1
|
Wang X, Li C, Huang S, Gao H, Li Y, Chen X, Huang L, Luo J, Zhang L, Zhou X. Pathogenic and Comparative Genomic Analysis of Ralstonia pseudosolanacearum Isolated from Casuarina. PLANT DISEASE 2024; 108:2809-2819. [PMID: 38687570 DOI: 10.1094/pdis-01-24-0118-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Casuarina equisetifolia is crucial in protecting coastal regions of China against typhoon attacks but has faced a substantial challenge due to wilt disease caused by pathogens of the Ralstonia solanacearum species complex (RSSC). Although the initial outbreak of Casuarina wilt in the 1970s was effectively controlled by disease-resistant C. equisetifolia varieties, the disease has recently re-emerged in coastal regions of Guangdong. In this study, we report the isolation, characterization, and comparative genomic analysis of 11 RSSC strains from diseased C. equisetifolia at various locations along the coast of Guangdong. Phylogenomic analysis showed that the strains were closely related and clustered with phylotype I strains previously isolated from peanuts. Single-gene-based analysis further suggested these strains could be derived from strains present in Guangdong since the 1980s, indicating a historical context to their current pathogenicity. Casuarina-isolated strains exhibited notably higher virulence against C. equisetifolia and peanuts than the representative RSSC strains GMI1000 and EP1, suggesting host-specific adaptations that possibly contributed to the recent outbreak. Comparative genomic analysis among RSSC strains revealed a largely conserved genome structure and high levels of conservation in gene clusters encoding extracellular polysaccharide biosynthesis, secretion systems, and quorum sensing regulatory systems. However, we also found a number of unique genes in the Casuarina-isolated strains that were absent in GMI1000 and EP1, and vice versa, pointing to potential genetic factors underpinning their differential virulence. These unique genes offer promising targets for future functional studies. Overall, our findings provide crucial insights into the RSSC pathogens causing Casuarina wilt in Guangdong, guiding future efforts in disease control and prevention.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chuhao Li
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Huang
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huagui Gao
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yonglin Li
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xuemei Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Liangzhou Huang
- Forestry Research Institute of Zhanjiang City, Zhanjiang 524037, Guangdong, China
| | - Jianhua Luo
- Forestry Research Institute of Zhanjiang City, Zhanjiang 524037, Guangdong, China
| | - LianHui Zhang
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
3
|
Bhatt S, Faridi N, Raj SMP, Agarwal A, Punetha M. Recent advances in immuno-based methods for the detection of Ralstonia solanacearum. J Microbiol Methods 2024; 217-218:106889. [PMID: 38211840 DOI: 10.1016/j.mimet.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Ralstonia solanacearum (RS) is a widely recognized phytopathogenic bacterium which is responsible for causing devastating losses in a wide range of economically significant crops. Timely and accurate detection of this pathogen is pivotal to implementing effective disease management strategies and preventing crop losses. This review provides a comprehensive overview of recent advances in immuno-based detection methods for RS. The review begins by introducing RS, highlighting its destructive potential and the need for point-of-care detection techniques. Subsequently, it explores traditional detection methods and their limitations, emphasizing the need for innovative approaches. The main focus of this review is on immuno-based detection methods and it discusses recent advancements in serological detection techniques. Furthermore, the review sheds light on the challenges and prospects of immuno-based detection of RS. It emphasizes the importance of developing rapid, field-deployable assays that can be used by farmers and researchers alike. In conclusion, this review provides valuable insights into the recent advances in immuno-based detection methods for RS.
Collapse
Affiliation(s)
- Shalini Bhatt
- P P Savani University, Surat 394125, Gujarat, India; Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India.
| | - Neha Faridi
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - S Merwyn P Raj
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - Ankur Agarwal
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | | |
Collapse
|
4
|
Gopalan-Nair R, Jardinaud MF, Legrand L, Lopez-Roques C, Bouchez O, Genin S, Guidot A. Transcriptomic profiling reveals host-specific evolutionary pathways promoting enhanced fitness in the plant pathogen Ralstonia pseudosolanacearum. Microb Genom 2023; 9:001142. [PMID: 38063495 PMCID: PMC10763508 DOI: 10.1099/mgen.0.001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
The impact of host diversity on the genotypic and phenotypic evolution of broad-spectrum pathogens is an open issue. Here, we used populations of the plant pathogen Ralstonia pseudosolanacearum that were experimentally evolved on five types of host plants, either belonging to different botanical families or differing in their susceptibility or resistance to the pathogen. We investigated whether changes in transcriptomic profiles, associated with or independent of genetic changes, could occur during the process of host adaptation, and whether transcriptomic reprogramming was dependent on host type. Genomic and transcriptomic variations were established for 31 evolved clones that showed better fitness in their experimental host than the ancestral clone. Few genomic polymorphisms were detected in these clones, but significant transcriptomic variations were observed, with a large number of differentially expressed genes (DEGs). In a very clear way, a group of genes belonging to the network of regulation of the bacterial virulence such as efpR, efpH or hrpB, among others, were deregulated in several independent evolutionary lineages and appeared to play a key role in the transcriptomic rewiring observed in evolved clones. A double hierarchical clustering based on the 400 top DEGs for each clone revealed 2 major patterns of gene deregulation that depend on host genotype, but not on host susceptibility or resistance to the pathogen. This work therefore highlights the existence of two major evolutionary paths that result in a significant reorganization of gene expression during adaptive evolution and underscore clusters of co-regulated genes associated with bacterial adaptation on different host lines.
Collapse
Affiliation(s)
| | | | - Ludovic Legrand
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
5
|
Liu Q, Li C, Zhang X, Ding M, Liao X, Yan J, Hu M, Yang L, Wang X, Liao L, Li P, Zhou X. PhcX Is a LqsR-family response regulator that contributes to Ralstonia solanacearum virulence and regulates multiple virulence factors. mBio 2023; 14:e0202823. [PMID: 37787568 PMCID: PMC10653808 DOI: 10.1128/mbio.02028-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE The bacterial wilt caused by the soil-borne phytopathogen Ralstonia solanacearum is one of the most destructive crop diseases. To achieve a successful infection, R. solanacearum has evolved an intricate regulatory network to orchestrate the expression of an arsenal of virulence factors and fine-tune the allocation of energy. However, despite the wealth of knowledge gained in the past decades, many players and connections are still missing from the network. The importance of our study lies in the identification of PhcX, a novel conserved global regulator with critical roles in modulating the virulence and metabolism of R. solanacearum. PhcX affects many well-characterized regulators and exhibits contrasting modes of regulation from the central regulator PhcA on a variety of virulence-associated traits and genes. Our findings add a valuable piece to the puzzle of how the pathogen regulates its proliferation and infection, which is critical for understanding its pathogenesis and developing disease control strategies.
Collapse
Affiliation(s)
- Qingmei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaohan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Mengfan Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jinli Yan
- School of Agricultural Science, Xichang University, Xichang, China
| | - Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Leilei Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaoqing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lisheng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Liao J, Li Z, Xiong D, Shen D, Wang L, Lin L, Shao X, Liao L, Li P, Zhang LQ, Wang HH, Qian G. Quorum quenching by a type IVA secretion system effector. THE ISME JOURNAL 2023; 17:1564-1577. [PMID: 37340074 PMCID: PMC10504344 DOI: 10.1038/s41396-023-01457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Proteobacteria primarily utilize acyl-homoserine lactones (AHLs) as quorum-sensing signals for intra-/interspecies communication to control pathogen infections. Enzymatic degradation of AHL represents the major quorum-quenching mechanism that has been developed as a promising approach to prevent bacterial infections. Here we identified a novel quorum-quenching mechanism revealed by an effector of the type IVA secretion system (T4ASS) in bacterial interspecies competition. We found that the soil antifungal bacterium Lysobacter enzymogenes OH11 (OH11) could use T4ASS to deliver the effector protein Le1288 into the cytoplasm of another soil microbiome bacterium Pseudomonas fluorescens 2P24 (2P24). Le1288 did not degrade AHL, whereas its delivery to strain 2P24 significantly impaired AHL production through binding to the AHL synthase PcoI. Therefore, we defined Le1288 as LqqE1 (Lysobacter quorum-quenching effector 1). Formation of the LqqE1-PcoI complex enabled LqqE1 to block the ability of PcoI to recognize/bind S-adenosy-L-methionine, a substrate required for AHL synthesis. This LqqE1-triggered interspecies quorum-quenching in bacteria seemed to be of key ecological significance, as it conferred strain OH11 a better competitive advantage in killing strain 2P24 via cell-to-cell contact. This novel quorum-quenching also appeared to be adopted by other T4ASS-production bacteria. Our findings suggest a novel quorum-quenching that occurred naturally in bacterial interspecies interactions within the soil microbiome by effector translocation. Finally, we presented two case studies showing the application potential of LqqE1 to block AHL signaling in the human pathogen Pseudomonas aeruginosa and the plant pathogen Ralstonia solanacearum.
Collapse
Affiliation(s)
- Jinxing Liao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Zihan Li
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Dan Xiong
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Limin Wang
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Xiaolong Shao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Lisheng Liao
- Integrative Microbiology Research Centre, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
7
|
Abstract
Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan;
| |
Collapse
|
8
|
Vailleau F, Genin S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:25-47. [PMID: 37506349 DOI: 10.1146/annurev-phyto-021622-104551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The group of strains constituting the Ralstonia solanacearum species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.
Collapse
Affiliation(s)
- Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| |
Collapse
|
9
|
Wang S, Hu M, Chen H, Li C, Xue Y, Song X, Qi Y, Liu F, Zhou X, Zhang LH, Zhou J. Pseudomonas forestsoilum sp. nov. and P. tohonis biocontrol bacterial wilt by quenching 3-hydroxypalmitic acid methyl ester. FRONTIERS IN PLANT SCIENCE 2023; 14:1193297. [PMID: 37457350 PMCID: PMC10349395 DOI: 10.3389/fpls.2023.1193297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum ranks the second top important bacterial plant disease worldwide. It is also the most important bacterial disease threatening the healthy development of Casuarina equisetifolia protection forest. 3-hydroxypalmitic acid methyl ester (3-OH PAME) functions as an important quorum sensing (QS) signal regulating the expression of virulence genes in R. solanacearum, and has been regarded as an ideal target for disease prevention and control. To screen native microorganisms capable of degrading 3-OH PAME, samples of C. equisetifolia branches and forest soil were collected and cultured in the medium containing 3-OH PAME as the sole carbon source. Bacteria with over 85% degradation rates of 3-OH PAME after 7-day incubation were further separated and purified. As a result, strain Q1-7 isolated from forest soil and strain Q4-3 isolated from C. equisetifolia branches were obtained and identified as Pseudomonas novel species Pseudomonas forestsoilum sp. nov. and P. tohonis, respectively, according to whole genome sequencing results. The degradation efficiencies of 3-OH PAME of strains Q1-7 and Q4-3 were 95.80% and 100.00% at 48 h, respectively. Both strains showed high esterase activities and inhibited R. solanacearum exopolysaccharide (EPS) and cellulase production. Application of strains Q1-7 and Q4-3 effectively protects C. equisetifolia, peanut and tomato plants from infection by R. solanacearum. Findings in this study provide potential resources for the prevention and control of bacterial wilt caused by R. solanacearum, as well as valuable materials for the identification of downstream quenching genes and the research and development of quenching enzymes for disease control.
Collapse
|
10
|
Liu JY, Zhang JF, Wu HL, Chen Z, Li SY, Li HM, Zhang CP, Zhou YQ, Lu CH. Proposal to classify Ralstonia solanacearum phylotype I strains as Ralstonia nicotianae sp. nov., and a genomic comparison between members of the genus Ralstonia. Front Microbiol 2023; 14:1135872. [PMID: 37032877 PMCID: PMC10073495 DOI: 10.3389/fmicb.2023.1135872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
A Gram-negative, aerobic, rod-shaped, motile bacterium with multi-flagella, strain RST, was isolated from bacterial wilt of tobacco in Yuxi city of Yunnan province, China. The strain contains the major fatty acids of C16:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The polar lipid profile of strain RST consists of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unidentified aminophospholipid. Strain RST contains ubiquinones Q-7 and Q-8. 16S rRNA gene sequence (1,407 bp) analysis showed that strain RST is closely related to members of the genus Ralstonia and shares the highest sequence identities with R. pseudosolanacearum LMG 9673T (99.50%), R. syzygii subsp. indonesiensis LMG 27703T (99.50%), R. solanacearum LMG 2299T (99.28%), and R. syzygii subsp. celebesensis LMG 27706T (99.21%). The 16S rRNA gene sequence identities between strain RST and other members of the genus Ralstonia were below 98.00%. Genome sequencing yielded a genome size of 5.61 Mbp and a G + C content of 67.1 mol%. The genomic comparison showed average nucleotide identity (ANIb) values between strain RST and R. pseudosolanacearum LMG 9673T, R. solanacearum LMG 2299T, and R. syzygii subsp. indonesiensis UQRS 627T of 95.23, 89.43, and 91.41%, respectively, and the corresponding digital DNA-DNA hybridization (dDDH) values (yielded by formula 2) were 66.20, 44.80, and 47.50%, respectively. In addition, strains belonging to R. solanacearum phylotype I shared both ANIb and dDDH with strain RST above the species cut-off values of 96 and 70%, respectively. The ANIb and dDDH values between the genome sequences from 12 strains of R. solanacearum phylotype III (Current R. pseudosolanacearum) and those of strain RST were below the species cut-off values. Based on these data, we concluded that strains of phylotype I, including RST, represent a novel species of the genus Ralstonia, for which the name Ralstonia nicotianae sp. nov. is proposed. The type strain of Ralstonia nicotianae sp. nov. is RST (=GDMCC 1.3533T = JCM 35814T).
Collapse
Affiliation(s)
- Jun-Ying Liu
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
- Institute of Biology and Environmental Engineering, Yuxi Normal University, Yuxi, China
| | - Jian-Feng Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Han-Lian Wu
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Zhen Chen
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Shu-Ying Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Hong-Mei Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Cui-Ping Zhang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Yuan-Qing Zhou
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Can-Hua Lu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
11
|
Li Z, Li X, Xia H. Roles of LuxR-family regulators in the biosynthesis of secondary metabolites in Actinobacteria. World J Microbiol Biotechnol 2022; 38:250. [DOI: 10.1007/s11274-022-03414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
|
12
|
Gupta DS, Kumar MS. The implications of quorum sensing inhibition in bacterial antibiotic resistance- with a special focus on aquaculture. J Microbiol Methods 2022; 203:106602. [PMID: 36270462 DOI: 10.1016/j.mimet.2022.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
The aquaculture industry is an expanding and demanding industry and due to an increase in urbanization, with rise in income of developing countries population, it offers to provide a sustainable food supply. However, the industry is facing a number of challenges, out of which few needs to be tackled immediately to maximise the productivity. An upcoming problem is the emergence of antibiotic resistant pathogens due to the unchecked use of antibiotics in aquaculture and human clinical practices. A wide variety of aquatic pathogens such as Edwardsiella, Vibrio, and Aeromonas spp. use quorum sensing (QS) systems, a regulatory process involving cell communication via signalling molecules for the collective function of pathogens which regulates the genes expression including virulent genes. Quorum sensing results in bacterial biofilms formation, which leads to their reduced susceptibility towards antimicrobial agents. The usage of quorum sensing inhibitors (QSIs) has been proposed as an attractive strategy to tackle this problem. Due to the modulation of virulence genes expression, QSIs can be used as novel and viable approach to overcome antibiotic resistance in aquaculture. In this review, we direct our attention to the quorum sensing phenomenon and its viability as a target pathway for tackling the ever-growing problem of antimicrobial resistance in aquaculture. This review also provides a concise compilation of the currently available QSIs and investigates possible natural sources for quorum quenching.
Collapse
Affiliation(s)
- Dhruv S Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'(S) NMIMS, Vile Parle (w), Mumbai 400056, India
| | - Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'(S) NMIMS, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
13
|
Rivera-Zuluaga K, Hiles R, Barua P, Caldwell D, Iyer-Pascuzzi AS. Getting to the root of Ralstonia invasion. Semin Cell Dev Biol 2022; 148-149:3-12. [PMID: 36526528 DOI: 10.1016/j.semcdb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022]
Abstract
Plant diseases caused by soilborne pathogens are a major limiting factor in crop production. Bacterial wilt disease, caused by soilborne bacteria in the Ralstonia solanacearum Species Complex (Ralstonia), results in significant crop loss throughout the world. Ralstonia invades root systems and colonizes plant xylem, changing plant physiology and ultimately causing plant wilting in susceptible varieties. Elucidating how Ralstonia invades and colonizes plants is central to developing strategies for crop protection. Here we review Ralstonia pathogenesis from root detection and attachment, early root colonization, xylem invasion and subsequent wilting. We focus primarily on studies in tomato from the last 5-10 years. Recent work has identified elegant mechanisms Ralstonia uses to adapt to the plant xylem, and has discovered new genes that function in Ralstonia fitness in planta. A picture is emerging of an amazingly versatile pathogen that uses multiple strategies to make its surrounding environment more hospitable and can adapt to new environments.
Collapse
|