1
|
Wijewardene L, Schwenker JA, Friedrichsen M, Jensen A, Löbel F, Austen T, Ulrich U, Fohrer N, Bang C, Waschina S, Hölzel CS. Selection of aquatic microbiota exposed to the herbicides flufenacet and metazachlor. Environ Microbiol 2023; 25:2972-2987. [PMID: 37994199 DOI: 10.1111/1462-2920.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Herbicides are important, ubiquitous environmental contaminants, but little is known about their interaction with bacterial aquatic communities. Here, we sampled a protected natural freshwater habitat and characterised its microbiome in interaction with herbicides. We evolved the freshwater microbiomes in a microcosm assay of exposure (28 days) to flufenacet and metazachlor at environmental concentrations of 0.5, 5 and 50 μg L-1 . Inhibitory effects of herbicides were exemplarily assessed in cultured bacteria from the same pond (Pseudomonas alcaligenes, Paenibacillus amylolyticus and Microbacterium hominis). Findings were compared to long-term concentrations as provided by local authorities. Here, environmental concentrations reached up to 11 μg L-1 (flufenacet) and 76 μg L-1 (metazachlor). Bacteria were inhibited at minimum inhibitory concentrations far above these values; however, concentrations of 50 μg L-1 of flufenacet resulted in measurable growth impairment. While most herbicide-exposed microcosm assays did not differ from controls, Acidobacteria were selected at high environmental concentrations of herbicides. Alpha-diversity (e.g., taxonomic richness on phylum level) was reduced when aquatic microbiomes were exposed to 50 μg metazachlor or flufenacet. One environmental strain of P. alcaligenes showed resistance to high concentrations of flufenacet (50 g L-1 ). In total, this study reveals that ecologic imbalance due to herbicide use significantly impacts aquatic microbiomes.
Collapse
Affiliation(s)
- Lishani Wijewardene
- Faculty of Fisheries and Marine Sciences & Technology, Department of Limnology and Water Technology, University of Ruhuna, Matara, Sri Lanka
| | - Julia Anna Schwenker
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Meike Friedrichsen
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Ailina Jensen
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Franziska Löbel
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Tabea Austen
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Uta Ulrich
- Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Kiel University, Kiel, Germany
| | - Nicola Fohrer
- Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Kiel University, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Department for Nutriinformatics, Kiel University, Kiel, Germany
| | - Christina Susanne Hölzel
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Ji Y, Zhang P, Zhou S, Gao P, Wang B, Jiang J. Widespread but Poorly Understood Bacteria: Candidate Phyla Radiation. Microorganisms 2022; 10:2232. [PMID: 36422302 PMCID: PMC9698310 DOI: 10.3390/microorganisms10112232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/15/2023] Open
Abstract
Candidate Phyla Radiation (CPR) bacteria is a bacterial division composed mainly of candidate phyla bacteria with ultra-small cell sizes, streamlined genomes, and limited metabolic capacity, which are generally considered to survive in a parasitic or symbiotic manner. Despite their wide distribution and rich diversity, CPR bacteria have received little attention until recent years, and are therefore poorly understood. This review systematically summarizes the history of CPR research, the parasitic/symbiotic lifestyle, and the ecological distribution and unique metabolic features of CPR bacteria, hoping to provide guidance for future ecological and physiological research on CPR bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
3
|
Blakney AJC, Bainard LD, St-Arnaud M, Hijri M. Brassicaceae host plants mask the feedback from the previous year's soil history on bacterial communities, except when they experience drought. Environ Microbiol 2022; 24:3529-3548. [PMID: 35590462 DOI: 10.1111/1462-2920.16046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Soil history operates through time to influence the structure and biodiversity of soil bacterial communities. Examining how different soil histories endure will help clarify the rules of bacterial community assembly. In this study, we established three different soil histories in field trials; the following year these plots were planted with five different Brassicaceae species. We hypothesized that the previously established soil histories would continue to structure the subsequent Brassicaceae bacterial root and rhizosphere communities. We used a MiSeq 16S rRNA metabarcoding strategy to determine the impact of different soil histories on the structure and biodiversity of the bacterial root and rhizosphere communities from the five different Brassicaceae host plants. We found that the Brassicaceae hosts were consistently significant factors in structuring the bacterial communities. Four host plants (Sinapis alba, Brassica napus, B. juncea, B. carinata) formed similar bacterial communities, regardless of different soil histories. Camelina sativa host plants structured phylogenetically distinct bacterial communities compared to the other hosts, particularly in their roots. Soil history established the previous year was only a significant factor for bacterial community structure when the feedback of the Brassicaceae host plants was weakened, potentially due to limited soil moisture during a dry year. Understanding how soil history is involved in the structure and biodiversity of bacterial communities through time is a limitation in microbial ecology and is required for employing microbiome technologies in improving agricultural systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, QC, Canada
| | - Luke D Bainard
- Agassiz Research and Development Centre, AgricuSlture and Agri-Food Canada, Agassiz, BC, V0M 1A2, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, QC, Canada
| | - Mohamed Hijri
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, QC, Canada.,African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| |
Collapse
|
4
|
Hernández R, Jimenez H, Vargas-Garcia C, Caro-Quintero A, Reyes A. Disentangling the Complexity of the Rumen Microbial Diversity Through Fractionation Using a Sucrose Density Gradient. Front Microbiol 2021; 12:664754. [PMID: 34305833 PMCID: PMC8297521 DOI: 10.3389/fmicb.2021.664754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022] Open
Abstract
The ruminal microbial community is an important element in health, nutrition, livestock productivity, and climate impact. Despite the historic and current efforts to characterize this microbial diversity, many of its members remain unidentified, making it challenging to associate microbial groups with functions. Here we present a low-cost methodology for rumen sample treatment that separates the microbial community based on cell size, allowing for the identification of subtle compositional changes. In brief, the sample is centrifuged through a series of sucrose density gradients, and cells migrate to their corresponding density fraction. From each fraction, DNA is extracted and 16S rRNA gene amplicons are sequenced. We tested our methodology on four animals under two different conditions, fasting, and post-feeding. Each fraction was examined by confocal microscopy showing that the same sucrose fraction consistently separated similar cell-sized microorganisms independent of the animal or treatment. Microbial composition analysis using metabarcoding showed that our methodology detected low abundance bacterial families and population changes between fasting and post-feeding treatments that could not be observed by bulk DNA analysis. In conclusion, the sucrose-based method is a powerful low-cost approximation to untwine, enrich, and potentially isolate uncharacterized members of the ruminal microbiome.
Collapse
Affiliation(s)
- Ruth Hernández
- Computational Biology and Microbial Ecology Group, Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.,Animal Microbiology Laboratory, Agrodiversity Department, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bogotá, Colombia
| | - Hugo Jimenez
- Animal Microbiology Laboratory, Agrodiversity Department, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bogotá, Colombia
| | - Cesar Vargas-Garcia
- Grupo de Investigación en Sistemas Agropecuarios Sostenibles, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bogotá, Colombia
| | - Alejandro Caro-Quintero
- Animal Microbiology Laboratory, Agrodiversity Department, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bogotá, Colombia.,Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alejandro Reyes
- Computational Biology and Microbial Ecology Group, Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Montgomery K, Williams TJ, Brettle M, Berengut JF, Zhang E, Zaugg J, Hugenholtz P, Ferrari BC. Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils. Environ Microbiol 2021; 23:4276-4294. [PMID: 34029441 DOI: 10.1111/1462-2920.15610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
Candidatus Dormibacterota is an uncultured bacterial phylum found predominantly in soil that is present in high abundances within cold desert soils. Here, we interrogate nine metagenome-assembled genomes (MAGs), including six new MAGs derived from soil metagenomes obtained from two eastern Antarctic sites. Phylogenomic and taxonomic analyses revealed these MAGs represent four genera and five species, representing two order-level clades within Ca. Dormibacterota. Metabolic reconstructions of these MAGs revealed the potential for aerobic metabolism, and versatile adaptations enabling persistence in the 'extreme' Antarctic environment. Primary amongst these adaptations were abilities to scavenge atmospheric H2 and CO as energy sources, as well as using the energy derived from H2 oxidation to fix atmospheric CO2 via the Calvin-Bassham-Benson cycle, using a RuBisCO type IE. We propose that these allow Ca. Dormibacterota to persist using H2 oxidation and grow using atmospheric chemosynthesis in terrestrial Antarctica. Fluorescence in situ hybridization revealed Ca. Dormibacterota to be coccoid cells, 0.3-1.4 μm in diameter, with some cells exhibiting the potential for a symbiotic or syntrophic lifestyle.
Collapse
Affiliation(s)
- Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Merryn Brettle
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| |
Collapse
|
6
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. Microbial symbiosis and coevolution of an entire clade of ancient vertebrates: the gut microbiota of sea turtles and its relationship to their phylogenetic history. Anim Microbiome 2020; 2:17. [PMID: 33499954 PMCID: PMC7807503 DOI: 10.1186/s42523-020-00034-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background The microbiota plays a critical role in host homeostasis and has been shown to be a major driving force in host evolution. However, our understanding of these important relationships is hampered by a lack of data for many species, and by significant gaps in sampling of the evolutionary tree. In this investigation we improve our understanding of the host-microbiome relationship by obtaining samples from all seven extant species of sea turtle, and correlate microbial compositions with host evolutionary history. Results Our analysis shows that the predominate phyla in the microbiota of nesting sea turtles was Proteobacteria. We also demonstrate a strong relationship between the bacterial phyla SR1 and sea turtle phylogeny, and that sea turtle microbiotas have changed very slowly over time in accordance with their similarly slow phenotypic changes. Conclusions This is one of the most comprehensive microbiota studies to have been performed in a single clade of animals and further improves our knowledge of how microbial populations have influenced vertebrate evolution.
Collapse
Affiliation(s)
| | - Robert J Moore
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Thi Thu Hao Van
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| |
Collapse
|
7
|
Salivary Microbiome and Cigarette Smoking: A First of Its Kind Investigation in Jordan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010256. [PMID: 31905907 PMCID: PMC6982339 DOI: 10.3390/ijerph17010256] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/28/2022]
Abstract
There is accumulating evidence in the biomedical literature suggesting the role of smoking in increasing the risk of oral diseases including some oral cancers. Smoking alters microbial attributes of the oral cavity by decreasing the commensal microbial population and increasing the pathogenic microbes. This study aims to investigate the shift in the salivary microbiota between smokers and non-smokers in Jordan. Our methods relied on high-throughput next-generation sequencing (NGS) experiments for V3-V4 hypervariable regions of the 16S rRNA gene, followed by comprehensive bioinformatics analysis including advanced multidimensional data visualization methods and statistical analysis approaches. Six genera—Streptococcus, Prevotella, Vellionella, Rothia, Neisseria, and Haemophilus—predominated the salivary microbiota of all samples with different percentages suggesting the possibility for the salivary microbiome to restored after quitting smoking. Three genera—Streptococcus, Prevotella, and Veillonella—showed significantly elevated levels among smokers at the expense of Neisseria in non-smokers. In conclusion, smoking has a definite impact on shifting the salivary microbiota in smokers. We can suggest that there is microbial signature at the genera level that can be used to classify smokers and non-smokers by Linear Discriminant Analysis Effect Size (LEfSe) based on the salivary abundance of genera. Proteomics and metabolomics studies are highly recommended to fully understand the effect of bacterial endotoxin release and xenobiotic metabolism on the bacterial interrelationships in the salivary microbiome and how they affect the growth of each other in the saliva of smokers.
Collapse
|
8
|
Pitta DW, Indugu N, Vecchiarelli B, Hennessy M, Baldin M, Harvatine KJ. Effect of 2-hydroxy-4-(methylthio) butanoate (HMTBa) supplementation on rumen bacterial populations in dairy cows when exposed to diets with risk for milk fat depression. J Dairy Sci 2019; 103:2718-2730. [PMID: 31864737 DOI: 10.3168/jds.2019-17389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022]
Abstract
Diet-induced milk fat depression (MFD) is a condition marked by a reduction in milk fat yield experimentally achieved by increasing dietary unsaturated fatty acids and fermentable carbohydrates. 2-Hydroxy-4-(methylthio) butanoate (HMTBa) is a methionine analog observed to reduce diet-induced MFD in dairy cows. We hypothesize that the reduction in diet-induced MFD by HMTBa is due to changes in the rumen microbiota. To test this, 22 high-producing cannulated Holstein dairy cows were placed into 2 groups using a randomized block design and assigned to either control or HMTBa supplementation (0.1% of diet dry matter). All cows were then exposed to 3 different diets with a low risk (32% neutral detergent fiber, no added oil; fed d 1 to 7), a moderate risk (29% neutral detergent fiber and 0.75% soybean oil; fed d 8 to 24), or a high risk (29% neutral detergent fiber and 1.5% soybean oil; fed d 25 to 28) for diet-induced MFD. Rumen samples were collected on d 0, 14, 24, and 28, extracted for DNA, PCR-amplified for the V1-V2 region of the 16S rRNA gene, sequenced on an Illumina MiSeq (Illumina, San Diego, CA), and subjected to bacterial diversity analysis using the QIIME pipeline. The α diversity estimates (species richness and Shannon diversity) were decreased in the control group compared with the HMTBa group. Bacterial community composition also differed between control and HMTBa groups based on both weighted UniFrac (relative abundance of commonly detected bacteria) and unweighted UniFrac (presence/absence) distances. Within the HMTBa group, no differences were observed in bacterial community composition between d 0 and d 14, 24, and 28; however, in the control group, d 0 samples were different from d 14, 24, and 28. Certain bacterial genera including Dialister, Megasphaera, Lachnospira, and Sharpea were increased in the control group compared with the HMTBa group. Interestingly, these genera were positively correlated with milk fat trans-10,cis-12 conjugated linoleic acid and trans-10 C18:1, fatty acid isomers associated with biohydrogenation-induced MFD. It can be concluded that diet-induced MFD is accompanied by significant alterations in the rumen bacterial community and that HMTBa supplementation reduces these microbial perturbations.
Collapse
Affiliation(s)
- D W Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348.
| | - N Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - B Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - M Hennessy
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - M Baldin
- MILC Group, San Luis Obispo, CA 93405
| | - K J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| |
Collapse
|
9
|
Ricci S, Sandfort R, Pinior B, Mann E, Wetzels SU, Stalder G. Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sara Ricci
- S. Ricci and G. Stalder ✉ , Res. Inst. of Wildlife Ecology, Dept of Interdisciplinary Life Sciences, Univ. of Veterinary Medicine, Austria, Savoyenstraße 1, AU-1160 Vienna, Austria. SR also at: Univ. of Camerino, Ca
| | - Robin Sandfort
- R. Sandfort, Inst. of Wildlife Biology and Game Management, Univ. of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Beate Pinior
- B. Pinior, Inst. for Veterinary Public Health, Dept for Farm Animals and Veterinary Public Health, Univ. of Veterinary Medicine, Vienna, Austria
| | - Evelyne Mann
- E. Mann and S. U. Wetzels, Inst. of Milk Hygiene, Milk Technology and Food Science, Dept for Farm Animal and Public Health in Veterinary Medicine, Univ. of Veterinary Medicine, Vienna, Austria
| | - Stefanie U. Wetzels
- E. Mann and S. U. Wetzels, Inst. of Milk Hygiene, Milk Technology and Food Science, Dept for Farm Animal and Public Health in Veterinary Medicine, Univ. of Veterinary Medicine, Vienna, Austria
| | - Gabrielle Stalder
- S. Ricci and G. Stalder ✉ , Res. Inst. of Wildlife Ecology, Dept of Interdisciplinary Life Sciences, Univ. of Veterinary Medicine, Austria, Savoyenstraße 1, AU-1160 Vienna, Austria. SR also at: Univ. of Camerino, Ca
| |
Collapse
|
10
|
Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 2019; 112:1801-1814. [PMID: 31372944 DOI: 10.1007/s10482-019-01308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.
Collapse
|
11
|
Zhong Y, Xue M, Liu J. Composition of Rumen Bacterial Community in Dairy Cows With Different Levels of Somatic Cell Counts. Front Microbiol 2018; 9:3217. [PMID: 30619238 PMCID: PMC6312127 DOI: 10.3389/fmicb.2018.03217] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/11/2018] [Indexed: 11/28/2022] Open
Abstract
Mastitis is an inflammatory disease, affects the dairy industry and has a severe economic impact. During subclinical mastitis, milk production and milk quality deteriorates. Recently, rumen microbial composition has been linked to rumen health, but few studies have investigated the effect of rumen microbiota on mammary health in cows. This study was undertaken to identify the rumen microbial composition and associated microbial fermentation in cows with different somatic cell counts (SCC), with the speculation that cows with different health statuses of the mammary gland have different rumen bacterial composition and diversity. A total of 319 Holstein dairy cows fed the same diet and under the same management were selected and divided into four groups as SCC1 (N = 175), SCC2 (N = 49), SCC3 (N = 49), and SCC4 (N = 46) with < 200,000, 200,001–500,000, 500,001–1,000,000, and >1,000,000 somatic cells/mL, respectively. Further, 20 cows with the lowest SCC and 20 cows with the highest SCC were identified. The rumen microbial composition was profiled using 16S rRNA sequencing, along with measurement of rumen fermentation parameters and milking performance. Compared to low SCC, cows with high SCC showed poorer milk yield, milk composition, and rumen volatile fatty acids concentration, but higher rumen bacterial diversity. Although the predominant rumen bacterial taxa did not vary among the SCC groups, the relative abundance of phyla SR1 and Actinobacteria, unclassified family Clostridiales and genus Butyrivibrio were significantly different. In addition, Proteobacteria and family Succinivibrionaceae were enriched in cows with low SCC. Our results suggest that specific rumen microbes are altered in cows with high SCC.
Collapse
Affiliation(s)
- Yifan Zhong
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Institute of Diary Science, Zhejiang University, Hangzhou, China
| | - Mingyuan Xue
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Institute of Diary Science, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Institute of Diary Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
The Prodigal Compound: Return of Ribosyl 1,5-Bisphosphate as an Important Player in Metabolism. Microbiol Mol Biol Rev 2018; 83:83/1/e00040-18. [PMID: 30567937 DOI: 10.1128/mmbr.00040-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ribosyl 1,5-bisphosphate (PRibP) was discovered 65 years ago and was believed to be an important intermediate in ribonucleotide metabolism, a role immediately taken over by its "big brother" phosphoribosyldiphosphate. Only recently has PRibP come back into focus as an important player in the metabolism of ribonucleotides with the discovery of the pentose bisphosphate pathway that comprises, among others, the intermediates PRibP and ribulose 1,5-bisphosphate (cf. ribose 5-phosphate and ribulose 5-phosphate of the pentose phosphate pathway). Enzymes of several pathways produce and utilize PRibP not only in ribonucleotide metabolism but also in the catabolism of phosphonates, i.e., compounds containing a carbon-phosphorus bond. Pathways for PRibP metabolism are found in all three domains of life, most prominently among organisms of the archaeal domain, where they have been identified either experimentally or by bioinformatic analysis within all of the four main taxonomic groups, Euryarchaeota, TACK, DPANN, and Asgard. Advances in molecular genetics of archaea have greatly improved the understanding of the physiology of PRibP metabolism, and reconciliation of molecular enzymology and three-dimensional structure analysis of enzymes producing or utilizing PRibP emphasize the versatility of the compound. Finally, PRibP is also an effector of several metabolic activities in many organisms, including higher organisms such as mammals. In the present review, we describe all aspects of PRibP metabolism, with emphasis on the biochemical, genetic, and physiological aspects of the enzymes that produce or utilize PRibP. The inclusion of high-resolution structures of relevant enzymes that bind PRibP provides evidence for the flexibility and importance of the compound in metabolism.
Collapse
|
13
|
Svensson K, Paruch L, Gaby JC, Linjordet R. Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste. BIORESOURCE TECHNOLOGY 2018; 269:276-284. [PMID: 30193211 DOI: 10.1016/j.biortech.2018.08.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
In anaerobic digestion, studies of feeding frequency have produced conflicting results. Hence, the effect of feeding frequency on process variables and microbial community structure was investigated by comparing a laboratory-scale digester fed steam exploded food waste 10 times daily vs. one fed an equivalent amount once daily. The Frequently Fed Digester (FFD) produced on average 20% more methane and had lower effluent concentrations of long-chain fatty acids. Greater daily fluctuations in acetate, pH and biogas production rate could explain the lower specific methane yield and β-oxidation. Feeding frequency also influenced the microbial community whereby Tenericutes (42%) dominated in FFD but Firmicutes (31%) was most abundant in the Daily Fed Digester (DFD). Feeding frequency effects are therefore postulated to occur more often in digesters fed labile feedstocks at high organic loading rates.
Collapse
Affiliation(s)
- Kine Svensson
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway.
| | - Lisa Paruch
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - John Christian Gaby
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Roar Linjordet
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| |
Collapse
|
14
|
Remmas N, Melidis P, Zerva I, Kristoffersen JB, Nikolaki S, Tsiamis G, Ntougias S. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2017; 238:48-56. [PMID: 28432949 DOI: 10.1016/j.biortech.2017.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH4+-N. Exceptionally high β-glucosidase activities (6700-10,100Ug-1) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater.
Collapse
Affiliation(s)
- Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece
| | - Ioanna Zerva
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece
| | - Jon Bent Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion 71500, Greece
| | - Sofia Nikolaki
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi St., Agrinio 30100, Greece
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi St., Agrinio 30100, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece.
| |
Collapse
|
15
|
Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 2017; 109:231-243. [PMID: 28494211 DOI: 10.1080/00275514.2017.1317190] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anaerobic gut fungi (AGF) inhabit the rumen and alimentary tracts of multiple ruminant and nonruminant herbivores, belong to a distinct phylum-level lineage (Neocallimastigomycota), and play an important role in plant biomass degradation in many herbivores. As part of a wider effort to obtain AGF with high lignocellulolytic capacities, we isolated and characterized four different AGF strains from the feces of cattle and sheep. Microscopically, isolates produced monocentric thalli and monoflagellated zoospores. Phylogenetic analysis revealed that all isolates formed a monophyletic cluster with strong bootstrap support as a sister clade to the genus Orpinomyces and close to Neocallimastix, an unexpected result because these two genera of AGF form polyflagellated zoospores. Isolates displayed a smooth biofilm-like growth in liquid medium and formed small (0.5-1 mm) pinpoint circular colonies on agar roll tubes. Both endogenous and exogenous sporangia were observed with variable shapes and sizes. Zoospores were mainly spherical, with diameters ranging between 3.8 and 12.5 µm, and mostly a single flagellum. All strains exhibited similar substrate utilization patterns and comparable cellulolytic and xylanolytic activities. Similar ITS1 sequences falling within the same distinctive clade were found on GenBank, with all environmental samples obtained from diverse ruminant and pseudoruminant hosts from three continents, but not from any hindgut-fermenting hosts. Given the high level of sequence divergence between our strains and closest cultured representatives and their distinct microscopic/macroscopic features, we propose a new genus, Pecoramyces, from the name of the taxonomic infraorder Pecora ("horned ruminants" or "higher ruminants"; derived from the Latin word for horned livestock), and a new species, P. ruminantium (since occurrence seems to be specific to ruminant/pseudoruminant foregut, but not hindgut-fermenting mammals).
Collapse
Affiliation(s)
- Radwa A Hanafy
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| | - Mostafa S Elshahed
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| | - Audra S Liggenstoffer
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| | - Gareth W Griffith
- b Institute of Biological, Environmental, and Rural Sciences (IBERS) , Aberystwyth University , Aberystwyth , Wales , UK
| | - Noha H Youssef
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| |
Collapse
|
16
|
Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, Duan Y, Engel AS. The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil Acidification. Front Microbiol 2016; 7:1955. [PMID: 28018299 PMCID: PMC5159436 DOI: 10.3389/fmicb.2016.01955] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/21/2016] [Indexed: 01/22/2023] Open
Abstract
Enhanced monsoon duration and soil acidification from acid rain are expected to impact the distribution of microbial communities in surface and subsurface environments, although these impacts are poorly understood for most systems. In central China, soluble carbonate bedrock forms extensive karst landscapes. Current predictions are that the amount of monsoonal precipitation and acid rainfall in central China will increase, which is expected to lead to changes in the pH balance of karst ecosystems. To evaluate the role of pH, total organic carbon, and other geochemical parameters (e.g., Ca2+, Mg2+, NH4+, NOx, SO42-) in shaping bacterial communities within a single karst system in central China, samples were collected from the thin surface soils overlying Heshang Cave, cave sediments, and weathered cave passage rocks from the entrance, twilight, and dark zones, as well as from epikarstic drip waters inside the cave. Illumina sequencing of 16S rRNA genes and multivariate statistical analyses revealed that each tested community was distinct and the community variability was significantly correlated with pH, total organic carbon, and potassium concentrations. Specifically, surface soils were dominated by Acidobacteria, Verrucomicrobia and Planctomycetes, and diversity significantly decreased with acidic pH values. Nitrospirae, Gemmatimonadetes, Firmicutes, and Chloroflexi were unique to cave sediments, while Actinobacteria and Proteobacteria dominated weathered rocks and drip waters, respectively. The results reveal important implications regarding the effects of acidification on bacterial communities in karst areas, and on the control of pH in shaping bacterial communities throughout a karst system. Increased water flux into and through karst habitats due to monsoonal precipitation may result in deeper penetration of acidic solutions into karst and shift the bacterial communities inside the cave in the future.
Collapse
Affiliation(s)
- Yuan Yun
- Geomicrobiology Group, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Hongmei Wang
- Geomicrobiology Group, State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of GeosciencesWuhan, China
| | - Baiying Man
- Geomicrobiology Group, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Xing Xiang
- Geomicrobiology Group, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Jianping Zhou
- Geomicrobiology Group, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Xuan Qiu
- Geomicrobiology Group, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Yong Duan
- Geomicrobiology Group, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Annette S Engel
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville TN, USA
| |
Collapse
|
17
|
Xia Z, Bai E, Wang Q, Gao D, Zhou J, Jiang P, Wu J. Biogeographic Distribution Patterns of Bacteria in Typical Chinese Forest Soils. Front Microbiol 2016; 7:1106. [PMID: 27468285 PMCID: PMC4942481 DOI: 10.3389/fmicb.2016.01106] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Microbes are widely distributed in soils and play a very important role in nutrient cycling and ecosystem services. To understand the biogeographic distribution of forest soil bacteria, we collected 115 soil samples in typical forest ecosystems across eastern China to investigate their bacterial community compositions using Illumina MiSeq high throughput sequencing based on 16S rRNA. We obtained 4,667,656 sequences totally and more than 70% of these sequences were classified into five dominant groups, i.e., Actinobacteria, Acidobacteria, Alphaproteobacteria, Verrucomicrobia, and Planctomycetes (relative abundance >5%). The bacterial diversity showed a parabola shape along latitude and the maximum diversity appeared at latitudes between 33.50°N and 40°N, an area characterized by warm-temperate zones and moderate temperature, neutral soil pH and high substrate availability (soil C and N) from dominant deciduous broad-leaved forests. Pairwise dissimilarity matrix in bacterial community composition showed that bacterial community structure had regional similarity and the latitude of 30°N could be used as the dividing line between southern and northern forest soils. Soil properties and climate conditions (MAT and MAP) greatly accounted for the differences in the soil bacterial structure. Among all soil parameters determined, soil pH predominantly affected the diversity and composition of the bacterial community, and soil pH = 5 probably could be used as a threshold below which soil bacterial diversity might decline and soil bacterial community structure might change significantly. Moreover, soil exchangeable cations, especially Ca(2+) (ECa(2+)) and some other soil variables were also closely related to bacterial community structure. The selected environmental variables (21.11%) explained more of the bacterial community variation than geographic distance (15.88%), indicating that the edaphic properties and environmental factors played a more important role than geographic dispersal limitation in determining the bacterial community structure in Chinese forest soils.
Collapse
Affiliation(s)
| | - Edith Bai
- Institute of Applied Ecology, Chinese Academy of SciencesShenyang, China
| | | | | | | | | | | |
Collapse
|
18
|
Sato Y, Hori T, Navarro RR, Habe H, Yanagishita H, Ogata A. Fine-scale monitoring of shifts in microbial community composition after high organic loading in a pilot-scale membrane bioreactor. J Biosci Bioeng 2016; 121:550-6. [DOI: 10.1016/j.jbiosc.2015.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
|
19
|
Henri PA, Rommevaux-Jestin C, Lesongeur F, Mumford A, Emerson D, Godfroy A, Ménez B. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge. Front Microbiol 2016; 6:1518. [PMID: 26834704 PMCID: PMC4720738 DOI: 10.3389/fmicb.2015.01518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022] Open
Abstract
To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity.
Collapse
Affiliation(s)
- Pauline A Henri
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, Centre National de la Recherche Scientifique Paris, France
| | - Céline Rommevaux-Jestin
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, Centre National de la Recherche Scientifique Paris, France
| | - Françoise Lesongeur
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS/UMR 6197 Plouzané, France
| | - Adam Mumford
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Anne Godfroy
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS/UMR 6197 Plouzané, France
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, Centre National de la Recherche Scientifique Paris, France
| |
Collapse
|
20
|
Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl Environ Microbiol 2016; 81:1327-37. [PMID: 25501481 DOI: 10.1128/aem.03138-14] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microbes present in the rumen of dairy cows are essential for degradation of cellulosic and nonstructural carbohydrates of plant origin. The prepartum and postpartum diets of high-producing dairy cows are substantially different, but in what ways the rumen microbiome changes in response and how those changes may influence production traits are not well elucidated. Here, we sequenced the 16S and 18S rRNA genes using the MiSeq platform to characterize the prepartum and postpartum rumen fluid microbiomes in 115 high-producing dairy cows, including both primiparous and multiparous animals. Discriminant analysis identified differences between the microbiomes of prepartum and postpartum samples and between primiparous and multiparous cows. 18S rRNA sequencing revealed an overwhelming dominance of the protozoan class Litostomatea, with over 90% of the eukaryotic microbial population belonging to that group. Additionally, fungi were relatively more prevalent and Litostomatea relatively less prevalent in prepartum samples than in postpartum ones. The core rumen microbiome (common to all samples) consisted of 64 bacterial taxa, of which members of the genus Prevotella were the most prevalent. The Chao1 richness index was greater for prepartum multiparous cows than for postpartum multiparous cows. Multivariable models identified bacterial taxa associated with increased or reduced milk production, and general linear models revealed that a metagenomically based prediction of productivity is highly associated with production of actual milk and milk components. In conclusion, the structure of the rumen fluid microbiome shifts between the prepartum and first-week postpartum periods, and its profile within the context of this study could be used to accurately predict production traits.
Collapse
|
21
|
Complete Genome Sequence of the Bacterium Aalborg_AAW-1, Representing a Novel Family within the Candidate Phylum SR1. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00624-15. [PMID: 26067967 PMCID: PMC4463531 DOI: 10.1128/genomea.00624-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we present the complete genome sequence of the candidate phylum SR1 bacterium Aalborg_AAW-1. Its 16S rRNA gene is only 85.5% similar to that of the closest relative, RAAC1_SR1, and the genome of Aalborg_AAW-1 consequently represents the first of a novel family within the candidate phylum SR1.
Collapse
|
22
|
Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol 2014; 6:25468. [PMID: 25317252 PMCID: PMC4192840 DOI: 10.3402/jom.v6.25468] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful for identifying previously unrecognized taxa in lesser-known phyla and would be useful for future environmental and host-associated studies.
Collapse
Affiliation(s)
- Anuj Camanocha
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Floyd E Dewhirst
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
23
|
Anderson AC, Al-Ahmad A, Elamin F, Jonas D, Mirghani Y, Schilhabel M, Karygianni L, Hellwig E, Rehman A. Comparison of the bacterial composition and structure in symptomatic and asymptomatic endodontic infections associated with root-filled teeth using pyrosequencing. PLoS One 2013; 8:e84960. [PMID: 24386438 PMCID: PMC3875544 DOI: 10.1371/journal.pone.0084960] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023] Open
Abstract
Residual microorganisms and/or re-infections are a major cause for root canal therapy failure. Understanding of the bacterial content could improve treatment protocols. Fifty samples from 25 symptomatic and 25 asymptomatic previously root-filled teeth were collected from Sudanese patients with periradicular lesions. Amplified 16S rRNA gene (V1-V2) variable regions were subjected to pyrosequencing (FLX 454) to determine the bacterial profile. Obtained quality-controlled sequences from forty samples were classified into 741 operational taxonomic units (OTUs) at 3% dissimilarity, 525 at 5% dissimilarity and 297 at 10% dissimilarity, approximately corresponding to species-, genus- and class levels. The most abundant phyla were: Firmicutes (29.9%), Proteobacteria (26.1%), Actinobacteria (22.72%), Bacteroidetes (13.31%) and Fusobacteria (4.55%). Symptomatic patients had more Firmicutes and Fusobacteria than asymptomatic patients, while asymptomatic patients showed more Proteobacteria and Actinobacteria. Interaction of disease status and age was observed by two-way ANOSIM. Canonical correspondence analysis for age, tooth restoration and disease status showed a correlation of disease status with the composition and prevalence of different members of the microbial community. The pyrosequencing analysis revealed a distinctly higher diversity of the microbiota compared to earlier reports. The comparison of symptomatic and asymptomatic patients showed a clear association of the composition of the bacterial community with the presence and absence of symptoms in conjunction with the patients’ age.
Collapse
Affiliation(s)
- Annette Carola Anderson
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
- * E-mail:
| | - Fadil Elamin
- Khartoum Center for Research and Medical Training, Khartoum, Sudan
| | - Daniel Jonas
- Institute of Environmental Medicine and Hospital Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Yousra Mirghani
- Khartoum Center for Research and Medical Training, Khartoum, Sudan
| | - Markus Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Lamprini Karygianni
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - Ateequr Rehman
- Institute of Environmental Medicine and Hospital Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
24
|
Abstract
Cultivation-independent surveys of microbial diversity have revealed many bacterial phyla that lack cultured representatives. These lineages, referred to as candidate phyla, have been detected across many environments. Here, we deeply sequenced microbial communities from acetate-stimulated aquifer sediment to recover the complete and essentially complete genomes of single representatives of the candidate phyla SR1, WWE3, TM7, and OD1. All four of these genomes are very small, 0.7 to 1.2 Mbp, and have large inventories of novel proteins. Additionally, all lack identifiable biosynthetic pathways for several key metabolites. The SR1 genome uses the UGA codon to encode glycine, and the same codon is very rare in the OD1 genome, suggesting that the OD1 organism could also transition to alternate coding. Interestingly, the relative abundance of the members of SR1 increased with the appearance of sulfide in groundwater, a pattern mirrored by a member of the phylum Tenericutes. All four genomes encode type IV pili, which may be involved in interorganism interaction. On the basis of these results and other recently published research, metabolic dependence on other organisms may be widely distributed across multiple bacterial candidate phyla. Few or no genomic sequences exist for members of the numerous bacterial phyla lacking cultivated representatives, making it difficult to assess their roles in the environment. This paper presents three complete and one essentially complete genomes of members of four candidate phyla, documents consistently small genome size, and predicts metabolic capabilities on the basis of gene content. These metagenomic analyses expand our view of a lifestyle apparently common across these candidate phyla.
Collapse
|
25
|
|
26
|
UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci U S A 2013; 110:5540-5. [PMID: 23509275 DOI: 10.1073/pnas.1303090110] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNA(Gly)UCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNA(Gly)UCA with glycine in vitro with similar activity compared with normal tRNA(Gly)UCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNA(Gly)UCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota.
Collapse
|
27
|
Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol 2013; 83:607-21. [PMID: 23013447 DOI: 10.1111/1574-6941.12018] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 08/01/2012] [Accepted: 09/23/2012] [Indexed: 11/29/2022] Open
Abstract
This study focused on the impact of land-use changes and agricultural management of soybean in Amazon forest soils on the abundance and composition of the acidobacterial community. Quantitative real-time PCR (q-PCR) assays and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial community in bulk soil samples from soybean croplands and adjacent native forests, and mesocosm soil samples from soybean rhizosphere. Based on qPCR measurements, Acidobacteria accounted for 23% in forest soils, 18% in cropland soils, and 14% in soybean rhizosphere of the total bacterial signals. From the 16S rRNA gene sequences of Bacteria domain, the phylum Acidobacteria represented 28% of the sequences from forest soils, 16% from cropland soils, and 17% from soybean rhizosphere. Acidobacteria subgroups 1-8, 10, 11, 13, 17, 18, 22, and 25 were detected with subgroup 1 as dominant among them. Subgroups 4, 6, and 7 were significantly higher in cropland soils than in forest soils, which subgroups responded to decrease in soil aluminum. Subgroups 6 and 7 responded to high content of soil Ca, Mg, Mn, and B. These results showed a differential response of the Acidobacteria subgroups to abiotic soil factors, and open the possibilities to explore acidobacterial subgroups as early-warning bioindicators of agricultural soil management effects in the Amazon area.
Collapse
Affiliation(s)
- Acácio A Navarrete
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo USP, Piracicaba, SP, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Evaluation of the environmental specificity of Fluorescence In Situ Hybridization (FISH) using Fluorescence-Activated Cell Sorting (FACS) of probe (PSE1284)-positive cells extracted from rhizosphere soil. Syst Appl Microbiol 2012; 35:533-40. [DOI: 10.1016/j.syapm.2011.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/14/2023]
|
29
|
Bosak T, Liang B, Wu TD, Templer SP, Evans A, Vali H, Guerquin-Kern JL, Klepac-Ceraj V, Sim MS, Mui J. Cyanobacterial diversity and activity in modern conical microbialites. GEOBIOLOGY 2012; 10:384-401. [PMID: 22713108 DOI: 10.1111/j.1472-4669.2012.00334.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/30/2012] [Indexed: 05/12/2023]
Abstract
Modern conical microbialites are similar to some ancient conical stromatolites, but growth, behavior and diversity of cyanobacteria in modern conical microbialites remain poorly characterized. Here, we analyze the diversity of cyanobacterial 16S rRNA gene sequences in conical microbialites from 14 ponds fed by four thermal sources in Yellowstone National Park and compare cyanobacterial activity in the tips of cones and in the surrounding topographic lows (mats), respectively, by high-resolution mapping of labeled carbon. Cones and adjacent mats contain similar 16S rRNA gene sequences from genetically distinct clusters of filamentous, non-heterocystous cyanobacteria from Subsection III and unicellular cyanobacteria from Subsection I. These sequences vary among different ponds and between two sampling years, suggesting that coniform mats through time and space contain a number of cyanobacteria capable of vertical aggregation, filamentous cyanobacteria incapable of initiating cone formation and unicellular cyanobacteria. Unicellular cyanobacteria are more diverse in topographic lows, where some of these organisms respond to nutrient pulses more rapidly than thin filamentous cyanobacteria. The densest active cyanobacteria are found below the upper 50 μm of the cone tip, whereas cyanobacterial cells in mats are less dense, and are more commonly degraded or encrusted by silica. These spatial differences in cellular activity and density within macroscopic coniform mats imply a strong role for diffusion limitation in the development and the persistence of the conical shape. Similar mechanisms may have controlled the growth, morphology and persistence of small coniform stromatolites in shallow, quiet environments throughout geologic history.
Collapse
Affiliation(s)
- T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production. Sci Rep 2012; 2:215. [PMID: 22355729 PMCID: PMC3253589 DOI: 10.1038/srep00215] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/13/2011] [Indexed: 02/01/2023] Open
Abstract
Both hydrogen sulfide (H2S) and methyl mercaptan (CH3SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH3SH/H2S ratios (high H2S but low CH3SH concentrations, n = 14; high CH3SH but low H2S concentrations, n = 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH3SH group had higher proportions of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity.
Collapse
|
31
|
Franklin RB, Campbell AH, Higgins CB, Barker MK, Brown BL. Enumerating bacterial cells on bioadhesive coated slides. J Microbiol Methods 2011; 87:154-60. [DOI: 10.1016/j.mimet.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/17/2011] [Accepted: 08/21/2011] [Indexed: 11/24/2022]
|
32
|
Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl Environ Microbiol 2011; 77:7804-14. [PMID: 21908640 DOI: 10.1128/aem.06059-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Members of candidate division OP11 are widely distributed in terrestrial and marine ecosystems, yet little information regarding their metabolic capabilities and ecological role within such habitats is currently available. Here, we report on the microfluidic isolation, multiple-displacement-amplification, pyrosequencing, and genomic analysis of a single cell (ZG1) belonging to candidate division OP11. Genome analysis of the ∼270-kb partial genome assembly obtained showed that it had no particular similarity to a specific phylum. Four hundred twenty-three open reading frames were identified, 46% of which had no function prediction. In-depth analysis revealed a heterotrophic lifestyle, with genes encoding endoglucanase, amylopullulanase, and laccase enzymes, suggesting a capacity for utilization of cellulose, starch, and, potentially, lignin, respectively. Genes encoding several glycolysis enzymes as well as formate utilization were identified, but no evidence for an electron transport chain was found. The presence of genes encoding various components of lipopolysaccharide biosynthesis indicates a Gram-negative bacterial cell wall. The partial genome also provides evidence for antibiotic resistance (β-lactamase, aminoglycoside phosphotransferase), as well as antibiotic production (bacteriocin) and extracellular bactericidal peptidases. Multiple mechanisms for stress response were identified, as were elements of type I and type IV secretion systems. Finally, housekeeping genes identified within the partial genome were used to demonstrate the OP11 affiliation of multiple hitherto unclassified genomic fragments from multiple database-deposited metagenomic data sets. These results provide the first glimpse into the lifestyle of a member of a ubiquitous, yet poorly understood bacterial candidate division.
Collapse
|
33
|
Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale. Appl Environ Microbiol 2011; 77:4744-53. [PMID: 21602366 DOI: 10.1128/aem.00233-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process.
Collapse
|
34
|
Borrel G, Lehours AC, Bardot C, Bailly X, Fonty G. Members of candidate divisions OP11, OD1 and SR1 are widespread along the water column of the meromictic Lake Pavin (France). Arch Microbiol 2010; 192:559-67. [PMID: 20495786 DOI: 10.1007/s00203-010-0578-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/02/2010] [Indexed: 11/24/2022]
Abstract
The vertical distribution of OP11, OD1 and SR1 divisions in the oxycline and in the anoxic water column of Lake Pavin, a freshwater permanently stratified mountain lake in France, was determined by temporal temperature gel gradient electrophoresis and 16S rRNA clone libraries. Gradual changes in the community structure were noted in relation to environmental variables along the oxidized/reduced environment. In addition, a separate effort to identify members of these lineages in the oxic mixolimnion identified sequences affiliated to SR1 and OP11 divisions, indicating that they are more widespread than previously expected.
Collapse
Affiliation(s)
- Guillaume Borrel
- Laboratoire Microorganismes: Génome et Environnement (LMGE), Clermont Université, Université Blaise Pascal, BP-10448, 63000 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
35
|
Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME JOURNAL 2010; 4:1340-51. [PMID: 20445636 DOI: 10.1038/ismej.2010.58] [Citation(s) in RCA: 1607] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth.
Collapse
|