1
|
Zimmer-Faust AG, Brown CA, Shanks OC, Rugh W, Collura TCM, Stecher HA. An integrated approach to coupled nutrient and microbial source tracking in an agricultural watershed. WATER RESEARCH 2025; 272:122981. [PMID: 39729910 DOI: 10.1016/j.watres.2024.122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Estuaries often experience multiple water quality impairments including nitrogen enrichment and elevated fecal pollution. These pollutant sources are often linked and difficult to characterize, especially in multiple use watersheds, hindering the identification of effective mitigation steps. Tillamook Bay (Oregon, USA) has a mixed-use watershed including many potential nutrient and fecal bacteria sources due to agricultural activities, human development, and local wildlife populations. In this study, microbial source tracking, watershed modeling, and stable isotope analysis were combined to understand sources of watershed nitrogen and fecal bacteria to receiving waters. Tributaries of Tillamook Bay were sampled approximately monthly from June 2016 to May 2017 at 16 sites. Paired measurements of host-associated qPCR-based genetic markers targeting human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3), and avian (GFD) fecal pollution sources and nitrate stable isotope (δ15N-NO3) were compared to each other and to watershed modeled contributions. Ruminant and cattle-associated genetic markers were detected at a high frequency across sites, with the Rum2Bac marker detected in 94 % of samples collected across sites and concentrations significantly correlated with E. coli levels. Cattle and ruminant genetic marker concentrations increased downstream in four out of five tributaries, mirroring δ15N-NO3 spatial trends during the wet season, suggesting a similar source and delivery for these co-pollutants. Although agricultural inputs are the dominant source of both fecal contamination and nitrogen to this system, human-associated genetic markers and elevated nutrient levels (NH4+ and PO4-3) were observed at two sites in proximity to a wastewater treatment facility on the Trask River. Elevated δ15N-NO3 and HF183/BacR287 levels in the same samples further corroborated a wastewater impact at these sites. Results support the utility of using a combined pollutant tracking approach when evaluating nutrient and fecal pollution in agriculturally intensive watersheds.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - Cheryl A Brown
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, United States.
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, United States
| | - William Rugh
- Formerly U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, retired, United States
| | - T Chris Mochon Collura
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - Hilmar A Stecher
- Formerly U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, retired, United States
| |
Collapse
|
2
|
Carson LR, Goodman C, van Duin B, Neumann NF. Application of a microbial and pathogen source tracking toolbox to identify infrastructure problems in stormwater drainage networks: a case study. Microbiol Spectr 2024; 12:e0033724. [PMID: 39109868 PMCID: PMC11371268 DOI: 10.1128/spectrum.00337-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Water scarcity and increasing urbanization are forcing municipalities to consider alternative water sources, such as stormwater, to fill in water supply gaps or address hydromodification of receiving urban streams. Mounting evidence suggests that stormwater is often contaminated with human feces, even in stormwater drainage systems separate from sanitary sewers. Pinpointing sources of human contamination in drainage networks is challenging given the diverse sources of fecal pollution that can impact these systems and the non-specificity of traditional fecal indicator bacteria (FIB) for identifying these host sources. As such, we used a toolbox approach that encompassed microbial source tracking (MST), FIB monitoring, and bacterial pathogen monitoring to investigate microbial contamination of stormwater in an urban municipality. We demonstrate that human sewage frequently contaminated stormwater (in >50% of routine samples), based on the presence of the human fecal marker HF183, and often exceeded microbial water quality criteria. Arcobacter butzleri, a pathogen of emerging concern, was also detected in >50% of routine samples, with 75% of these pathogen-positive samples also being positive for the human fecal marker HF183, suggesting human municipal sewage as the likely source for this pathogen. MST and FIB were used to track human fecal pollution in the drainage network to the most likely point source of contamination, for which a sewage cross-connection was identified and confirmed using tracer dyes. These results point to the ubiquitous presence of human sewage in stormwater and also provide municipalities with the tools to identify sources of anthropogenic contamination in storm drainage networks.IMPORTANCEWater scarcity, increased urbanization, and population growth are driving municipalities worldwide to consider stormwater as an alternative water source in urban environments. However, many studies suggest that stormwater is relatively poor in terms of microbial water quality, is frequently contaminated with human sewage, and therefore could represent a potential health risk depending on the type of exposure (e.g., irrigation of community gardens). Traditional monitoring of water quality based on fecal bacteria does not provide any information about the sources of fecal pollution contaminating stormwater (i.e., animals/human feces). Herein, we present a case study that uses fecal bacterial monitoring, microbial source tracking, and bacterial pathogen analysis to identify a cross-connection that contributed to human fecal intrusion into an urban stormwater network. This microbial toolbox approach can be useful for municipalities in identifying infrastructure problems in stormwater drainage networks to reduce risks associated with water reuse.
Collapse
Affiliation(s)
- Liam R. Carson
- School of Public
Health, University of Alberta,
Edmonton, Alberta,
Canada
| | - Clint Goodman
- Community
Infrastructure, City of Airdrie,
Airdrie, Alberta,
Canada
| | - Bert van Duin
- City & Regional
Planning, City of Calgary,
Calgary, Alberta,
Canada
| | - Norman F. Neumann
- School of Public
Health, University of Alberta,
Edmonton, Alberta,
Canada
| |
Collapse
|
3
|
Shanks OC, Diedrich A, Sivaganesan M, Willis JR, Sharifi A. Quantitative fecal source characterization of urban municipal storm sewer system outfall 'wet' and 'dry' weather discharges. WATER RESEARCH 2024; 259:121857. [PMID: 38851116 DOI: 10.1016/j.watres.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Urban areas are built environments containing substantial amounts of impervious surfaces (e.g., streets, sidewalks, roof tops). These areas often include elaborately engineered drainage networks designed to collect, transport, and discharge untreated stormwater into local surface waters. When left uncontrolled, these discharges may contain unsafe levels of fecal waste from sources such as sanitary sewage and wildlife even under dry weather conditions. This study evaluates paired measurements of host-associated genetic markers (log10 copies per reaction) indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal sources, 12-hour cumulative precipitation (mm), four catchment land use metrics determined by global information system (GIS) mapping, and Escherichia coli (MPN/100 ml) from seven municipal separate storm sewer system outfall locations situated at the southern portion of the Anacostia River Watershed (District of Columbia, U.S.A.). A total of 231 discharge samples were collected twice per month (n = 24 sampling days) and after rain events (n = 9) over a 13-month period. Approximately 50 % of samples (n = 116) were impaired, exceeding the local E. coli single sample maximum of 2.613 log10 MPN/100 ml. Genetic quality controls indicated the absence of amplification inhibition in 97.8 % of samples, however 14.7 % (n = 34) samples showed bias in DNA recovery. Of eligible samples, quantifiable levels were observed for avian (84.1 %), human (57.4 % for HF183/BacR287 and 40 % for HumM2), canine (46.7 %), and ruminant (15.9 %) host-associated genetic markers. Potential links between paired measurements are explored with a recently developed Bayesian qPCR censored data analysis approach. Findings indicate that human, pet, and urban wildlife all contribute to storm outfall discharge water quality in the District of Columbia, but pollutant source contributions vary based on 'wet' and 'dry' conditions and catchment land use, demonstrating that genetic-based fecal source identification methods combined with GIS land use mapping can complement routine E. coli monitoring to improve stormwater management in urban areas.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Adam Diedrich
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Amirreza Sharifi
- Department of Energy and Environment, 1200 First St NE, Washington, D.C., USA
| |
Collapse
|
4
|
Carson LR, Beaudry M, Valeo C, He J, Banting G, van Duin B, Goodman C, Scott C, Neumann NF. Occurrence, Sources and Virulence Potential of Arcobacter butzleri in Urban Municipal Stormwater Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13065-13075. [PMID: 38989840 PMCID: PMC11271002 DOI: 10.1021/acs.est.4c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
A. butzleri is an underappreciated emerging global pathogen, despite growing evidence that it is a major contributor of diarrheal illness. Few studies have investigated the occurrence and public health risks that this organism possesses from waterborne exposure routes including through stormwater use. In this study, we assessed the prevalence, virulence potential, and primary sources of stormwater-isolated A. butzleri in fecally contaminated urban stormwater systems. Based on qPCR, A. butzleri was the most common enteric bacterial pathogen [25%] found in stormwater among a panel of pathogens surveyed, including Shiga-toxin producing Escherichia coli (STEC) [6%], Campylobacter spp. [4%], and Salmonella spp. [<1%]. Concentrations of the bacteria, based on qPCR amplification of the single copy gene hsp60, were as high as 6.2 log10 copies/100 mL, suggesting significant loading of this pathogen in some stormwater systems. Importantly, out of 73 unique stormwater culture isolates, 90% were positive for the putative virulence genes cadF, ciaB, tlyA, cjl349, pldA, and mviN, while 50-75% of isolates also possessed the virulence genes irgA, hecA, and hecB. Occurrence of A. butzleri was most often associated with the human fecal pollution marker HF183 in stormwater samples. These results suggest that A. butzleri may be an important bacterial pathogen in stormwater, warranting further study on the risks it represents to public health during stormwater use.
Collapse
Affiliation(s)
- Liam R. Carson
- School
of Public Health, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Megan Beaudry
- Daicel
Arbor Biosciences, Ann Arbor, Michigan 30606, United States
| | - Caterina Valeo
- Department
of Mechanical Engineering, University of
Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Jianxun He
- Department
of Civil Engineering, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | - Bert van Duin
- City &
Regional Planning, City of Calgary, Calgary, Alberta, Canada T2P 2M5
| | - Clint Goodman
- Community
Infrastructure, City of Airdrie, Airdrie, Alberta, Canada T4A 2K3
| | - Candis Scott
- School
of Public Health, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Norman F. Neumann
- School
of Public Health, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
5
|
Paar J, Willis JR, Sette L, Wood SA, Bogomolni A, Dulac M, Sivaganesan M, Shanks OC. Occurrence of recreational water quality monitoring general fecal indicator bacteria and fecal source identification genetic markers in gray seal scat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173220. [PMID: 38761521 DOI: 10.1016/j.scitotenv.2024.173220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The number of gray seals (Halichoerus grypus) observed along the United States Northwest Atlantic region has been increasing for decades. These colonial animals often haul-out on beaches seasonally in numbers ranging from a few individuals to several thousands. While these larger aggregations are an important part of gray seal behavior, there is public concern that haul-outs could lead to large amounts of fecal waste in recreational areas, potentially resulting in beach closures. Yet, data to confirm whether these animals contribute to beach closures is lacking and minimal information is available on the occurrence of key water quality monitoring genetic markers in gray seal scat. This study evaluates the concentration of E. coli (EC23S857), enterococci (Entero1a), and fecal Bacteroidetes (GenBac3) as well as six fecal source identification genetic markers (HF183/BacR287, HumM2, CPQ_056, Rum2Bac, DG3, and GFD) measured by qPCR in 48 wild gray seal scat samples collected from two haul-out areas in Cape Cod (Massachusetts, U.S.A.). Findings indicate that FIB genetic markers are shed in gray seal scat at significantly different concentrations with the Entero1a genetic marker exhibiting the lowest average concentration (-0.73 log10 estimated mean copies per nanogram of DNA). In addition, systematic testing of scat samples demonstrated that qPCR assays targeting host-associated genetic markers indicative of human, ruminant, and canine fecal pollution sources remain highly specific in waters frequented by gray seals (>97 % specificity).
Collapse
Affiliation(s)
- Jack Paar
- U.S. Environmental Protection Agency, New England Regional Laboratory, North Chelmsford, MA 01863, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA
| | - Lisa Sette
- Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Stephanie A Wood
- University of Massachusetts, Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andrea Bogomolni
- Massachusetts Maritime Academy, Marine Science, Safety and Environmental Protection, 101 Academy Drive, Buzzards Bay, MA 02532, USA
| | - Monique Dulac
- U.S. Environmental Protection Agency, New England Regional Laboratory, North Chelmsford, MA 01863, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA.
| |
Collapse
|
6
|
Ahmed W, Schoen ME, Soller J, Harrison JC, Hamilton KA, Gebrwold M, Simpson SL, Payyappat S, Cassidy M, Harrison N, Besley C. Site-specific risk-based threshold (RBT) concentrations for sewage-associated markers in estuarine swimming waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172448. [PMID: 38615775 DOI: 10.1016/j.scitotenv.2024.172448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
This study establishes site-specific risk-based threshold (RBT) concentrations for sewage-associated markers, including Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembly phage (CrAssphage), and pepper mild mottle virus (PMMoV), utilizing quantitative microbial risk assessment (QMRA) for recreational estuarine waters (EW). The QMRA model calculates a RBT concentration corresponding to a selected target illness risk for ingestion of EW contaminated with untreated sewage. RBT concentrations were estimated considering site-specific decay rates and concentrations of markers and reference pathogen (human norovirus; HNoV), aiding in the identification of high-risk days during the swimming season. Results indicated varying RBT concentrations for fresh (Day 0) and aged (Days 1 to 10) sewage contamination scenarios over 10 days. HF183 exhibited the highest RBT concentration (26,600 gene copis (GC)/100 mL) initially but decreased rapidly with aging (2570 to 3120 GC/100 mL on Day 10) depending on the decay rates, while Lachno3 and CrAssphage remained relatively stable. PMMoV, despite lower initial RBT (3920 GC/100 mL), exhibited increased RBT (4700 to 6440 GC/100 mL) with aging due to its slower decay rate compared to HNoV. Sensitivity analysis revealed HNoV concentrations as the most influential parameter. Comparison of marker concentrations in estuarine locations with RBT concentrations showed instances of marker exceedance, suggesting days of potential higher risks. The observed discrepancies between bacterial and viral marker concentrations in EW highlight the need for optimized sample concentration method and simultaneous measurement of multiple markers for enhanced risk predictions. Future research will explore the utility of multiple markers in risk management. Overall, this study contributes to better understanding human health risks in recreational waters, aiding regulators, and water quality managers in effective decision-making for risk prioritization and mitigation strategies.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Mary E Schoen
- Soller Environmental, LLC, 3022 King St, Berkeley, CA 94703, USA
| | - Jeffrey Soller
- Soller Environmental, LLC, 3022 King St, Berkeley, CA 94703, USA
| | - Joanna Ciol Harrison
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA
| | - Metasebia Gebrwold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 2 Parramatta Square, Parramatta, NSW 2150, Australia
| |
Collapse
|
7
|
Karunakaran E, Battarbee R, Tait S, Brentan BM, Berney C, Grinham J, Herrero MA, Omolo R, Douterelo I. Integrating molecular microbial methods to improve faecal pollution management in rivers with designated bathing waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168565. [PMID: 37979848 DOI: 10.1016/j.scitotenv.2023.168565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Rivers are at risk from a variety of pollution sources. Faecal pollution is of particular concern since it disperses pathogenic microorganisms in the aquatic environment. Currently, faecal pollution levels in rivers is monitored using faecal indicator bacteria (FIB) that do not offer information about pollution sources and associated risks. This study used a combined molecular approach, along with measurements of water quality, to gain information on pollution sources, and risk levels, in a newly designated recreational bathing site in the River Wharfe (UK). Physico-chemical parameters were monitored in situ, with water quality multiparameter monitoring sondes installed during the 2021 bathing season. The molecular approach was based on quantitative PCR (qPCR)-aided Microbial Source Tracking (MST) and 16S rRNA gene metabarcoding to obtain a fingerprint of bacterial communities and identify potential bioindicators. The analysis from the water quality sondes showed that ammonium was the main parameter determining the distribution of FIB values. Lower faecal pollution levels were detected in the main river when compared to tributaries, except for samples in the river located downstream of a wastewater treatment plant. The faecal pollution type (anthropogenic vs. zoogenic) changed the diversity and the structure of bacterial communities, giving a distinctive fingerprint that can be used to inform source. DNA-based methods showed that the presence of human-derived bacteria was associated with Escherichia coli spikes, coinciding with higher bacterial diversity and the presence of potential pathogenic bacteria mainly of the genus Mycobacterium, Aeromonas and Clostridium. Samples collected after a heavy rainfall event were associated with an increase in Bacteroidales, which are markers of faecal pollution, including Bacteroides graminisolvens, a ruminant marker associated with surface run-off from agricultural sources. The combined use of qPCR and 16S rRNA sequencing was able to identify pollution sources, and novel bacterial indicators, thereby aiding decision-making and management strategies in recreational bathing rivers.
Collapse
Affiliation(s)
- Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Rick Battarbee
- Environmental Change Research Centre, University College London, London WC1E 6BT, UK; Addingham Environment Group, Addingham, West Yorkshire LS29 0PD, UK
| | - Simon Tait
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bruno Melo Brentan
- Hydraulic Engineering and Water Resource Department, Federal University of Minas Gerais, Belo Horizonte 31270, Brazil
| | - Cathal Berney
- Addingham Environment Group, Addingham, West Yorkshire LS29 0PD, UK
| | - James Grinham
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Maria Angeles Herrero
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Ronex Omolo
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Isabel Douterelo
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
8
|
Fernandez-Tejero N, Sanchez AN, Ghemrawi M, Bilodeau C, Etim S, Duncan G, Cochran M, McCord B. A study of the potential application of digital PCR in the detection of fecal contamination of strawberries using Bacteroides markers. J Microbiol Methods 2023; 212:106811. [PMID: 37611849 DOI: 10.1016/j.mimet.2023.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Food-borne illnesses can result from contamination of agricultural products. In this study, we examined nanoplate digital PCR (dPCR) to test for fecal contamination of agricultural products. In nanoplate technique, the PCR mastermix is divided into 8.526,000 partitions, providing direct detection of individual DNA molecules, with correction by Poisson distribution. In this project, strawberries were inoculated with fecal material from animals, and the result detected by nanoplate digital PCR. A detection limit of 250 fg/uL was determined. Overall, dPCR offers a quick and sensitive method to detect contaminated produce.
Collapse
Affiliation(s)
- Nicole Fernandez-Tejero
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Alyssa N Sanchez
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Mirna Ghemrawi
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Catherine Bilodeau
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL 33004, United States of America
| | - Sylvia Etim
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - George Duncan
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL 33004, United States of America
| | - Matt Cochran
- Cross-Border Threat Screening and Supply Chain Defense, Texas A&M University System, Brazos, TX 77843, United States of America
| | - Bruce McCord
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States of America.
| |
Collapse
|
9
|
Tang L, Wu J, Liu R, Feng Z, Zhang Y, Zhao Y, Li Y, Yang K. Exploration on wastewater-based epidemiology of SARS-CoV-2: Mimic relative quantification with endogenous biomarkers as internal reference. Heliyon 2023; 9:e15705. [PMID: 37124340 PMCID: PMC10122556 DOI: 10.1016/j.heliyon.2023.e15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Wastewater-based epidemiology has become a powerful surveillance tool for monitoring the pandemic of COVID-19. Although it is promising to quantitatively correlate the SARS-CoV-2 RNA concentration in wastewater with the incidence of community infection, there is still no consensus on whether the viral nucleic acid concentration in sewage should be normalized against the abundance of endogenous biomarkers and which biomarker should be used as a reference for the normalization. Here, several candidate endogenous reference biomarkers for normalization of SARS-CoV-2 signal in municipal sewage were evaluated. The human fecal indicator virus (crAssphage) is a promising candidate of endogenous reference biomarker for data normalization of both DNA and RNA viruses for its intrinsic viral nature and high and stable content in sewage. Without constructing standard curves, the relative quantification of sewage viral nucleic acid against the abundance of the reference biomarker can be used to correlate with community COVID-19 incidence, which was proved via mimic experiments by spiking pseudovirus of different concentrations in sewage samples. Dilution of pseudovirus-seeded wastewater did not affect the relative abundance of viral nucleic acid, demonstrating that relative quantification can overcome the sewage dilution effects caused by the greywater input, precipitation and/or groundwater infiltration. The process of concentration, recovery and detection of the endogenous biomarker was consistent with that of SARS-CoV-2 RNA. Thus, it is necessary to co-quantify the endogenous biomarker because it can be not only an internal reference for data normalization, but also a process control.
Collapse
Affiliation(s)
- Langjun Tang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongxi Feng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanan Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingzhe Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yonghong Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Diedrich A, Sivaganesan M, Willis JR, Sharifi A, Shanks OC. Genetic fecal source identification in urban streams impacted by municipal separate storm sewer system discharges. PLoS One 2023; 18:e0278548. [PMID: 36701383 PMCID: PMC9879488 DOI: 10.1371/journal.pone.0278548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 01/27/2023] Open
Abstract
Municipal stormwater systems are designed to collect, transport, and discharge precipitation from a defined catchment area into local surface waters. However, these discharges may contain unsafe levels of fecal waste. Paired measurements of Escherichia coli, precipitation, three land use metrics determined by geographic information system (GIS) mapping, and host-associated genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), dog (DG3), and avian (GFD) fecal sources were assessed in 231 urban stream samples impacted by two or more municipal stormwater outfalls. Receiving water samples were collected twice per month (n = 24) and after rain events (n = 9) from seven headwaters of the Anacostia River in the District of Columbia (United States) exhibiting a gradient of impervious surface, residential, and park surface areas. Almost 50% of stream samples (n = 103) were impaired, exceeding the local E. coli single sample maximum assessment level (410 MPN/100 ml). Fecal scores (average log10 copies per 100 ml) were determined to prioritize sites by pollution source and to evaluate potential links with land use, rainfall, and E. coli levels using a recently developed censored data analysis approach. Dog, ruminant, and avian fecal scores were almost always significantly increased after rain or when E. coli levels exceeded the local benchmark. Human fecal pollution trends showed the greatest variability with detections ranging from 9.1% to 96.7% across sites. Avian fecal scores exhibited the closest connection to land use, significantly increasing in catchments with larger residential areas after rain events (p = 0.038; R2 = 0.62). Overall, results demonstrate that combining genetic fecal source identification methods with GIS mapping complements routine E. coli monitoring to improve management of urban streams impacted by stormwater outfalls.
Collapse
Affiliation(s)
- Adam Diedrich
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Jessica R. Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Amirreza Sharifi
- Department of Energy and Environment, Government of the District of Columbia, Washington, DC, United States of America
| | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sivaganesan M, Willis JR, Karim M, Babatola A, Catoe D, Boehm AB, Wilder M, Green H, Lobos A, Harwood VJ, Hertel S, Klepikow R, Howard MF, Laksanalamai P, Roundtree A, Mattioli M, Eytcheson S, Molina M, Lane M, Rediske R, Ronan A, D'Souza N, Rose JB, Shrestha A, Hoar C, Silverman AI, Faulkner W, Wickman K, Kralj JG, Servetas SL, Hunter ME, Jackson SA, Shanks OC. Interlaboratory performance and quantitative PCR data acceptance metrics for NIST SRM® 2917. WATER RESEARCH 2022; 225:119162. [PMID: 36191524 PMCID: PMC9932931 DOI: 10.1016/j.watres.2022.119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources. This study investigates SRM 2917 interlaboratory performance based on repeated measures of 12 qPCR assays by 14 laboratories (n = 1008 instrument runs). Using a Bayesian approach, single-instrument run data are combined to generate assay-specific global calibration models allowing for characterization of within- and between-lab variability. Comparable data sets generated by two additional laboratories are used to assess new SRM 2917 data acceptance metrics. SRM 2917 allows for reproducible single-instrument run calibration models across laboratories, regardless of qPCR assay. In addition, global models offer multiple data acceptance metric options that future users can employ to minimize variability, improve comparability of data across laboratories, and increase confidence in qPCR measurements.
Collapse
Affiliation(s)
- Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mohammad Karim
- Environmental Services Laboratory, City of Santa Cruz, Santa Cruz, CA, USA
| | - Akin Babatola
- Environmental Services Laboratory, City of Santa Cruz, Santa Cruz, CA, USA
| | - David Catoe
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Maxwell Wilder
- Department of Environmental Biology, SUNY-ESF, Syracuse, NY, USA
| | - Hyatt Green
- Department of Environmental Biology, SUNY-ESF, Syracuse, NY, USA
| | - Aldo Lobos
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Stephanie Hertel
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Regina Klepikow
- U.S. Environmental Protection Agency, Region 7 Laboratory, Kansas City, KS, USA
| | | | | | - Alexis Roundtree
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mia Mattioli
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Eytcheson
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Marirosa Molina
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Molly Lane
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, USA
| | - Richard Rediske
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, USA
| | - Amanda Ronan
- U.S. Environmental Protection Agency, Region 2 Laboratory, Edison, NJ, USA
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, E. Lansing, MI, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, E. Lansing, MI, USA
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Catherine Hoar
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | | | | | - Jason G Kralj
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Stephanie L Servetas
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Monique E Hunter
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Scott A Jackson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Gerrity D, Papp K, Dickenson E, Ejjada M, Marti E, Quinones O, Sarria M, Thompson K, Trenholm RA. Characterizing the chemical and microbial fingerprint of unsheltered homelessness in an urban watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156714. [PMID: 35709998 DOI: 10.1016/j.scitotenv.2022.156714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Unsheltered homelessness is rapidly becoming a critical issue in many cities worldwide. The worsening situation not only highlights the socioeconomic plight, but it also raises awareness of ancillary issues such as the potential implications for urban water quality. The objective of this study was to simultaneously leverage diverse source tracking tools to develop a chemical and microbial fingerprint describing the relative contribution of direct human inputs into Las Vegas' tributary washes. By evaluating a wide range of urban water matrices using general water quality parameters, fecal indicator bacteria (FIB), human-associated microbial markers [e.g., HF183, crAssphage, and pepper mild mottle virus (PMMoV)], 16S rRNA gene sequencing data, and concentrations of 52 anthropogenic trace organic compounds (TOrCs), this study was able to differentiate principal sources of these constituents, including contributions from unsheltered homelessness. For example, HF183 (31% vs. 0%), crAssphage (61% vs. 5%), and PMMoV (72% vs. 55%) were more frequently detected in tributary washes with higher homeless census counts vs. 'control' tributary washes. Illicit drugs or their metabolites (e.g., heroin, acetylmorphine, amphetamine, and cocaine) and select TOrCs (e.g., acetaminophen, caffeine, ibuprofen, and naproxen) were also detected more frequently and at higher concentrations in the more anthropogenically-impacted washes. These data can be used to raise awareness of the shared interests between the broader community and those who are experiencing homelessness, notably the importance of protecting environmental health and water quality. Ultimately, this may lead to more rapid adoption of proven strategies for achieving functional zero homelessness, or at least additional resources for unsheltered individuals.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States.
| | - Katerina Papp
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Meena Ejjada
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Erica Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Oscar Quinones
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Mayra Sarria
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Kyle Thompson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States; Carollo Engineers, 8911 N. Capital of Texas Hwy, Austin, TX 78759, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
13
|
Li X, Ahmed W, Wu Z, Xia Y. Developing a novel Bifidobacterium phage quantitative polymerase chain reaction-based assay for tracking untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155815. [PMID: 35550888 DOI: 10.1016/j.scitotenv.2022.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Microbial source tracking (MST) tools provide insights on fecal pollution levels in aquatic environments using predominantly quantitative PCR (qPCR) assays that target host-associated molecular marker genes. Existing wastewater-associated marker genes have shown limited or significant cross-reactions with non-human fecal samples. In this study, we mined the current Gut Phage Database (GPD) and designed a novel untreated wastewater-specific Bifidobacterium phage qPCR assay (i.e., Bifi assay). The sensitivity and specificity of the Bifi marker genes were assessed by collectively analyzing untreated (n = 33) and treated (n = 15) wastewater and non-human fecal samples (i.e., Rabbit, mouse, cow, horse, pig, chicken, sheep, dog, deer, kangaroos; n = 113) in Shenzhen, Guangdong Province, China and Brisbane, Australia. Bifi assay revealed 100% host-specificity against non-human fecal samples collected from Shenzhen and Brisbane. Furthermore, this marker gene was also detected in all untreated and treated wastewater samples, whose concentrations ranged from 5.54 to 6.83 log10 GC/L. In Shenzhen, the concentrations of Bifi marker gene were approximately two orders of magnitude lower than Bacteroides (HF183/BacR287 assay) and CrAssphage (CPQ_56 assay). The concentration of Bifi marker gene in untreated wastewater from Brisbane was 1.35 log10 greater than those in Shenzhen. Our results suggest that Bifi marker gene has the potential to detect and quantify the levels of human fecal pollution in Shenzhen and Brisbane. If additional detection sensitivity is required for environmental studies, Bifi marker gene should be paired with either CrAssphage or HF183/BacR287 marker genes.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
14
|
Willis JR, Sivaganesan M, Haugland RA, Kralj J, Servetas S, Hunter ME, Jackson SA, Shanks OC. Performance of NIST SRM® 2917 with 13 recreational water quality monitoring qPCR assays. WATER RESEARCH 2022; 212:118114. [PMID: 35091220 PMCID: PMC10786215 DOI: 10.1016/j.watres.2022.118114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Fecal pollution remains a significant challenge for recreational water quality management worldwide. In response, there is a growing interest in the use of real-time quantitative PCR (qPCR) methods to achieve same-day notification of recreational water quality and associated public health risk as well as to characterize fecal pollution sources for targeted mitigation. However, successful widespread implementation of these technologies requires the development of and access to a high-quality standard control material. Here, we report a single laboratory qPCR performance assessment of the National Institute of Standards and Technology Standard Reference Material 2917 (NIST SRM® 2917), a linearized plasmid DNA construct that functions with 13 recreational water quality qPCR assays. Performance experiments indicate the generation of standard curves with amplification efficiencies ranging from 0.95 ± 0.006 to 0.99 ± 0.008 and coefficient of determination values (R2) ≥ 0.980. Regardless of qPCR assay, variability in repeated measurements at each dilution level were very low (quantification threshold standard deviations ≤ 0.657) and exhibited a heteroscedastic trend characteristic of qPCR standard curves. The influence of a yeast carrier tRNA added to the standard control material buffer was also investigated. Findings demonstrated that NIST SRM® 2917 functions with all qPCR methods and suggests that the future use of this control material by scientists and water quality managers should help reduce variability in concentration estimates and make results more consistent between laboratories.
Collapse
Affiliation(s)
- Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Richard A Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jason Kralj
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Stephanie Servetas
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Monique E Hunter
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Scott A Jackson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Zhi S, Banting G, Neumann NF. Development of a qPCR assay for the detection of naturalized wastewater E. coli strains. JOURNAL OF WATER AND HEALTH 2022; 20:727-736. [PMID: 35482388 DOI: 10.2166/wh.2022.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We recently demonstrated the presence of naturalized populations of Escherichia coli in municipal sewage. We wanted to develop a quantitative polymerase chain reaction (qPCR) assay targeting the uspC-IS30-flhDC marker of naturalized wastewater E. coli and assess the prevalence of these naturalized strains in wastewater. The limit of detection for the qPCR assay was 3.0 × 10-8 ng of plasmid DNA template with 100% specificity. This strain was detected throughout the wastewater treatment process, including treated effluents. We evaluated the potential of this marker for detecting municipal sewage/wastewater contamination in water by comparing it to other human and animal markers of fecal pollution. Strong correlations were observed between the uspC-IS30-flhDC marker and the human fecal markers Bacteroides HF183 and HumM2, but not animal fecal markers, in surface and stormwater samples. The uspC-IS30-flhDC marker appears to be a potential E. coli-based marker for human wastewater contamination.
Collapse
Affiliation(s)
- Shuai Zhi
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315200, China E-mail: ; School of Medicine, Ningbo University, Ningbo 315211, China
| | - Graham Banting
- School of Public Health, University of Alberta, Room 3-57, South Academic Building, Edmonton, Alberta T6G 2G7, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Room 3-57, South Academic Building, Edmonton, Alberta T6G 2G7, Canada
| |
Collapse
|
16
|
Biological Indicators for Fecal Pollution Detection and Source Tracking: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9112058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fecal pollution, commonly detected in untreated or less treated sewage, is associated with health risks (e.g., waterborne diseases and antibiotic resistance dissemination), ecological issues (e.g., release of harmful gases in fecal sludge composting, proliferative bacterial/algal growth due to high nutrient loads) and economy losses (e.g., reduced aqua farm harvesting). Therefore, the discharge of untreated domestic sewage to the environment and its agricultural reuse are growing concerns. The goals of fecal pollution detection include fecal waste source tracking and identifying the presence of pathogens, therefore assessing potential health risks. This review summarizes available biological fecal indicators focusing on host specificity, degree of association with fecal pollution, environmental persistence, and quantification methods in fecal pollution assessment. The development of practical tools is a crucial requirement for the implementation of mitigation strategies that may help confine the types of host-specific pathogens and determine the source control point, such as sourcing fecal wastes from point sources and nonpoint sources. Emerging multidisciplinary bacterial enumeration platforms are also discussed, including individual working mechanisms, applications, advantages, and limitations.
Collapse
|
17
|
Wu J, Wang Z, Lin Y, Zhang L, Chen J, Li P, Liu W, Wang Y, Yao C, Yang K. Technical framework for wastewater-based epidemiology of SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148271. [PMID: 34130001 PMCID: PMC8195746 DOI: 10.1016/j.scitotenv.2021.148271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 05/02/2023]
Abstract
Wastewater-based epidemiology (WBE) is expected to become a powerful tool to monitor the dissemination of SARS-CoV-2 at the community level, which has attracted the attention of scholars all over the world. However, there is not yet a standard protocol to guide its implementation. In this paper, we proposed a comprehensive technical and theoretical framework of relative quantification via qPCR for determining the virus abundance in wastewater and estimating the infection ratio in corresponding communities, which is expected to achieve horizontal and vertical comparability of the data using a human-specific biomarker as the internal reference. Critical factors affecting the virus detectability and the estimation of infection ratio include virus concentration methods, lag-period, per capita virus shedding amount, sewage generation rate, temperature-related decay kinetics of virus/biomarker in wastewater, and hydraulic retention time (HRT), etc. Theoretical simulation shows that the main factors affecting the detectability of virus in sewage are per capita virus shedding amount and sewage generation rate. While the decay of SARS-CoV-2 RNA in sewage is a relatively slow process, which may have limited impact on its detection. Under the ideal condition of high per capita virus shedding amount and low sewage generation rate, it is expected to detect a single infected person within 400,000 people.
Collapse
Affiliation(s)
- Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zizheng Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufei Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lihua Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
18
|
Zuo P, Yu P, Alvarez PJJ. Aminoglycosides Antagonize Bacteriophage Proliferation, Attenuating Phage Suppression of Bacterial Growth, Biofilm Formation, and Antibiotic Resistance. Appl Environ Microbiol 2021; 87:e0046821. [PMID: 34020940 PMCID: PMC8276799 DOI: 10.1128/aem.00468-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
The common cooccurrence of antibiotics and phages in both natural and engineered environments underscores the need to understand their interactions and implications for bacterial control and antibiotic resistance propagation. Here, aminoglycoside antibiotics that inhibit protein synthesis (e.g., kanamycin and neomycin) impeded the replication of coliphage T3 and Bacillus phage BSP, reducing their infection efficiency and mitigating their hindrance of bacterial growth, biofilm formation, and tolerance to antibiotics. For example, treatment with phage T3 reduced subsequent biofilm formation by Escherichia coli liquid cultures to 53% ± 5% of that of the no-phage control, but a smaller reduction of biofilm formation (89% ± 10%) was observed for combined exposure to phage T3 and kanamycin. Despite sharing a similar mode of action with aminoglycosides (i.e., inhibiting protein synthesis) and antagonizing phage replication, albeit to a lesser degree, tetracyclines did not inhibit bacterial control by phages. Phage T3 combined with tetracycline showed higher suppression of biofilm formation than when combined with aminoglycosides (25% ± 6% of the no-phage control). The addition of phage T3 to E. coli suspensions with tetracycline also suppressed the development of tolerance to tetracycline. However, this suppression of antibiotic tolerance development disappeared when tetracycline was replaced with 3 mg/liter kanamycin, corroborating the greater antagonism with aminoglycosides. Overall, this study highlights this overlooked antagonistic effect on phage proliferation, which may attenuate phage suppression of bacterial growth, biofilm formation, antibiotic tolerance, and maintenance of antibiotic resistance genes. IMPORTANCE The coexistence of residual antibiotics and phages is common in many environments, which underscores the need to understand their interactive effects on bacteria and the implications for antibiotic resistance propagation. Here, aminoglycosides acting as bacterial protein synthesis inhibitors impeded the replication of various phages. This alleviated the suppressive effects of phages against bacterial growth and biofilm formation and diminished bacterial fitness costs that suppress the emergence of tolerance to antibiotics. We show that changes in bacteria caused by environmentally relevant concentrations of sublethal antibiotics can affect phage-host dynamics that are commonly overlooked in vitro but can result in unexpected environmental consequences.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
19
|
Li D, Van De Werfhorst LC, Steets B, Ervin J, Murray JLS, Devarajan N, Holden PA. Bather Shedding as a Source of Human Fecal Markers to a Recreational Beach. Front Microbiol 2021; 12:673190. [PMID: 34248883 PMCID: PMC8269448 DOI: 10.3389/fmicb.2021.673190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial source tracking (MST) can identify and locate surf zone fecal indicator bacteria (FIB) sources. However, DNA-based fecal marker results may raise new questions, since FIB and DNA marker sources can differ. Here, during 2 years of summertime (dry season) MST for a Goleta, California recreational beach, surf zone FIB were mainly from gulls, yet low level human-associated DNA-based fecal marker (HF183) was detected in 25 and 14% of surf zone water samples, respectively. Watershed sources were hypothesized because dry weather creek waters had elevated FIB, and runoff-generating rain events mobilized human (and dog) fecal markers and Salmonella spp. into creeks, with human marker HF183 detected in 40 and 50% of creek water samples, dog markers detected in 70 and 50% of samples, and Salmonella spp. in 40 and 33.3% of samples, respectively over 2 years. However, the dry weather estuary outlet was bermed in the first study year; simultaneously, creek fecal markers and pathogens were lower or similar to surf zone results. Although the berm breached in the second year, surf zone fecal markers stayed low. Watershed sediments, intertidal beach sands, and nearshore sediments were devoid of HF183 and dog-associated DNA markers. Based on dye tests and groundwater sampling, beach sanitary sewers were not leaking; groundwater was also devoid of HF183. Offshore sources appeared unlikely, since FIB and fecal markers decreased along a spatial gradient from the surf zone toward nearshore and offshore ocean waters. Further, like other regional beaches, surf zone HF183 corresponded significantly to bather counts, especially in the afternoons when there were more swimmers. However, morning detections of surf zone HF183 when there were few swimmers raised the possibility that the wastewater treatment plant (WWTP) offshore outfall discharged HF183 overnight which transported to the surf zone. These findings support that there may be lowest achievable limits of surf zone HF183 owing to several chronic and permanent, perhaps diurnal, low concentration sources.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Laurie C. Van De Werfhorst
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA, United States
| | - Jill L. S. Murray
- Creeks Division, Department of Parks and Recreation, Santa Barbara, CA, United States
| | - Naresh Devarajan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patricia A. Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
20
|
Li X, Kelty CA, Sivaganesan M, Shanks OC. Variable fecal source prioritization in recreational waters routinely monitored with viral and bacterial general indicators. WATER RESEARCH 2021; 192:116845. [PMID: 33508720 PMCID: PMC8186395 DOI: 10.1016/j.watres.2021.116845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Somatic and F+ coliphage methods are under consideration as potential routine surface water quality monitoring tools to identify unsafe levels of fecal pollution in recreational waters. However, little is known about the cooccurrence of these virus-based fecal indicators and host-associated genetic markers used to prioritize key pollution sources for remediation. In this study, paired measurements of cultivated coliphage (somatic and F+) and bacterial (E. coli and enterococci) general fecal indicators and genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal pollution sources were assessed in 365 water samples collected from six Great Lakes Basin beach and river sites over a 15-week recreational season. Water samples were organized into groups based on defined viral and bacterial fecal indicator water quality thresholds and average log10 host-associated genetic marker fecal score ratios were estimated to compare pollutant source inferences based on variable routine water quality monitoring practices. Eligible log10 fecal score ratios ranged from -0.051 (F+ coliphage, GFD) to 2.08 (enterococci, Rum2Bac). Using a fecal score ratio approach, findings suggest that general fecal indicator selection for routine water quality monitoring can influence the interpretation of host-associated genetic marker measurements, in some cases, prioritizing different pollutant sources for remediation. Variable trends were also observed between Great Lake beach and river sites suggesting disparate management practices may be useful for each water type.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China 518055
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Brumfield KD, Cotruvo JA, Shanks OC, Sivaganesan M, Hey J, Hasan NA, Huq A, Colwell RR, Leddy MB. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. FRONTIERS IN WATER 2021; 3:626849. [PMID: 34263162 PMCID: PMC8274573 DOI: 10.3389/frwa.2021.626849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | | | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Jessica Hey
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
- CosmosID Inc., Rockville, MD, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| |
Collapse
|
22
|
Jennings WC, Gálvez-Arango E, Prieto AL, Boehm AB. CrAssphage for fecal source tracking in Chile: Covariation with norovirus, HF183, and bacterial indicators. WATER RESEARCH X 2020; 9:100071. [PMID: 33083778 PMCID: PMC7552103 DOI: 10.1016/j.wroa.2020.100071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 05/12/2023]
Abstract
Anthropogenic fecal pollution in urban waterbodies can promote the spread of waterborne disease. The objective of this study was to test crAssphage, a novel viral human fecal marker not previously applied for fecal source tracking in Latin America, as a fecal pollution marker in an urban river in Chile. Human fecal markers crAssphage CPQ_064 and Bacteroides HF183, the human pathogen norovirus GII, and culturable fecal indicator bacteria (FIB) were quantified at six locations spanning reaches of the Mapocho River from upstream to downstream of Santiago, as well as in repeated sub-daily frequency samples at two urban locations. Norovirus showed positive correlation trends with crAssphage (τ = 0.57, p = 0.06) and HF183 (τ = 0.64, p = 0.03) in river water, but not with E. coli or enterococci. CrAssphage and HF183 concentrations were strongly linearly related (slope = 0.97, p < 0.001). Chlorinated wastewater effluent was an important source of norovirus GII genes to the Mapocho. Precipitation showed non-significant positive relationships with human and general fecal indicators. Concentrations of crAssphage and HF183 in untreated sewage were 8.35 and 8.07 log10 copy/100 ml, respectively. Preliminary specificity testing did not detect crAssphage or HF183 in bird or dog feces, which are predominant non-human fecal sources in the urban Mapocho watershed. This study is the first to test crAssphage for microbial source tracking in Latin America, provides insight into fecal pollution dynamics in a highly engineered natural system, and indicates river reaches where exposure to human fecal pollution may pose a public health risk.
Collapse
Affiliation(s)
- Wiley C. Jennings
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Ana L. Prieto
- Departamento de Ingeniería Civil, Universidad de Chile, Av. Blanco Encalada 2002, 3er Piso, Santiago, Chile
| | - Alexandria B. Boehm
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
- Corresponding author.
| |
Collapse
|
23
|
Zimmer-Faust AG, Steele JA, Griffith JF, Schiff K. The challenges of microbial source tracking at urban beaches for Quantitative Microbial Risk Assessment (QMRA). MARINE POLLUTION BULLETIN 2020; 160:111546. [PMID: 32898736 DOI: 10.1016/j.marpolbul.2020.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Urban beaches are frequently impacted from multiple sources of fecal contamination. This along with high beach usage underscores the importance of appropriate management that protects swimmer health. The USEPA has enabled the use of QMRA as a tool for quantifying swimmer health risk and setting site-specific water quality objectives. This study illustrates the challenges associated with human and non-human source identification and how these challenges influence the decision of whether QMRA at typical urban beaches for water quality management is appropriate. In this study, a similar and correlated spatial relationship with elevated Enterococcus and avian-specific markers was observed, suggesting shorebirds as a primary source of FIB. However, human-associated markers were also detected frequently but at low concentrations. Ultimately, a QMRA was not conducted because pathogen loading from potential human sources could not be confidently quantified, having consequences for health risk in receiving waters where recreational contact occurs.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America.
| | - Joshua A Steele
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America
| | - John F Griffith
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America
| | - Ken Schiff
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America
| |
Collapse
|
24
|
Schoen ME, Boehm AB, Soller J, Shanks OC. Contamination Scenario Matters when Using Viral and Bacterial Human-Associated Genetic Markers as Indicators of a Health Risk in Untreated Sewage-Impacted Recreational Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13101-13109. [PMID: 32969642 PMCID: PMC8215692 DOI: 10.1021/acs.est.0c02189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fecal pollution at beaches can pose a health risk to recreators. Quantitative microbial risk assessment (QMRA) is a tool to evaluate the use of candidate fecal indicators to signify a health risk from enteric pathogens in sewage-impacted waters. We extend the QMRA approach to model mixtures of sewage at different ages using genetic marker concentrations for human-associated crAssphage, Bacteroides spp., and polyomavirus in sewage samples from 49 wastewater facilities across the contiguous United States. Risk-based threshold (RBT) estimates varied across different mixture and sewage age scenarios. Fresh sewage RBT estimates were not always protective when aged sewage was present, and aged sewage RBT estimates often fell below the marker lower limit of quantification. Conservative RBT estimates of 9.3 × 102 and 9.1 × 103 (copies/100 mL) for HF183/BacR287 and CPQ_056, respectively, were predicted when fresh sewage was greater (by volume) than aged at the time of measurement. Conversely, genetic markers may not be effective indicators when aged sewage contributes the majority of pathogens, relative to fresh contamination, but minimal marker levels. Results highlight the utility of QMRA that incorporates pollutant age and mixture scenarios, the potential advantages of a crAssphage fecal indicator, and the potential influence of site-specific factors on estimating RBT values.
Collapse
Affiliation(s)
- Mary E Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, California 94703, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey Soller
- Soller Environmental, LLC, 3022 King St., Berkeley, California 94703, United States
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
25
|
Bunce JT, Robson A, Graham DW. Seasonal influences on the use of genetic markers as performance indicators for small wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139928. [PMID: 32540662 DOI: 10.1016/j.scitotenv.2020.139928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The development of microbial source tracking methods has resulted in an array of genetic faecal markers for assessing human health risks posed from surface water pollution. However, their use as performance metrics at wastewater treatment plants (WWTPs) has not been explored extensively. Here we compared three Bacteroides (HF183, HumM2, AllBac) and two E. coli (H8, RodA) genetic markers for summer and winter performance monitoring at twelve small rural (<250 PE) and three larger WWTPs in NE England. Small WWTPs are of interest because they are poorly understood and their impact on surface water quality may be underestimated. Overall, genetic marker data showed significant differences in treatment performance at smaller versus larger WWTPs. For example, effluent abundances of HF183 and HumM2 were significantly higher in smaller systems (p = 0.003 for HumM2; p = 0.02 for HF183). Genetic markers also showed significant differences in performance between seasons (p < 0.01, n = 120), with human-specific markers (i.e., HF183, HumM2, H8) being generally better for summer WWTP monitoring. In contrast, Bacteroides markers were much more suitable for winter monitoring, possibly because the E. coli markers are less sensitive to differences in temperature and sunlight conditions. Overall, Bacteroides markers best described WWTP treatment performance across all samples, although seasonal differences suggest caution is needed when markers are used for performance monitoring. Genetic markers definitely provide rapid and new information about WWTP performance, but more spatially diverse studies are needed to refine their use for routine WWTP monitoring.
Collapse
Affiliation(s)
- Joshua T Bunce
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Aidan Robson
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
26
|
Shrestha A, Kelty CA, Sivaganesan M, Shanks OC, Dorevitch S. Fecal pollution source characterization at non-point source impacted beaches under dry and wet weather conditions. WATER RESEARCH 2020; 182:116014. [PMID: 32622131 PMCID: PMC8220998 DOI: 10.1016/j.watres.2020.116014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Though Lake Michigan beaches in Chicago are not impacted by stormwater or wastewater outfalls, several of those beaches often exceed USEPA Beach Action Values (BAVs). We investigated the role of microbial source tracking (MST) as a complement to routine beach monitoring at Chicago beaches. In summer 2016, water samples from nine Chicago beaches were analyzed for E. coli by culture and enterococci by qPCR. A total of 195 archived samples were then tested for human (HF183/BacR287, HumM2), canine (DG3, DG37), and avian (GFD) microbial source tracking (MST) markers. Associations between MST and general fecal indicator bacteria (FIB) measures were evaluated and stratified based on wet and dry weather definitions. Among the 195 samples, HF183/BacR287 was quantifiable in 4%, HumM2 in 1%, DG3 in 6%, DG37 in 2%, and GFD in 23%. The one beach with a dog area was far more likely to have DG3 present in the quantifiable range than other beaches. Exceedance of general FIB BAVs increased the odds of human, dog and avian marker detection. MST marker weighted-average fecal scores for DG3 was 2.4 times, DG37 was 2.1 times, and GFD was 1.6 times higher during wet compared to dry weather conditions. HF183/BacR287 weighted-average fecal scores were not associated with precipitation. Associations between FIB BAV exceedance and MST marker detection were generally stronger in wet weather. Incorporating MST testing into routine beach water monitoring can provide information that beach managers can use when developing protection plans for beaches not impacted by point sources.
Collapse
Affiliation(s)
- Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA.
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Samuel Dorevitch
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA; Institute for Environmental Science and Policy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Zhang Y, Wu R, Lin K, Wang Y, Lu J. Performance of host-associated genetic markers for microbial source tracking in China. WATER RESEARCH 2020; 175:115670. [PMID: 32171096 DOI: 10.1016/j.watres.2020.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Numerous genetic markers have been developed to establish microbial source tracking (MST) assays in the last decade. However, the selection of suitable markers is challenging due to a lack of understanding of fundamental factors such as sensitivity, specificity, and concentration in target/nontarget hosts, especially in East Asia. In this study, a total of 506 faecal samples comprised of human and 12 nonhuman hosts were collected from 28 cities across China and tested for marker performance characteristics. We firstly tested 40 host-associated markers based on a binary (presence/absence) criterion. Here, 15 markers (7 human-associated, 4 pig-associated, 3 ruminant-associated, and 1 poultry-associated) showed potential applicability in our study area. The selected 15 markers were then tested using qualitative and quantitative methods to characterise their performance. Overall, Bacteroidales markers presented higher sensitivity and concentrations in target samples compared to other bacterial or viral markers, but their specificity was low. Among nontarget samples, pets accounted for 43.7% and 35.7% of cross-reactivity with human-associated and poultry-associated markers, respectively. Noncommon animals, including horse and donkey, contributed 61.3% of cross-reactivity with ruminant-associated markers. When considering the quantitative distribution of markers, their concentration in nontarget samples were 1-3 orders of magnitude lower than in target samples. Moreover, a novel classification method was proposed to classify the nontarget hosts into four groups spanning "no cross-reactivity", "weak cross-reactivity", "moderate cross-reactivity", and "strong cross-reactivity" animal hosts. There were 77.9% nontarget samples identified as no cross-reactivity and weak cross-reactivity hosts, suggesting that these nontarget hosts produce little interference for corresponding markers. Our findings elucidate the performance of host-associated markers around China in a qualitative and quantitative manner, and reveal the interference degree of cross-reactivity from nontarget animals to genetic markers, which will facilitate tracking of multiple faecal pollution sources and planning timely remedial strategies in China.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Renren Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China.
| | - Kairong Lin
- Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Yishu Wang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| | - Junqing Lu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| |
Collapse
|
28
|
Fuhrmeister E, Ercumen A, Pickering AJ, Jeanis KM, Crider Y, Ahmed M, Brown S, Alam M, Sen D, Islam S, Kabir MH, Islam M, Rahman M, Kwong LH, Arnold BF, Luby SP, Colford JM, Nelson KL. Effect of Sanitation Improvements on Pathogens and Microbial Source Tracking Markers in the Rural Bangladeshi Household Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4316-4326. [PMID: 32167305 PMCID: PMC7144219 DOI: 10.1021/acs.est.9b04835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/19/2023]
Abstract
Diarrheal illnesses from enteric pathogens are a leading cause of death in children under five in low- and middle-income countries (LMICs). Sanitation is one way to reduce the spread of enteric pathogens in the environment; however, few studies have investigated the effectiveness of sanitation in rural LMICs in reducing pathogens in the environment. In this study, we measured the impact of a sanitation intervention (dual-pit latrines, sani-scoops, child potties delivered as part of a randomized control trial, WASH Benefits) in rural Bangladeshi household compounds by assessing prevalence ratios, differences, and changes in the concentration of pathogen genes and host-specific fecal markers. We found no difference in the prevalence of pathogenic Escherichia coli, norovirus, or Giardia genes in the domestic environment in the sanitation and control arms. The prevalence of the human fecal marker was lower on child hands and the concentration of animal fecal marker was lower on mother hands in the sanitation arm in adjusted models, but these associations were not significant after correcting for multiple comparisons. In the subset of households with ≥10 individuals per compound, the prevalence of enterotoxigenic E. coli genes on child hands was lower in the sanitation arm. Incomplete removal of child and animal feces or the compound (versus community-wide) scale of intervention could explain the limited impacts of improved sanitation.
Collapse
Affiliation(s)
- Erica
R. Fuhrmeister
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Ayse Ercumen
- School
of Public Health, University of California, Berkeley, California 94720, United States
- Department
of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amy J. Pickering
- Civil
and Environmental Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | - Kaitlyn M. Jeanis
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Yoshika Crider
- Energy
and Resources Group, University of California, Berkeley, California 94720, United States
| | - Mahaa Ahmed
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Sara Brown
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Mahfuja Alam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Debashis Sen
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Sharmin Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mir Himayet Kabir
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mahfuza Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mahbubur Rahman
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Laura H. Kwong
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Benjamin F. Arnold
- School
of Public Health, University of California, Berkeley, California 94720, United States
| | - Stephen P. Luby
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| | - John M. Colford
- School
of Public Health, University of California, Berkeley, California 94720, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Viral and Bacterial Fecal Indicators in Untreated Wastewater across the Contiguous United States Exhibit Geospatial Trends. Appl Environ Microbiol 2020; 86:AEM.02967-19. [PMID: 32060019 DOI: 10.1128/aem.02967-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cultivated fecal indicator bacteria such as Escherichia coli and enterococci are typically used to assess the sanitary quality of recreational waters. However, these indicators suffer from several limitations, such as the length of time needed to obtain results and the fact that they are commensal inhabitants of the gastrointestinal tract of many animals and have fate and transport characteristics dissimilar to pathogenic viruses. Numerous emerging technologies that offer same-day water quality results or pollution source information or that more closely mimic persistence patterns of disease-causing pathogens that may improve water quality management are now available, but data detailing geospatial trends in wastewater across the United States are sparse. We report geospatial trends of cultivated bacteriophage (somatic, F+, and total coliphages and GB-124 phage), as well as genetic markers targeting polyomavirus, enterococci, E. coli, Bacteroidetes, and human-associated Bacteroides spp. (HF183/BacR287 and HumM2) in 49 primary influent sewage samples collected from facilities across the contiguous United States. Samples were selected from rural and urban facilities spanning broad latitude, longitude, elevation, and air temperature gradients by using a geographic information system stratified random site selection procedure. Most indicators in sewage demonstrated a remarkable similarity in concentration regardless of location. However, some exhibited predictable shifts in concentration based on either facility elevation or local air temperature. Geospatial patterns identified in this study, or the absence of such patterns, may have several impacts on the direction of future water quality management research, as well as the selection of alternative metrics to estimate sewage pollution on a national scale.IMPORTANCE This study provides multiple insights to consider for the application of bacterial and viral indicators in sewage to surface water quality monitoring across the contiguous United States, ranging from method selection considerations to future research directions. Systematic testing of a large collection of sewage samples confirmed that crAssphage genetic markers occur at a higher average concentration than key human-associated Bacteroides spp. on a national scale. Geospatial testing also suggested that some methods may be more suitable than others for widespread implementation. Nationwide characterization of indicator geospatial trends in untreated sewage represents an important step toward the validation of these newer methods for future water quality monitoring applications. In addition, the large paired-measurement data set reported here affords the opportunity to conduct a range of secondary analyses, such as the generation of new or updated quantitative microbial risk assessment models used to estimate public health risk.
Collapse
|
30
|
Ecological and Technical Mechanisms for Cross-Reaction of Human Fecal Indicators with Animal Hosts. Appl Environ Microbiol 2020; 86:AEM.02319-19. [PMID: 31862726 DOI: 10.1128/aem.02319-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Quantitative PCR (qPCR) assays for human/sewage marker genes have demonstrated sporadic positive results in animal feces despite their high specificities to sewage and human feces. It is unclear whether these positive reactions are caused by true occurrences of microorganisms containing the marker gene (i.e., indicator organisms) or nonspecific amplification (false positive). The distribution patterns of human/sewage indicator organisms in animals have not been explored in depth, which is crucial for evaluating a marker gene's true- or false-positive reactions. Here, we analyzed V6 region 16S rRNA gene sequences from 257 animal fecal samples and tested a subset of 184 using qPCR for human/sewage marker genes. Overall, specificities of human/sewage marker genes within sequencing data were 99.6% (BacV6-21), 96.9% (Lachno3), and 96.1% (HF183, indexed by its inferred V6 sequence). Occurrence of some true cross-reactions was associated with atypical compositions of organisms within the genera Blautia or Bacteroides For human/sewage marker qPCR assays, specificities were 96.7% (HF183/Bac287R), 96.2% (BacV6-21), 95.6% (human Bacteroides [HB]), and 94.0% (Lachno3). Select assays duplexed with either Escherichia coli or Enterococcus spp. were also validated. Most of the positive qPCR results in animals were low level and, on average, 2 orders of magnitude lower than the copy numbers of E. coli and Enterococcus spp. The lower specificity in qPCR assays compared to sequencing data was mainly caused by amplification of sequences highly similar to the marker gene and not the occurrence of the exact marker sequence in animal fecal samples.IMPORTANCE Identifying human sources of fecal pollution is critical to remediate sanitation concerns. Large financial investments are required to address these concerns; therefore, a high level of confidence in testing results is needed. Human fecal marker genes validated in this study showed high specificity in both sequencing data and qPCR results. Human marker sequences were rarely found in individual animals, and in most cases, the animals had atypical microbial communities. Sequencing also revealed the presence of closely related organisms that could account for nonspecific amplification in certain assays. Both the true cross-reactions and the nonspecific amplification had low signals well below E. coli or Enterococcus levels and likely would not impact the assay's ability to reliably detect human fecal pollution. No animal source had multiple human/sewage marker genes present; therefore, using a combination of marker genes would increase the confidence of human fecal pollution detection.
Collapse
|
31
|
Hamzah L, Boehm AB, Davis J, Pickering AJ, Wolfe M, Mureithi M, Harris A. Ruminant Fecal Contamination of Drinking Water Introduced Post-Collection in Rural Kenyan Households. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E608. [PMID: 31963600 PMCID: PMC7027003 DOI: 10.3390/ijerph17020608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
In sub-Saharan Africa, many families travel to collect water and store it in their homes for daily use, presenting an opportunity for the introduction of fecal contamination. One stored and one source water sample were each collected from 45 households in rural Kenya. All 90 samples were analyzed for fecal indicator bacteria (E. coli and enterococci) and species-specific contamination using molecular microbial source tracking assays. Human (HF183), avian (GFD), and ruminant (BacR) contamination were detected in 52, two, and four samples, respectively. Stored water samples had elevated enterococci concentrations (p < 0.01, Wilcoxon matched pairs test) and more frequent BacR detection (89% versus 27%, p < 0.01, McNemar's exact test) relative to source water samples. fsQCA (fuzzy set qualitative comparative analysis) was conducted on the subset of households with no source water BacR contamination to highlight combinations of factors associated with the introduction of BacR contamination to stored water supplies. Three combinations were identified: (i) ruminants in the compound, safe water extraction methods, and long storage time, (ii) ruminants, unsafe water extraction methods, and no soap at the household handwashing station, and (iii) long storage time and no soap. This suggests that multiple pathways contribute to the transmission of ruminant fecal contamination in this context, which would have been missed if data were analyzed using standard regression techniques.
Collapse
Affiliation(s)
- Latifah Hamzah
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Davis
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Amy J. Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 01255, USA;
| | - Marlene Wolfe
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Innovations for Poverty Action, Nairobi, Kenya;
| | | | - Angela Harris
- Department of Civil, Construction, and Environmental Engineering, NC State University, Raleigh, NC 27695, USA
| |
Collapse
|
32
|
Badgley BD, Steele MK, Cappellin C, Burger J, Jian J, Neher TP, Orentas M, Wagner R. Fecal indicator dynamics at the watershed scale: Variable relationships with land use, season, and water chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134113. [PMID: 32380608 DOI: 10.1016/j.scitotenv.2019.134113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
Tracking fecal contamination in surface waters is critical to remediating water quality; however, general and source-specific fecal indicators often provide conflicting results. To understand the spatial and temporal dynamics of multiple fecal indicators and the sources they represent, we measured weekly concentrations of two general fecal indicator bacteria (FIB), a genetic indicator of human-associated Bacteroides (HF183), and surface water chemistry in nine mixed land-use watersheds in southwest Virginia, USA. At the watershed scale, general and source-specific indicators were decoupled, with distinct spatial, temporal, and chemical patterns. Random Forest analysis of individual sample variability identified temperature, watershed, nutrients, and cations as top predictors of indicator concentrations. However, these patterns - and the specific nutrients and cations identified - varied by indicator type. Among watersheds, FIB increased with developed land cover and during the summer months, while HF183 increased during the winter and only in urban watersheds. Nutrients generally related poorly to FIB and HF183, except E. coli, which correlated with total nitrogen. In contrast, all fecal indicators showed strong correlations with cations. FIB were more strongly related to calcium, magnesium, and potassium concentrations, while HF183 was related to sodium. These results suggest that, even at the watershed scale, 1) HF183 detects mainly human fecal contamination, while FIB detect broader ecosystem fecal inputs, and 2) poor correlation between specific and generalist fecal indicators is caused by unique spatial, temporal, and transport dynamics of different fecal sources in watersheds.
Collapse
Affiliation(s)
- Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Tech, United States of America.
| | - Meredith K Steele
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Catherine Cappellin
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Julie Burger
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Jinshi Jian
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Timothy P Neher
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Megan Orentas
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Regan Wagner
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| |
Collapse
|
33
|
Boehm AB. Risk-based water quality thresholds for coliphages in surface waters: effect of temperature and contamination aging. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2031-2041. [PMID: 31612888 DOI: 10.1039/c9em00376b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coliphages, viruses that infect Escherichia coli, have been used for decades to assess surface water quality yet there is no guideline for interpreting their concentrations. The present study uses a quantitative microbial risk assessment (QMRA) framework to derive risk-based surface water quality thresholds for somatic and F+ or male-specific coliphages. The risk-based threshold is the concentration at which the risk of gastro-intestinal illness is simulated to be 32/1000. The framework specifically investigates a simplified hazard scenario where recreational swimmers come into contact with water contaminated with untreated sewage containing coliphages and enteric pathogens. The framework considers exposure to sewage of diverse ages and thus accounts for the decay of coliphages and pathogens over time. As decay rate constants depend on temperature, the model considers the effect of temperature on the risk-based threshold. When exposure to fresh, unaged sewage contamination occurs, the risk-based water quality threshold for somatic and F+ coliphages is 60 PFU per 100 mL and 30 PFU per 100 mL, respectively, and temperature independent. The risk-based threshold decreases as the contamination ages because, on average, coliphages decay more quickly than norovirus, the pathogen that contributes the most to risk. The decrease in the risk-based threshold with contaminant age is equal to the difference in the first order decay rate constants of coliphages and norovirus. Since coliphage decay rate constants are larger at 25 °C than at 15 °C, and norovirus decay rate constants are a weak function of temperature, risk-based thresholds decrease more quickly with age at 25 °C than at 15 °C. For the common case where the age of contamination is unknown, the risk-based threshold for both coliphages is between ∼1 PFU per 100 mL and ∼10 PFU per 100 mL, depending on model assumptions. Future work can apply this QMRA framework for identifying risk-based thresholds for coliphages from different hazards (treated wastewater or animal feces) or from mixtures of contamination of different ages and sources.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA 94305-4020.
| |
Collapse
|
34
|
Curtis K, Gonzalez RA. Integrating Bayesian Analysis and Cumulative Probability Generates High Confidence Using a Single Microbial Source Tracking Marker. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13929-13937. [PMID: 31682415 DOI: 10.1021/acs.est.9b03843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial source tracking can identify waterbodies at risk of contamination using host-associated molecular markers. No assay used for microbial source tracking is both 100% host-specific and sensitive for human or animal fecal contamination. Using literature sensitivity and specificity values, Bayes' Theorem for conditional probability was applied to the human fecal-associated HF183 marker in a microbial source tracking context. Type I and Type II error rates were examined across a range of priors. Conditional probabilities were investigated using two human-associated markers, HF183 and HumM2, concurrently. Cumulative probability analysis was used to explore the likelihood of true contaminant detection using multiple samples. Probability of human fecal contamination was calculated for all combinations of positive and negative marker results given three samples. Results demonstrate the respective influence that specificity and sensitivity values exert on the likelihood of true positive and true negative. Using practical priors, high levels of confidence (99%) in results were observed when HF183 and HumM2 were used concurrently. Cumulative probability analyses showed that multiple samples from a single location can provide a >95% level of confidence in positive and negative results, suggesting that when multiple samples are necessary to account for in situ variability, a single marker can yield sufficiently reliable results.
Collapse
Affiliation(s)
- Kyle Curtis
- Hampton Roads Sanitation District , 1434 Air Rail Blvd , Virginia Beach , Virginia 23455 , United States
| | - Raul A Gonzalez
- Hampton Roads Sanitation District , 1434 Air Rail Blvd , Virginia Beach , Virginia 23455 , United States
| |
Collapse
|
35
|
Fuhrmeister E, Ercumen A, Pickering AJ, Jeanis KM, Ahmed M, Brown S, Arnold BF, Hubbard AE, Alam M, Sen D, Islam S, Kabir MH, Kwong LH, Islam M, Unicomb L, Rahman M, Boehm AB, Luby SP, Colford JM, Nelson KL. Predictors of Enteric Pathogens in the Domestic Environment from Human and Animal Sources in Rural Bangladesh. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10023-10033. [PMID: 31356066 PMCID: PMC6727619 DOI: 10.1021/acs.est.8b07192] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 05/19/2023]
Abstract
Fecal indicator organisms are measured to indicate the presence of fecal pollution, yet the association between indicators and pathogens varies by context. The goal of this study was to empirically evaluate the relationships between indicator Escherichia coli, microbial source tracking markers, select enteric pathogen genes, and potential sources of enteric pathogens in 600 rural Bangladeshi households. We measured indicators and pathogen genes in stored drinking water, soil, and on mother and child hands. Additionally, survey and observational data on sanitation and domestic hygiene practices were collected. Log10 concentrations of indicator E. coli were positively associated with the prevalence of pathogenic E. coli genes in all sample types. Given the current need to rely on indicators to assess fecal contamination in the field, it is significant that in this study context indicator E. coli concentrations, measured by IDEXX Colilert-18, provided quantitative information on the presence of pathogenic E. coli in different sample types. There were no significant associations between the human fecal marker (HumM2) and human-specific pathogens in any environmental sample type. There was an increase in the prevalence of Giardia lamblia genes, any E. coli virulence gene, and the specific E. coli virulence genes stx1/2 with every log10 increase in the concentration of the animal fecal marker (BacCow) on mothers' hands. Thus, domestic animals were important contributors to enteric pathogens in these households.
Collapse
Affiliation(s)
- Erica
R. Fuhrmeister
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Ayse Ercumen
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
- Department
of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amy J. Pickering
- Civil
and Environmental Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | - Kaitlyn M. Jeanis
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Mahaa Ahmed
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Sara Brown
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Benjamin F. Arnold
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
| | - Alan E. Hubbard
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
| | - Mahfuja Alam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Debashis Sen
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Sharmin Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Mir Himayet Kabir
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Laura H. Kwong
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Mahfuza Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Leanne Unicomb
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Mahbubur Rahman
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Alexandria B. Boehm
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Stephen P. Luby
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| | - John M. Colford
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Obayomi O, Ghazaryan L, Ben-Hur M, Edelstein M, Vonshak A, Safi J, Bernstein N, Gillor O. The fate of pathogens in treated wastewater-soil-crops continuum and the effect of physical barriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:339-349. [PMID: 31103669 DOI: 10.1016/j.scitotenv.2019.04.378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/21/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Secondary treated wastewater (TWW) could provide a cheap and sustainable alternative to potable water (PW) irrigation and ensure food security, especially in arid and semi-arid regions. However, TWW may pose a health risk by introducing pathogens to the irrigated soil and crop, and especially to irrigated vegetables that are eaten raw. To avoid contamination, national and international authorities have mandated the use of physical barriers, such as drip irrigation and plastic mulch, to separate the irrigation water and the crops. Although the barriers are mandated, it is not clear whether they prevent contamination of crops. To evaluate the role of barriers on crop safety, cucumbers and melons were cultivated in a field irrigated with TWW or PW with the application of barriers including surface and subsurface drip irrigation and plastic mulch. Over 500 samples of water, soil and the model crops (surface and tissue) were collected during two growing seasons and used to monitor fecal indicator bacteria and pathogens using culture dependent and independent methods. The results showed that there were no statistically significant differences in both the fecal indicator and the pathogen abundance between treatments in either the soil or the crops, regardless of the water quality or barrier applied, even though TWW supported higher diversity and abundance of indicators and pathogens than PW. Moreover, the microbial communities detected in the irrigated soils and crops could not be linked to the irrigation water. The obtained results suggest that irrigation with TWW does not result in fecal pathogen contamination of the irrigated soil or crops.
Collapse
Affiliation(s)
- Olabiyi Obayomi
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Lusine Ghazaryan
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Menachem Ben-Hur
- Institute of Soil Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, POBox 6, Bet-Dagan 50-250, Israel
| | - Menahem Edelstein
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, POBox 1021, Ramat Yishay 30095, Israel
| | - Ahuva Vonshak
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Jamal Safi
- Environmental Protection and Research Institute-Gaza, POBox 1175, Gaza, Palestinian Authority
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, POBox 6, Bet-Dagan 50-250, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
37
|
Ruiz J. Dubious presence of Bartonella bacilliformis in ticks from Madre de Dios, Peru. BMC Res Notes 2019; 12:539. [PMID: 31443674 PMCID: PMC6708141 DOI: 10.1186/s13104-019-4528-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
Bartonella bacilliformis has recently been described in Amblyomma scalpturatum, Amblyomma ovale and Rhipicephalus microplus collected from wild animals in the Peruvian region of Madre de Dios. In this communication, I will discuss the results of a recent study by del Valle-Mendoza et al. together with the B. bacilliformis epidemiology. Following my argumentation, I consider the presence of this microorganism in the above ticks improbable.
Collapse
Affiliation(s)
- Joaquim Ruiz
- Independent Researcher, P.O.Box 16, 08214, Badia del Valles, Spain.
| |
Collapse
|
38
|
Nshimyimana JP, Cruz MC, Wuertz S, Thompson JR. Variably improved microbial source tracking with digital droplet PCR. WATER RESEARCH 2019; 159:192-202. [PMID: 31096066 DOI: 10.1016/j.watres.2019.04.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 05/05/2023]
Abstract
This study addressed whether digital droplet PCR (ddPCR) could improve sensitivity and specificity of human-associated Bacteroidales genetic markers, BacHum and B. theta, and their quantification in environmental and fecal composite samples. Human markers were quantified by qPCR and ddPCR platforms obtained from the same manufacturer. A total of 180 samples were evaluated by each platform including human and animal feces, sewage, and environmental water. The sensitivity of ddPCR and qPCR marker assays in sewage and human stool was 0.85-1.00 with marginal reduction in human stool by ddPCR relative to qPCR (<10%). The prevalence and distribution of markers across complex sample types was similar (74-100% agreement) by both platforms with qPCR showing higher sensitivity for markers in environmental and composite samples and ddPCR showing greater reproducibility for marker detection in fecal composites. Determination of BacHum prevalence in fecal samples by ddPCR increased specificity relative to qPCR (from 0.58 to 0.88) and accuracy (from 0.77 to 0.94), while the B. theta assay performed similarly on both platforms (specificity = 0.98). In silico analysis indicated higher specificity of ddPCR for BacHum was not solely attributed to reduced sensitivity relative to qPCR. Marker concentrations measured by ddPCR for all sample types were consistently lower than those measured by qPCR, by a factor of 2.6 ± 2.8 for B. theta and 18.7 ± 10.0 for BacHum. We suggest that differences in assay performance on ddPCR and qPCR platforms may be linked to the characteristics of the assay targets (that is, genes with multiple versus single copies and encoding proteins versus ribosomal RNA) however further work is needed to validate these ideas. We conclude that ddPCR is a suitable tool for microbial source tracking, however, other factors such as cost-effectiveness and assay-specific performance should be considered.
Collapse
Affiliation(s)
- Jean Pierre Nshimyimana
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mercedes C Cruz
- Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore
| | - Stefan Wuertz
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore
| | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Centre for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602, Singapore.
| |
Collapse
|
39
|
Astudillo-García C, Hermans SM, Stevenson B, Buckley HL, Lear G. Microbial assemblages and bioindicators as proxies for ecosystem health status: potential and limitations. Appl Microbiol Biotechnol 2019; 103:6407-6421. [DOI: 10.1007/s00253-019-09963-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
|
40
|
Li X, Sivaganesan M, Kelty CA, Zimmer-Faust A, Clinton P, Reichman JR, Johnson Y, Matthews W, Bailey S, Shanks OC. Large-scale implementation of standardized quantitative real-time PCR fecal source identification procedures in the Tillamook Bay Watershed. PLoS One 2019; 14:e0216827. [PMID: 31170166 PMCID: PMC6553688 DOI: 10.1371/journal.pone.0216827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Fecal pollution management remains one of the biggest challenges for water quality authorities worldwide. Advanced fecal pollution source identification technologies are now available that can provide quantitative information from many animal groups. As public interest in these methodologies grows, it is vital to use standardized procedures with clearly defined data acceptance metrics and conduct field studies demonstrating the use of these techniques to help resolve real-world water quality challenges. Here we apply recently standardized human-associated qPCR methods with custom data acceptance metrics (HF183/BacR287 and HumM2), along with established procedures for ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3 and DG37), and avian (GFD) fecal pollution sources to (i) demonstrate the feasibility of implementing standardized qPCR procedures in a large-scale field study, and (ii) characterize trends in fecal pollution sources in the research area. A total of 602 water samples were collected over a one-year period at 29 sites along the Trask, Kilchis, and Tillamook rivers and tributaries in the Tillamook Bay Watershed (OR, USA). Host-associated qPCR results were combined with high-resolution geographic information system (GIS) land use and general indicator bacteria (E. coli) measurements to elucidate water quality fecal pollution trends. Results demonstrate the feasibility of implementing standardized fecal source identification qPCR methods with established data acceptance metrics in a large-scale field study leading to new investigative leads suggesting that elevated E. coli levels may be linked to specific pollution sources and land use activities in the Tillamook Bay Watershed.
Collapse
Affiliation(s)
- Xiang Li
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Catherine A. Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Amity Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Pat Clinton
- U.S. Environmental Protection Agency, Office of Research and Development, Newport, OR, United States of America
| | - Jay R. Reichman
- U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR, United States of America
| | - York Johnson
- Oregon Department of Environmental Quality & Tillamook Estuaries Partnership, Garibaldi, Oregon, United States of America
| | - William Matthews
- Oregon Department of Agriculture, Salem, Oregon, United States of America
| | - Stephanie Bailey
- U.S. Environmental Protection Agency, Region 10 Manchester Laboratory, Port Orchard, WA, United States of America
| | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| |
Collapse
|
41
|
Vadde KK, McCarthy AJ, Rong R, Sekar R. Quantification of Microbial Source Tracking and Pathogenic Bacterial Markers in Water and Sediments of Tiaoxi River (Taihu Watershed). Front Microbiol 2019; 10:699. [PMID: 31105648 PMCID: PMC6492492 DOI: 10.3389/fmicb.2019.00699] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Taihu Lake is one of the largest freshwater lakes in China, serving as an important source of drinking water; >60% of source water to this lake is provided by the Tiaoxi River. This river faces serious fecal contamination issues, and therefore, a comprehensive investigation to identify the sources of fecal contamination was carried out and is presented here. The performance of existing universal (BacUni and GenBac), human (HF183-Taqman, HF183-SYBR, BacHum, and Hum2), swine (Pig-2-Bac), ruminant (BacCow), and avian (AV4143 and GFD) associated microbial source tracking (MST) markers was evaluated prior to their application in this region. The specificity and sensitivity results indicated that BacUni, HF183-TaqMan, Pig-2-Bac, and GFD assays are the most suitable in identifying human and animal fecal contamination. Therefore, these markers along with marker genes specific to selected bacterial pathogens were quantified in water and sediment samples of the Tiaoxi River, collected from 15 locations over three seasons during 2014 and 2015. Total/universal Bacteroidales markers were detected in all water and sediment samples (mean concentration 6.22 log10 gene copies/100 ml and 6.11 log10 gene copies/gram, respectively), however, the detection of host-associated MST markers varied. Human and avian markers were the most frequently detected in water samples (97 and 89%, respectively), whereas in sediment samples, only human-associated markers were detected more often (86%) than swine (64%) and avian (8.8%) markers. The results indicate that several locations in the Tiaoxi River are heavily polluted by fecal contamination and this correlated well with land use patterns. Among the five bacterial pathogens tested, Shigella spp. and Campylobacter jejuni were the most frequently detected pathogens in water (60% and 62%, respectively) and sediment samples (91% and 53%, respectively). Shiga toxin-producing Escherichia coli (STEC) and pathogenic Leptospira spp. were less frequently detected in water samples (55% and 33%, respectively) and sediment samples (51% and 13%, respectively), whereas E. coli O157:H7 was only detected in sediment samples (11%). Overall, the higher prevalence and concentrations of Campylobacter jejuni, Shigella spp., and STEC, along with the MST marker detection at a number of locations in the Tiaoxi River, indicates poor water quality and a significant human health risk associated with this watercourse. GRAPHICAL ABSTRACTTracking fecal contamination and pathogens in watersheds using molecular methods.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Alan J. McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
42
|
Obayomi O, Bernstein N, Edelstein M, Vonshak A, Ghazayarn L, Ben-Hur M, Tebbe CC, Gillor O. Importance of soil texture to the fate of pathogens introduced by irrigation with treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:886-896. [PMID: 30759614 DOI: 10.1016/j.scitotenv.2018.10.378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
World-wide water scarcity is urging the use of treated wastewater (TWW) for irrigation but this practice may have adverse effects on soil and crop contamination due to the introduction of potential microbial pathogens. The objective of this study was to evaluate the potential health risks caused by TWW irrigation of soils differing in their texture, i.e., soil particle fractions including sand, silt and clay. We predicted that the presence of fecal indicator bacteria (FIB) and pathogens would not be linked to TWW irrigation, yet their abundance would be favored by the smallest soil fraction (~2 nm, e.g., clay) as it provides the largest surface area. To test our hypotheses, culture dependent and independent techniques were used to monitor the presence, abundance and source of FIB and microbial pathogens (bacteria and protists) in water (TWW and potable water) and three irrigated soil types (clay, loam and loamy-sand) in a field study spanning two years. The results showed that FIB and pathogens' abundance were significantly different between water types, yet these differences did not carry to the irrigated soils. The abundance and presence of FIB and potential opportunistic or obligate human pathogens did not significantly differ (p > 0.05) between TWW and potable water irrigated soils. Moreover, the source of the FIB and potential pathogens could not be linked to irrigation with TWW. Yet, soil type significantly altered the potential pathogens' diversity (p < 0.05) and abundance (p < 0.05), and differences were affected by clay content, as predicted. The results gave no indication for potential adverse health effects associated with the application of TWW but demonstrated that clay has a particular stabilizing effect on the potential presence of microbial pathogens.
Collapse
Affiliation(s)
- Olabiyi Obayomi
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, Bet-Dagan 50-250, Israel
| | - Menahem Edelstein
- Department of Vegetable Crops, Agricultural Research Organization (ARO), Newe Ya'ar Research Center, P. O. Box 1021, Ramat Yishay 30095, Israel
| | - Ahuva Vonshak
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel
| | - Lusine Ghazayarn
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel
| | - Meni Ben-Hur
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, Bet-Dagan 50-250, Israel
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
43
|
Devane ML, Moriarty EM, Robson B, Lin S, Wood D, Webster-Brown J, Gilpin BJ. Relationships between chemical and microbial faecal source tracking markers in urban river water and sediments during and post-discharge of human sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1588-1604. [PMID: 30360285 DOI: 10.1016/j.scitotenv.2018.09.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
This study explores the relationships between faecal source tracking (FST) markers (quantitative Polymerase Chain Reaction (qPCR) markers and steroids), microbial indicators, the faecal ageing ratio of atypical colonies/total coliforms (AC/TC) and potential human pathogens (Giardia, Cryptosporidium and Campylobacter). Faecal source PCR markers tested were GenBac3, HumM3, HumBac (HF183-Bac708R); Bifidobacterium adolescentis, wildfowl and canine-associated markers. Sediment and water samples from the Avon River were collected during and post-discharge of untreated human sewage inputs, following a series of earthquakes, which severely damaged the Christchurch sewerage system. Significant, positive Spearman Ranks (rs) correlations were observed between human-associated qPCR markers and steroid FST markers and Escherichia coli and F-specific RNA bacteriophage (rs 0.57 to 0.84, p < 0.001) in water samples. These human source indicative FST markers demonstrated that they were also effective predictors of potentially pathogenic protozoa in water (rs 0.43-0.74, p ≤ 0.002), but correlated less well with Campylobacter. Human-associated qPCR and steroid markers showed significant, substantial agreement between the two FST methods (Cohen's kappa, 0.78, p = 0.023), suggesting that water managers could be confident in the results using either method under these contamination conditions. Low levels of fluorescent whitening agents (FWA) (mean 0.06 μg/L, range 0.01-0.40 μg/L) were observed in water throughout the study, but steroids and FWA appeared to be retained in river sediments, months after continuous sewage discharges had ceased. No relationship was observed between chemical FST markers in sediments and the overlying water, and few correlations in sediment between chemical FST markers and target microorganisms. The low values observed for the faecal ageing ratio, AC/TC in water, were significantly, negatively correlated with increasing pathogen detection. This study provides support for the use of the AC/TC ratio, and qPCR and steroid FST markers as indicators of health risks associated with the discharge of raw human sewage into a freshwater system.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand.
| | - Elaine M Moriarty
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Susan Lin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Jenny Webster-Brown
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| |
Collapse
|
44
|
Kū Hou Kuapā: Cultural Restoration Improves Water Budget and Water Quality Dynamics in Heʻeia Fishpond. SUSTAINABILITY 2018. [DOI: 10.3390/su11010161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Hawaiʻi, the transition from customary subsistence flooded taro agroecosystems, which regulate stream discharge rate trapping sediment and nutrients, to a plantation-style economy (c. the 1840s) led to nearshore sediment deposition—smothering coral reefs and destroying adjacent coastal fisheries and customary fishpond mariculture. To mitigate sediment transport, Rhizophora mangle was introduced in estuaries across Hawaiʻi (c. 1902) further altering fishpond ecosystems. Here, we examine the impact of cultural restoration between 2012–2018 at Heʻeia Fishpond, a 600–800-year-old walled fishpond. Fishpond water quality was assessed by calculating water exchange rates, residence times, salinity distribution, and abundance of microbial indicators prior to and after restoration. We hypothesized that R. mangle removal and concomitant reconstruction of sluice gates would increase mixing and decrease bacterial indicator abundance in the fishpond. We find that Heʻeia Fishpond’s physical environment is primarily tidally driven; wind forcing and river water volume flux are secondary drivers. Post-restoration, two sluice gates in the northeastern region account for >80% of relative water volume flux in the fishpond. Increase in water volume flux exchange rates during spring and neap tide and shorter minimum water residence time corresponded with the reconstruction of a partially obstructed 56 m gap together with the installation of an additional sluice gate in the fishpond wall. Lower mean salinities post-restoration suggests that increased freshwater water volume influx due to R. mangle removal. Spatial distribution of microbial bio-indicator species was inversely correlated with salinity. Average abundance of Enterococcus and Bacteroidales did not significantly change after restoration efforts, however, average abundance of a biomarker specific to birds nesting in the mangroves decreased significantly after restoration. This study demonstrates the positive impact of biocultural restoration regimes on water volume flux into and out of the fishpond, as well as water quality parameters, encouraging the prospect of revitalizing this and other culturally and economically significant sites for sustainable aquaculture in the future.
Collapse
|
45
|
Boehm AB, Graham KE, Jennings WC. Can We Swim Yet? Systematic Review, Meta-Analysis, and Risk Assessment of Aging Sewage in Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9634-9645. [PMID: 30080397 DOI: 10.1021/acs.est.8b01948] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study investigated the risk of gastrointestinal illness associated with swimming in surface waters with aged sewage contamination. First, a systematic review compiled 333 first order decay rate constants ( k) for human norovirus and its surrogates feline calicivirus and murine norovirus, Salmonella, Campylobacter, Escherichia coli O157:H7, Giardia, and Cryptosporidium, and human-associated indicators in surface water. A meta-analysis investigated effects of sunlight, temperature, and water matrix on k. There was a relatively large number of k for bacterial pathogens and some human-associated indicators ( n > 40), fewer for protozoans ( n = 14-22), and few for human norovirus and its Caliciviridae surrogates ( n = 2-4). Average k ranked: Campylobacter > human-associated markers > Salmonella> E. coli O157:H7 > norovirus and its surrogates > Giardia > Cryptosporidium. Compiled k values were used in a quantitative microbial risk assessment (QMRA) to simulate gastrointestinal illness risk associated with swimming in water with aged sewage contamination. The QMRA used human-associated fecal indicator HF183 as an index for the amount of sewage present and thereby provided insight into how risk relates to HF183 concentrations in surface water. Because exposure to norovirus contributed the majority of risk, and HF183 k is greater than norovirus k, the risk associated with exposure to a fixed HF183 concentration increases with the age of contamination. Swimmer exposure to sewage after it has aged ∼3 days results in median risks less than 30/1000. A risk-based water quality threshold for HF183 in surface waters that takes into account uncertainty in contamination age is derived to be 4100 copies/100 mL.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| | - Katherine E Graham
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| | - Wiley C Jennings
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
46
|
Li X, Peed L, Sivaganesan M, Kelty CA, Nietch C, Shanks OC. Evidence of Genetic Fecal Marker Interactions between Water Column and Periphyton in Artificial Streams. ACS OMEGA 2018; 3:10107-10113. [PMID: 31459140 PMCID: PMC6645356 DOI: 10.1021/acsomega.8b01785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/16/2018] [Indexed: 06/10/2023]
Abstract
Periphyton is a complex mixture of algae, microbes, inorganic sediment, and organic matter that is attached to submerged surfaces in most flowing freshwater systems. This natural community is known to absorb pollutants from the water column, resulting in improved water quality. However, the role of periphyton in the fate and transport of genetic fecal markers suspended in the water column remains unclear. As application of genetic-based methodologies continues to increase in freshwater settings, it is important to identify any interactions that could potentially confound water quality interpretations. A 16 week indoor mesocosm study was conducted to simultaneously measure genetic fecal markers in the water column and in the associated periphyton when subject to wastewater source loading. Treated wastewater effluent was pumped directly from a treatment facility adjacent to the experimental stream facility. Inflow and outflow surface water grabs were paired with the collection of periphyton samples taken from the mesocosm substrates on a weekly basis. Samples were analyzed with three genetic fecal indicator quantitative real-time polymerase chain reaction assays targeting Escherichia coli (EC23S857), enterococci (Entero1), and Bacteroidales (GenBac3), as well as, two human host-associated fecal pollution markers (HF183 and HumM2). In addition, periphyton dry mass was measured. During wastewater effluent loading, genetic markers were detected in periphyton at frequencies up to 100% (EC23S857, Entero1, and GenBac3), 59.4% (HF183), and 21.9% (HumM2) confirming sequestration from the water column. Mean net-flux shifts in water column inflow and outflow genetic indicator concentrations further supported interactions between the periphyton and water column. In addition, positive correlations were observed between periphyton dry mass and genetic marker concentrations ranging from r = 0.693 (Entero1) to r = 0.911 (GenBac3). Overall, findings support the notion that genetic markers suspended in the water column can be trapped by periphyton, further suggesting that the benthic environment in flowing freshwater systems may be an important factor to consider for water quality management with molecular methods.
Collapse
Affiliation(s)
- Xiang Li
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, United States
| | - Lindsay Peed
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Mano Sivaganesan
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Catherine A. Kelty
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Christopher Nietch
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Orin C. Shanks
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
47
|
Ahmed W, Hamilton KA, Lobos A, Hughes B, Staley C, Sadowsky MJ, Harwood VJ. Quantitative microbial risk assessment of microbial source tracking markers in recreational water contaminated with fresh untreated and secondary treated sewage. ENVIRONMENT INTERNATIONAL 2018; 117:243-249. [PMID: 29772486 DOI: 10.1016/j.envint.2018.05.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 05/09/2023]
Abstract
Microbial source tracking (MST) methods have provided the means to identify sewage contamination in recreational waters, but the risk associated with elevated levels of MST targets such as sewage-associated Bacteroides HF183 and other markers is uncertain. Quantitative microbial risk assessment (QMRA) modeling allows interpretation of MST data in the context of the risk of gastrointestinal (GI) illness caused by exposure to pathogens. In this study, five sewage-associated, quantitative PCR (qPCR) MST markers [Bacteroides HF183 (HF183), Methanobrevibacter smithii nifH (nifH), human adenovirus (HAdV), human polyomavirus (HPyV) and pepper mild mottle virus (PMMoV)] were evaluated to determine at what concentration these nucleic acid markers reflected a significant health risk from exposure to fresh untreated or secondary treated sewage in beach water. The QMRA models were evaluated for a target probability of illness of 36 GI illnesses/1000 swimming events (i.e., risk benchmark 0.036) for the reference pathogens norovirus (NoV) and human adenovirus 40/41 (HAdV 40/41). Sewage markers at several dilutions exceeded the risk benchmark for reference pathogens NoV and HAdV 40/41. HF183 concentrations 3.22 × 103 (for both NoV and HAdV 40/41) gene copies (GC)/100 mL of water contaminated with fresh untreated sewage represented risk >0.036. Similarly, HF183 concentrations 3.66 × 103 (for NoV and HAdV 40/41) GC/100 mL of water contaminated with secondary treated sewage represented risk >0.036. HAdV concentration as low as 4.11 × 101 GC/100 mL of water represented risk >0.036 when water was contaminated with secondary treated sewage. Results of this study provide a valuable context for water quality managers to evaluate human health risks associated with contamination from fresh sewage. The approach described here may also be useful in the future for evaluating health risks from contamination with aged or treated sewage or feces from other animal sources as more data are made available.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.
| | - Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Aldo Lobos
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Bridie Hughes
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA; Department of Soil, Water and Climate, 1991 Upper Buford Circle, Room 439, Saint Paul, MN 55108, USA
| | - Valerie J Harwood
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| |
Collapse
|
48
|
Napier MD, Haugland R, Poole C, Dufour AP, Stewart JR, Weber DJ, Varma M, Lavender JS, Wade TJ. Exposure to human-associated fecal indicators and self-reported illness among swimmers at recreational beaches: a cohort study. Environ Health 2017; 16:103. [PMID: 28969670 PMCID: PMC5625766 DOI: 10.1186/s12940-017-0308-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/18/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Fecal indicator bacteria used to assess illness risks in recreational waters (e.g., Escherichia coli, Enterococci) cannot discriminate among pollution sources. To address this limitation, human-associated Bacteroides markers have been proposed, but the risk of illness associated with the presence of these markers in recreational waters is unclear. Our objective was to estimate associations between human-associated Bacteroides markers in water and self-reported illness among swimmers at 6 U.S. beaches spanning 2003-2007. METHODS We used data from a prospectively-enrolled cohort of 12,060 swimmers surveyed about beach activities and water exposure on the day of their beach visit. Ten to twelve days later, participants reported gastroinestinal, diarrheal, and respiratory illnesses experienced since the visit. Daily water samples were analyzed for the presence of human-associated Bacteroides genetic markers: HF183, BsteriF1, BuniF2, HumM2. We used model-based standardization to estimate risk differences (RD) and 95% confidence intervals (CI). We assessed whether the presence of Bacteroides markers were modifiers of the association between general Enterococcus and illness among swimmers using interaction contrast. RESULTS Overall we observed inconsistent associations between the presence of Bacteroides markers and illness. There was a pattern of increased risks of gastrointestinal (RD = 1.9%; 95% CI: 0.1%, 3.7%), diarrheal (RD = 1.3%; 95% CI: -0.2%, 2.7%), and respiratory illnesses (RD = 1.1%; 95% CI: -0.2%, 2.5%) associated with BsteriF1. There was no evidence that Bacteroides markers acted as modifiers of Enterococcus and illness. Patterns were similar when stratified by water matrix. CONCLUSIONS Quantitative measures of fecal pollution using Bacteroides, rather than presence-absence indicators, may be necessary to accurately assess human risk specific to the presence of human fecal pollution.
Collapse
Affiliation(s)
- Melanie D. Napier
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Richard Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Charles Poole
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Alfred P. Dufour
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Jill R. Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599 USA
| | - David J. Weber
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Health Care, Bioinformatics Building, 130 Mason Farm Road, 2nd Floor, CB#7030, Chapel Hill, NC 27599 USA
| | - Manju Varma
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Jennifer S. Lavender
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Timothy J. Wade
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
49
|
Gibson KE, Lee JA, Jackson JM, Smith LN, Almeida G. Identification of Factors Affecting Fecal Pollution in Beaver Lake Reservoir. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1048-1056. [PMID: 28991970 DOI: 10.2134/jeq2017.03.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Standard methods for the evaluation of recreational water quality rely on generic bacterial indicators such as . However, does not provide enough information to determine fecal source or public health risk. The stsudy objective was to determine factors influencing the presence of and host-specific markers (HSM) from upstream to downstream in Beaver Lake Reservoir (BLR). From February 2014 to September 2015, 420 base flow and rain event samples were collected from seven sites-two sites from streams (White River [WR] and War Eagle Creek) draining into BLR and five sites from within BLR. Each sample was analyzed for and by quantitative polymerase chain reaction for HSM related to human, bovine, and poultry. The data indicate that overall levels of were significantly greater in the WR and significantly lower at the most downstream sampling location in BLR. is more likely present during spring (adjusted odds ratio [aOR] = 1.86), at the WR sampling site (aOR = 3.39), or during a rain event (aOR = 2.73). Moreover, the HSM HumM2 is more likely present (aOR = 1.99) when is present. These same factors were associated with concentrations >126 most probable number 100 mL (aOR = 2.76-12.48), except the poultry marker CL was more likely associated (aOR = 3.81) than HumM2. This study revealed that both seasonal and locational factors are important variables for fecal pollution in BLR. Moreover, these same factors may apply to fecal pollution in manmade reservoirs within similar types of watersheds across the United States, as well as internationally.
Collapse
|
50
|
Stachler E, Kelty C, Sivaganesan M, Li X, Bibby K, Shanks OC. Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9146-9154. [PMID: 28700235 PMCID: PMC7350147 DOI: 10.1021/acs.est.7b02703] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal-indicator bacteria are used; however, they cannot distinguish human fecal waste from other animal pollution sources. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based on initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against an animal fecal reference library, and crAssphage genetic markers were highly abundant in raw sewage and sewage-impacted water samples. In addition, CPQ_056 and CPQ_064 performance was compared to HF183/BacR287 and HumM2 assays in paired experiments. Findings confirm that viral crAssphage qPCR assays perform at a similar level to well-established bacterial human-associated fecal-source-identification approaches. These new viral-based assays could become important water quality management and research tools.
Collapse
Affiliation(s)
| | - Catherine Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio 45268 United States
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio 45268 United States
| | - Xiang Li
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio 45268 United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 United States
- .,
| | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio 45268 United States
- .,
| |
Collapse
|