contribute to the cocoa and chocolate flavours by the production of sugar alcohols, organic acids, (higher) alcohols and aldehydes. AAB oxidize the ethanol into acetic acid, which penetrates into the bean cotyledons to prevent seed germination. Destruction of the subcellular seed structure in turn initiates enzymatic and non-enzymatic conversions inside the cocoa beans, which provides the necessary colour and flavour precursor molecules (hydrophilic peptides, hydrophobic amino acids and reducing sugars) for later roasting of the cured cocoa beans, the first step of the chocolate-making.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
13
|
Verce M, Schoonejans J, Hernandez Aguirre C, Molina-Bravo R, De Vuyst L, Weckx S. A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Front Microbiol 2021; 12:641185. [PMID: 33664725 PMCID: PMC7920976 DOI: 10.3389/fmicb.2021.641185] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cocoa fermentation is the first step in the post-harvest processing chain of cocoa and is important for the removal of the cocoa pulp surrounding the beans and the development of flavor and color precursors. In the present study, metagenomic and metatranscriptomic sequencing were applied to Costa Rican cocoa fermentation processes to unravel the microbial diversity and assess the function and transcription of their genes, thereby increasing the knowledge of this spontaneous fermentation process. Among 97 genera found in these fermentation processes, the major ones were Acetobacter, Komagataeibacter, Limosilactobacillus, Liquorilactobacillus, Lactiplantibacillus, Leuconostoc, Paucilactobacillus, Hanseniaspora, and Saccharomyces. The most prominent species were Limosilactobacillus fermentum, Liquorilactobacillus cacaonum, and Lactiplantibacillus plantarum among the LAB, Acetobacter pasteurianus and Acetobacter ghanensis among the AAB, and Hanseniaspora opuntiae and Saccharomyces cerevisiae among the yeasts. Consumption of glucose, fructose, and citric acid, and the production of ethanol, lactic acid, acetic acid, and mannitol were linked to the major species through metagenomic binning and the application of metatranscriptomic sequencing. By using this approach, it was also found that Lacp. plantarum consumed mannitol and oxidized lactic acid, that A. pasteurianus degraded oxalate, and that species such as Cellvibrio sp., Pectobacterium spp., and Paucilactobacillus vaccinostercus could contribute to pectin degradation. The data generated and results presented in this study could enhance the ability to select and develop appropriate starter cultures to steer the cocoa fermentation process toward a desired course.
Collapse
Affiliation(s)
- Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Jorn Schoonejans
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Ramón Molina-Bravo
- Laboratory of Molecular Biology, School of Agrarian Sciences, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
14
|
Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. Int J Food Microbiol 2021; 342:109077. [PMID: 33550155 DOI: 10.1016/j.ijfoodmicro.2021.109077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 11/22/2022]
Abstract
Cocoa pulp fermentation is a consequence of the succession of indigenous yeasts, lactic acid bacteria and acetic acid bacteria that not only produce a diversity of metabolites, but also cause the production of flavour precursors. However, as such spontaneous fermentations are less reproducible and contribute to produce variability, interest in a microbial starter culture is growing that could be used to inoculate cocoa pulp fermentations. This study aimed to generate robust S. cerevisiae strains by thermo-adaptive evolution that could be used in cocoa fermentation. We evolved a cocoa strain in a sugary defined medium at high temperature to improve both fermentation and growth capacity. Moreover, adaptive evolution at high temperature (40 °C) also enabled us to unveil the molecular basis underlying the improved phenotype by analysing the whole genome sequence of the evolved strain. Adaptation to high-temperature conditions occurred at different genomic levels, and promoted aneuploidies, segmental duplication, and SNVs in the evolved strain. The lipid profile analysis of the evolved strain also evidenced changes in the membrane composition that contribute to maintain an appropriate cell membrane state at high temperature. Our work demonstrates that experimental evolution is an effective approach to generate better-adapted yeast strains at high temperature for industrial processes.
Collapse
|
15
|
Díaz-Muñoz C, Van de Voorde D, Comasio A, Verce M, Hernandez CE, Weckx S, De Vuyst L. Curing of Cocoa Beans: Fine-Scale Monitoring of the Starter Cultures Applied and Metabolomics of the Fermentation and Drying Steps. Front Microbiol 2021; 11:616875. [PMID: 33505385 PMCID: PMC7829357 DOI: 10.3389/fmicb.2020.616875] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Starter culture-initiated cocoa fermentation processes can be applied to improve the quality of cured cocoa beans. However, an accurate monitoring of the microbial strains inoculated in fresh cocoa pulp-bean mass to assess their contribution to the cocoa bean curing process is still lacking. In the present study, eight different cocoa fermentation processes were carried out with Trinitario cocoa in vessels in Costa Rica to assess the contribution of two candidate yeast starter culture strains, namely Saccharomyces cerevisiae IMDO 050523 and Pichia kudriavzevii IMDO 020508, inoculated in combination with Limosilactobacillus fermentum IMDO 0611222 and Acetobacter pasteurianus IMDO 0506386. A multiphasic approach, consisting of culture-dependent selective plating and incubation, rRNA-PCR-DGGE community profiling of agar plate washes, and culture-independent high-throughput amplicon sequencing, combined with a metabolite target analysis of non-volatile and volatile organic compounds (VOCs), was performed on samples from the fermentation and/or drying steps. The different starter culture mixtures applied effectively steered the cocoa fermentation processes performed. Moreover, the use of an amplicon sequence variant (ASV) approach, aligning these ASVs to the whole-genome sequences of the inoculated strains, allowed the monitoring of these inoculated strains and their differentiation from very closely related variants naturally present in the background or spontaneous fermentation processes. Further, traits such as malolactic fermentation during the fermentation step and acetoin and tetramethylpyrazine formation during the drying step could be unraveled. Finally, the yeast strains inoculated influenced the substrate consumption and metabolite production during all starter culture-initiated fermentation processes. This had an impact on the VOC profiles of the cured cocoa beans. Whereas the P. kudriavzevii strain produced a wide range of VOCs in the cocoa pulp, the S. cerevisiae strain mostly influenced the VOC composition of the cured cocoa beans.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Kouamé C, Loiseau G, Grabulos J, Boulanger R, Mestres C. Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. Int J Food Microbiol 2020; 337:108917. [PMID: 33126076 DOI: 10.1016/j.ijfoodmicro.2020.108917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/30/2020] [Accepted: 10/04/2020] [Indexed: 11/25/2022]
Abstract
The aromatic quality of chocolate requires the use of cocoa with high aromatic potential, this being acquired during the fermentation of cocoa beans. Traditional fermentation is still often carried out on a small scale with wild strains of yeasts and acetic bacteria and under poorly controlled conditions leading to cocoa quality ranging from best to worst. This study is the first part of a project aiming to control quality of cocoa to produce high aromatic quality chocolate by using a mixed starter of selected strains of yeast and acetic bacteria and by controlling the conditions of fermentation. To achieve this objective, a mathematical model of the alcoholic fermentation of cocoa beans has been developed. The growth, glucose consumption and ethanol production of Saccharomyces cerevisiae LM strain in synthetic broth were modeled for the most important intrinsic (pH, glucose, ethanol, free nitrogen and oxygen levels) and extrinsic (temperature, oxygen level) fermentation parameters. The model was developed by combining the effects of individual conditions in a multiplicative way using the gamma concept. The model was validated in liquid synthetic medium at two different inoculation levels 104 and 106 CFU/mL with an increase in temperature that recorded during spontaneous fermentations. The model clearly shows that the level of inoculation and the speed of the increase in temperature clearly drive yeast growth, while other factors including pH and ethanol, free nitrogen and oxygen levels have no significant impact on yeast growth.
Collapse
Affiliation(s)
- Christelle Kouamé
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Gérard Loiseau
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France.
| | - Joël Grabulos
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Renaud Boulanger
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Christian Mestres
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| |
Collapse
|
17
|
Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 2020; 6:1-31. [PMID: 32226912 PMCID: PMC7099199 DOI: 10.3934/microbiol.2020001] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/19/2020] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is the best studied eukaryote and a valuable tool for most aspects of basic research on eukaryotic organisms. This is due to its unicellular nature, which often simplifies matters, offering the combination of the facts that nearly all biological functions found in eukaryotes are also present and well conserved in S. cerevisiae. In addition, it is also easily amenable to genetic manipulation. Moreover, unlike other model organisms, S. cerevisiae is concomitantly of great importance for various biotechnological applications, some of which date back to several thousands of years. S. cerevisiae's biotechnological usefulness resides in its unique biological characteristics, i.e., its fermentation capacity, accompanied by the production of alcohol and CO2 and its resilience to adverse conditions of osmolarity and low pH. Among the most prominent applications involving the use of S. cerevisiae are the ones in food, beverage -especially wine- and biofuel production industries. This review focuses exactly on the function of S. cerevisiae in these applications, alone or in conjunction with other useful microorganisms involved in these processes. Furthermore, various aspects of the potential of the reservoir of wild, environmental, S. cerevisiae isolates are examined under the perspective of their use for such applications.
Collapse
Affiliation(s)
- Maria Parapouli
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Anastasios Vasileiadis
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Amalia-Sofia Afendra
- Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Efstathios Hatziloukas
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
18
|
Hart RS, Jolly NP, Ndimba BK. Characterisation of hybrid yeasts for the production of varietal Sauvignon blanc wine – A review. J Microbiol Methods 2019; 165:105699. [DOI: 10.1016/j.mimet.2019.105699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
19
|
Papalexandratou Z, Kaasik K, Kauffmann LV, Skorstengaard A, Bouillon G, Espensen JL, Hansen LH, Jakobsen RR, Blennow A, Krych L, Castro-Mejía JL, Nielsen DS. Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. Int J Food Microbiol 2019; 304:106-118. [PMID: 31176963 DOI: 10.1016/j.ijfoodmicro.2019.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Nicaraguan cocoa bean fermentations of several single local cocoa varieties originating from the same region (North Highlands of Nicaragua, San Jose de Bocay/El Cuá) were compared to fermentations of blended cocoa varietals from other producing regions of the country (Waslala and Nueva Guinea) making use of High Throughput Sequencing techniques, metabolite target analysis and sensory evaluation of cocoa liquor samples. A succession of the important cocoa-related yeasts Hanseniaspora uvarum/opuntiae, Saccharomyces cerevisiae and/or Pichia kudriavzevii was seen for single varietals and Nueva Guinea fermentations, while Kazachstania humilis dominated the mid and end phase of the Waslala cocoa fermentations. Tatumella species (mainly Tatumella terrea and Tatumella punctata) predominated the bacterial community at the onset of all fermentations followed by unusually late (generally 2 days into the fermentations) appearance of Lactobacillus fermentum relative to fermentations in other parts of the World. Acetobacter spp. were the main acetic acid bacteria during all fermentations, but also Gluconobacter spp. were involved in some single-variety fermentations. All fermentations proved complete as determined by metabolite analysis with bean sucrose being fully depleted and pulp sugars exhausted after 48-72 h of fermentation. From an organoleptic point of view, all Nicaraguan cocoas of this study reflected fine fruity (citrus or berry-like) flavours with distinct herbal or caramel notes. Floral notes were associated with the cases where P. kudriavzevii was involved in the later stages of fermentation. Intense citrus/fruity character was related to high pulp and bean citrate concentrations. Off-notes were found in some over-fermented batches where Bacillus spp. was detected. No relation between cut-test results and organoleptic appreciation was seen.
Collapse
Affiliation(s)
| | - Kristina Kaasik
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | | - Albert Skorstengaard
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Gregoire Bouillon
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Julie Leth Espensen
- Ingemann Fine Cocoa, Managua, Nicaragua; Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Lars H Hansen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | | | - Andreas Blennow
- Department of Plant & Environmental Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | |
Collapse
|
20
|
Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of Industrial Microbes. Curr Biol 2019; 29:R381-R393. [DOI: 10.1016/j.cub.2019.04.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Mota-Gutierrez J, Barbosa-Pereira L, Ferrocino I, Cocolin L. Traceability of Functional Volatile Compounds Generated on Inoculated Cocoa Fermentation and Its Potential Health Benefits. Nutrients 2019; 11:E884. [PMID: 31010207 PMCID: PMC6521293 DOI: 10.3390/nu11040884] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Microbial communities are responsible for the unique functional properties of chocolate. During microbial growth, several antimicrobial and antioxidant metabolites are produced and can influence human wellbeing. In the last decades, the use of starter cultures in cocoa fermentation has been pushed to improve nutritional value, quality, and the overall product safety. However, it must be noted that unpredictable changes in cocoa flavor have been reported between the different strains from the same species used as a starter, causing a loss of desirable notes and flavors. Thus, the importance of an accurate selection of the starter cultures based on the biogenic effect to complement and optimize chocolate quality has become a major interest for the chocolate industry. This paper aimed to review the microbial communities identified from spontaneous cocoa fermentations and focused on the yeast starter strains used in cocoa beans and their sensorial and flavor profile. The potential compounds that could have health-promoting benefits like limonene, benzaldehyde, 2-phenylethanol, 2-methylbutanal, phenylacetaldehyde, and 2-phenylethyl acetate were also evaluated as their presence remained constant after roasting. Further research is needed to highlight the future perspectives of microbial volatile compounds as biomarkers to warrant food quality and safety.
Collapse
Affiliation(s)
- Jatziri Mota-Gutierrez
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Letricia Barbosa-Pereira
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santigo de Compostela, Spain.
| | - Ilario Ferrocino
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Luca Cocolin
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| |
Collapse
|
22
|
Querol A, Pérez-Torrado R, Alonso-Del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E. New Trends in the Uses of Yeasts in Oenology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:177-210. [PMID: 29860974 DOI: 10.1016/bs.afnr.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands.
Collapse
Affiliation(s)
- Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Jiri Stribny
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Bruno M Oliveira
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| |
Collapse
|
23
|
Meersman E, Struyf N, Kyomugasho C, Jamsazzadeh Kermani Z, Santiago JS, Baert E, Hemdane S, Vrancken G, Verstrepen KJ, Courtin CM, Hendrickx M, Steensels J. Characterization and Degradation of Pectic Polysaccharides in Cocoa Pulp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9726-9734. [PMID: 29032689 DOI: 10.1021/acs.jafc.7b03854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial fermentation of the viscous pulp surrounding cocoa beans is a crucial step in chocolate production. During this process, the pulp is degraded, after which the beans are dried and shipped to factories for further processing. Despite its central role in chocolate production, pulp degradation, which is assumed to be a result of pectin breakdown, has not been thoroughly investigated. Therefore, this study provides a comprehensive physicochemical analysis of cocoa pulp, focusing on pectic polysaccharides, and the factors influencing its degradation. Detailed analysis reveals that pectin in cocoa pulp largely consists of weakly bound substances, and that both temperature and enzyme activity play a role in its degradation. Furthermore, this study shows that pulp degradation by an indigenous yeast fully relies on the presence of a single gene (PGU1), encoding for an endopolygalacturonase. Apart from their basic scientific value, these new insights could propel the selection of microbial starter cultures for more efficient pulp degradation.
Collapse
Affiliation(s)
- Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- Lab for Systems Biology, VIB Center for Microbiology, Bio-Incubator , Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Nore Struyf
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Clare Kyomugasho
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Zahra Jamsazzadeh Kermani
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Jihan Santanina Santiago
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Eline Baert
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- Lab for Systems Biology, VIB Center for Microbiology, Bio-Incubator , Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Sami Hemdane
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Gino Vrancken
- Barry Callebaut AG , Westpark, Pfingstweidstrasse 60, 8005 Zurich, Switzerland
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- Lab for Systems Biology, VIB Center for Microbiology, Bio-Incubator , Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven , Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- Lab for Systems Biology, VIB Center for Microbiology, Bio-Incubator , Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance. Folia Microbiol (Praha) 2017; 63:155-168. [PMID: 28887734 DOI: 10.1007/s12223-017-0546-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.
Collapse
|
25
|
Ozturk G, Young GM. Food Evolution: The Impact of Society and Science on the Fermentation of Cocoa Beans. Compr Rev Food Sci Food Saf 2017; 16:431-455. [PMID: 33371559 DOI: 10.1111/1541-4337.12264] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Abstract
Cocoa is part of the cultural heritage in many areas of South and Central America and has played an important role in the history of human culture there. The modern methods of cocoa bean production for the purpose of the manufacture of modern chocolate are tied to the origin and development of cocoa bean fermentation and processing methods and the science of microbiology. To date, however, there has not been a study that discusses the impacts of both science and culture on the evolution of cocoa beans and cocoa bean processing. This work provides both a detailed overview of the evolution and historical development of cocoa, from its earliest forms to modern chocolate manufacturing, an in-depth discussion of the biochemistry of cocoa bean fermentation, as well as a compilation of primary research studies with details on fermentation methods, the scientific bases of interactions in microbial fermentations, and methods for their investigation, as well as metabolites that are produced. As a result, we present here the major microorganisms among all the ones that have been identified in previous studies. This database will aid researchers seeking standardized inoculants to drive cocoa bean fermentation, as well as serve as a guide for inventorying and assessing other food evolution-related studies regarding traditional and artisanal-based food systems.
Collapse
Affiliation(s)
- Gulustan Ozturk
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, U.S.A
| | - Glenn M Young
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, U.S.A
| |
Collapse
|
26
|
Samagaci L, Ouattara H, Niamké S, Lemaire M. Pichia kudrazevii and Candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Food Res Int 2016; 89:773-780. [DOI: 10.1016/j.foodres.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
27
|
Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir. mSystems 2016; 1:mSystems00052-16. [PMID: 27822552 PMCID: PMC5080400 DOI: 10.1128/msystems.00052-16] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. Author Video: An author video summary of this article is available.
Collapse
|
28
|
Papalexandratou Z, Nielsen DS. It's Gettin’ Hot in Here: Breeding Robust Yeast Starter Cultures for Cocoa Fermentation. Trends Microbiol 2016; 24:168-170. [DOI: 10.1016/j.tim.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 12/01/2022]
|
29
|
De Vuyst L, Weckx S. The cocoa bean fermentation process: from ecosystem analysis to starter culture development. J Appl Microbiol 2016; 121:5-17. [DOI: 10.1111/jam.13045] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- L. De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO); Faculty of Sciences and Bioengineering Sciences; Vrije Universiteit Brussel; Brussels Belgium
| | - S. Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO); Faculty of Sciences and Bioengineering Sciences; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
30
|
|
31
|
Meersman E, Steensels J, Struyf N, Paulus T, Saels V, Mathawan M, Allegaert L, Vrancken G, Verstrepen KJ. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production. Appl Environ Microbiol 2016; 82:732-46. [PMID: 26590272 PMCID: PMC4711123 DOI: 10.1128/aem.02556-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor.
Collapse
Affiliation(s)
- Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Nore Struyf
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Tinneke Paulus
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | | | | | | | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| |
Collapse
|