1
|
Zhao W, Zhang B, Zheng S, Yan W, Yu X, Ye C. High temperatures promote antibiotic resistance genes conjugative transfer under residual chlorine: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136675. [PMID: 39603126 DOI: 10.1016/j.jhazmat.2024.136675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
The impact of residual chlorine on the dissemination of antibiotic resistance during the distribution and storage of water has become a critical concern. However, the influence of rising temperatures attributed to global warming on this process remains ambiguous, warranting further investigation. This study investigated the effects of different temperatures (17, 27, 37, and 42°C) on the conjugative transfer of antibiotic resistance genes (ARGs) under residual chlorine (0, 0.1, 0.3, and 0.5 mg/L). The results indicated that high temperatures significantly increased the conjugative transfer frequency of ARGs in intra-species under residual chlorine. Compared to 17°C, the transfer frequencies at 27°C, 37°C, and 42°C increased by 1.07-2.43, 1.20-4.80, and 1.24-2.82 times, respectively. The promoting effect of high temperatures was mainly due to the generation of reactive oxygen species, the triggered SOS response, and the formation of pilus channels. Transcriptomic analysis demonstrated that higher temperature stimulates the electron transport chain, thereby enhancing ATP production and facilitating the processes of conjugative, as confirmed by inhibitor validation. Additionally, rising temperatures similarly promoted the frequency of conjugative transfer in inter-species and communities under residual chlorine. These further highlighted the risk of antibiotic resistance spread in extreme and prolonged high-temperature events. The increased risk of antibiotic resistance in the process of drinking water transmission under the background of climate warming is emphasized.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Binghuang Zhang
- College of the Energy, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Wanli Yan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China.
| |
Collapse
|
2
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X, Edwinson A, Veerabadhran-Gurunathan S, Jawahir S, Calland JK, Mourkas E, Patel R, Wiens T, Decuir M, Boxrud D, Smith K, Parker CT, Farrugia G, Zhang Q, Sheppard SK, Grover M. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015. [PMID: 34462533 PMCID: PMC8405632 DOI: 10.1038/s42003-021-02554-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition. Stephanie Peters, Ben Pascoe, et al. use whole-genome sequencing and phenotypic analysis of clinical strains from patients to identify potential genetic factors involved in irritable bowel syndrome resulting from Campylobacter jejuni infection. Their data suggest that genes involved in the bacterial stress response and biosynthetic pathways may contribute toward irritable bowel syndrome, providing further insight into links between Campylobacter genotypes and risk of disease.
Collapse
Affiliation(s)
- Stephanie Peters
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Ximin Zeng
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam Edwinson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Wiens
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marijke Decuir
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Boxrud
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kirk Smith
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Craig T Parker
- United States Department of Agriculture, Albany, CA, USA
| | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
| | - Madhusudan Grover
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Ma L, Konkel ME, Lu X. Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms. Appl Environ Microbiol 2021; 87:e0065921. [PMID: 33990313 PMCID: PMC8276811 DOI: 10.1128/aem.00659-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) is a driving force for the dissemination of antimicrobial resistance (AMR) genes among Campylobacter jejuni organisms, a leading cause of foodborne gastroenteritis worldwide. Although HGT is well documented for C. jejuni planktonic cells, the role of C. jejuni biofilms in AMR spread that likely occurs in the environment is poorly understood. Here, we developed a cocultivation model to investigate the HGT of chromosomally encoded AMR genes between two C. jejuni F38011 AMR mutants in biofilms. Compared to planktonic cells, C. jejuni biofilms significantly promoted HGT (P < 0.05), resulting in an increase of HGT frequencies by up to 17.5-fold. Dynamic study revealed that HGT in biofilms increased at the early stage (i.e., from 24 h to 48 h) and remained stable during 48 to 72 h. Biofilms continuously released the HGT mutants into supernatant culture, indicating spontaneous dissemination of AMR to broader niches. DNase I treatment confirmed the role of natural transformation in genetic exchange. HGT was not associated with biofilm biomass, cell density, or bacterial metabolic activity, whereas the presence of extracellular DNA was negatively correlated with the altered HGT frequencies. HGT in biofilms also had a strain-to-strain variation. A synergistic HGT effect was observed between C. jejuni with different genomic backgrounds (i.e., C. jejuni NCTC 11168 chloramphenicol-resistant strain and F38011 kanamycin-resistant strain). C. jejuni performed HGT at the frequency of 10-7 in Escherichia coli-C. jejuni biofilms, while HGT was not detectable in Salmonella enterica-C. jejuni biofilms. IMPORTANCE Antimicrobial-resistant C. jejuni has been listed as a high priority of public health concern worldwide. To tackle the rapid evolution of AMR in C. jejuni, it is of great importance to understand the extent and characteristics of HGT in C. jejuni biofilms, which serve as the main survival strategy of this microbe in the farm-to-table continuum. In this study, we demonstrated that biofilms significantly enhanced HGT compared to the planktonic state (P < 0.05). Biofilm cultivation time and extracellular DNA (eDNA) amount were related to varied HGT frequencies. C. jejuni could spread AMR genes in both monospecies and dual-species biofilms, mimicking the survival mode of C. jejuni in food chains. These findings indicated that the risk and extent of AMR transmission among C. jejuni organisms have been underestimated, as previous HGT studies mainly focused on the planktonic state. Future AMR controlling measures can target biofilms and their main component eDNA.
Collapse
Affiliation(s)
- Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. Konkel
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| |
Collapse
|
5
|
Abstract
Thermophilic Campylobacter, in particular Campylobacter jejuni, C. coli and C. lari are the main relevant Campylobacter species for human infections. Due to their high capacity of genetic exchange by horizontal gene transfer (HGT), rapid adaptation to changing environmental and host conditions contribute to successful spreading and persistence of these foodborne pathogens. However, extensive HGT can exert dangerous side effects for the bacterium, such as the incorporation of gene fragments leading to disturbed gene functions. Here we discuss mechanisms of HGT, notably natural transformation, conjugation and bacteriophage transduction and limiting regulatory strategies of gene transfer. In particular, we summarize the current knowledge on how the DNA macromolecule is exchanged between single cells. Mechanisms to stimulate and to limit HGT obviously coevolved and maintained an optimal balance. Chromosomal rearrangements and incorporation of harmful mutations are risk factors for survival and can result in drastic loss of fitness. In Campylobacter, the restricted recognition and preferential uptake of free DNA from relatives are mediated by a short methylated DNA pattern and not by a classical DNA uptake sequence as found in other bacteria. A class two CRISPR-Cas system is present but also other DNases and restriction-modification systems appear to be important for Campylobacter genome integrity. Several lytic and integrated bacteriophages have been identified, which contribute to genome diversity. Furthermore, we focus on the impact of gene transfer on the spread of antibiotic resistance genes (resistome) and persistence factors. We discuss remaining open questions in the HGT field, supposed to be answered in the future by current technologies like whole-genome sequencing and single-cell approaches.
Collapse
Affiliation(s)
- Julia Carolin Golz
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| |
Collapse
|
6
|
Banta AB, Ward RD, Tran JS, Bacon EE, Peters JM. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi. ACTA ACUST UNITED AC 2020; 59:e130. [PMID: 33332762 PMCID: PMC7809906 DOI: 10.1002/cpmc.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Facile bacterial genome sequencing has unlocked a veritable treasure trove of novel genes awaiting functional exploration. To make the most of this opportunity requires powerful genetic tools that can target all genes in diverse bacteria. CRISPR interference (CRISPRi) is a programmable gene‐knockdown tool that uses an RNA‐protein complex comprised of a single guide RNA (sgRNA) and a catalytically inactive Cas9 nuclease (dCas9) to sterically block transcription of target genes. We previously developed a suite of modular CRISPRi systems that transfer by conjugation and integrate into the genomes of diverse bacteria, which we call Mobile‐CRISPRi. Here, we provide detailed protocols for the modification and transfer of Mobile‐CRISPRi vectors for the purpose of knocking down target genes in bacteria of interest. We further discuss strategies for optimizing Mobile‐CRISPRi knockdown, transfer, and integration. We cover the following basic protocols: sgRNA design, cloning new sgRNA spacers into Mobile‐CRISPRi vectors, Tn7 transfer of Mobile‐CRISPRi to Gram‐negative bacteria, and ICEBs1 transfer of Mobile‐CRISPRi to Bacillales. © 2020 The Authors. Basic Protocol 1: sgRNA design Basic Protocol 2: Cloning of new sgRNA spacers into Mobile‐CRISPRi vectors Basic Protocol 3: Tn7 transfer of Mobile‐CRISPRi to Gram‐negative bacteria Basic Protocol 4: ICEBs1 transfer of Mobile‐CRISPRi to Bacillales Support Protocol 1: Quantification of CRISPRi repression using fluorescent reporters Support Protocol 2: Testing for gene essentiality using CRISPRi spot assays on plates Support Protocol 3: Transformation of E. coli by electroporation Support Protocol 4: Transformation of CaCl2‐competent E. coli
Collapse
Affiliation(s)
- Amy B Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin.,Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan D Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer S Tran
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emily E Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin.,Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
7
|
Samarth DP, Kwon YM. Horizontal genetic exchange of chromosomally encoded markers between Campylobacter jejuni cells. PLoS One 2020; 15:e0241058. [PMID: 33104745 PMCID: PMC7588059 DOI: 10.1371/journal.pone.0241058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Many epidemiological studies provide us with the evidence of horizontal gene transfer (HGT) contributing to the bacterial genomic diversity that benefits the bacterial populations with increased ability to adapt to the dynamic environments. Campylobacter jejuni, a major cause of acute enteritis in the U.S., often linked with severe post-infection neuropathies, has been reported to exhibit a non-clonal population structure and comparatively higher strain-level genetic variation. In this study, we provide evidence of the HGT of chromosomally encoded genetic markers between C. jejuni cells in the biphasic MH medium. We used two C. jejuni NCTC-11168 mutants harbouring distinct antibiotic-resistance genes [chloramphenicol (Cm) and kanamycin (Km)] present at two different neutral genomic loci. Cultures of both marker strains were mixed together and incubated for 5 hrs, then plated on MH agar plates supplemented with both antibiotics. The recombinant cells with double antibiotic markers were generated at the frequency of 0.02811 ± 0.0035% of the parental strains. PCR assays using locus-specific primers confirmed that transfer of the antibiotic-resistance genes was through homologous recombination. Also, the addition of chicken cecal content increased the recombination efficiency approximately up to 10-fold as compared to the biphasic MH medium (control) at P < 0.05. Furthermore, treating the co-culture with DNase I decreased the available DNA, which in turn significantly reduced recombination efficiency by 99.92% (P < 0.05). We used the cell-free supernatant of 16 hrs-culture of Wild-type C. jejuni as a template for PCR and found DNA sequences from six different genomic regions were easily amplified, indicating the presence of released chromosomal DNA in the culture supernatant. Our findings suggest that HGT in C. jejuni is facilitated in the chicken gut environment contributing to in vivo genomic diversity. Additionally, C. jejuni might have an active mechanism to release its chromosomal DNA into the extracellular environment, further expediting HGT in C. jejuni populations.
Collapse
Affiliation(s)
- Deepti Pranay Samarth
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
8
|
Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards. Sci Rep 2020; 10:12514. [PMID: 32719325 PMCID: PMC7385129 DOI: 10.1038/s41598-020-69155-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
Megaplasmids in Campylobacter spp. likely play important roles in antibiotic resistance, virulence, and horizontal gene transfer. In this study, megaplasmids pCJDM202 (119 kb) and pCJDM67L (116 kb) from C. jejuni strains WP2-202 and OD2-67, respectively, were sequenced and characterized. These megaplasmids contained genes for tetracycline resistance [tet(O)], the Type IV secretion system, conjugative transfer and the Type VI secretion system (T6SS). The T6SS genes in Campylobacter plasmids encoded genes and proteins that were similar to those identified in Campylobacter chromosomal DNA. When the megaplasmid pCJDM202 from C. jejuni WP2-202 was transferred via conjugation to C. jejuni NCTC11168 Nal+, transconconjugants acquired tetracycline resistance and enhanced cytotoxicity towards red blood cells. A T6SS mutant of strain WP2-202 was generated and designated Δhcp3; the mutant was significantly impaired in its ability to lyse red blood cells and survive in defibrinated blood. The cytotoxicity of Campylobacter strains towards the human embryonic kidney cell line HEK 293 was not impacted by the T6SS. In summary, the T6SS encoded by Campylobacter megaplasmids mediates lysis of RBCs and likely contributes to survival on retail meats where blood cells are abundant.
Collapse
Affiliation(s)
- Daya Marasini
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | - Anand B Karki
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | - John M Bryant
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, Tulsa, OK, USA
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
9
|
Cuevas-Ferrando E, Guirado P, Miró E, Iglesias-Torrens Y, Navarro F, Alioto TS, Gómez-Garrido J, Madrid C, Balsalobre C. Tetracycline resistance transmission in Campylobacter is promoted at temperatures resembling the avian reservoir. Vet Microbiol 2020; 244:108652. [PMID: 32402330 DOI: 10.1016/j.vetmic.2020.108652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 11/26/2022]
Abstract
Campylobacter is the causal agent of campylobacteriosis in humans, a self-limiting gastroenteritis. Campylobacteriosis is a zoonosis, commonly transmitted from contaminated chicken meat by either direct consumption or cross contamination during food manipulation. Presence of plasmids encoding for resistance to antibiotics such as tetracycline is common among Campylobacter isolates. In this report, we studied the effect of the temperature in the conjugation frequency of several tet(O) carrying plasmids, providing tetracycline resistance to the recipient cells. The conjugation frequency from donor cells carrying three previously characterized plasmids (pCjA13, pCjA9 and pTet) and from two clinical isolates was determined. Two temperatures, 37 and 42 °C, mimicking the conditions encountered by C. jejuni in the human and broiler chicken gastrointestinal tracts, respectively, were assessed. Our results clearly indicate that the conjugation process is promoted at high temperature. Accordingly, the transcriptional expression of some putative conjugative apparatus genes is thermoregulated, being induced at 42 °C. The two plasmids present in the clinical isolates were sequenced and assembled. Both plasmids are highly related among them and to the pTet plasmid. The high identity of the genes putatively involved in the conjugation process among the plasmids is in agreement with the similar behavior regarding the temperature dependency of the conjugative process. This report suggest that conjugation of plasmids carrying antibiotic resistance genes occurs preferentially at temperatures that resemble the gastrointestinal tract of birds, the main reservoir of C. jejuni.
Collapse
Affiliation(s)
- E Cuevas-Ferrando
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain
| | - P Guirado
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain
| | - E Miró
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Y Iglesias-Torrens
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F Navarro
- Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - T S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - J Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - C Madrid
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain.
| | - C Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona Spain.
| |
Collapse
|
10
|
Abdelhamed H, Ramachandran R, Ozdemir O, Waldbieser G, Lawrence ML. Characterization of a Novel Conjugative Plasmid in Edwardsiella piscicida Strain MS-18-199. Front Cell Infect Microbiol 2019; 9:404. [PMID: 31828047 PMCID: PMC6890552 DOI: 10.3389/fcimb.2019.00404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Edwardsiella piscicida is a pathogenic bacterium responsible for significant losses in important wild and cultured fish species. E. piscicida strain MS-18-199 recovered from a diseased hybrid catfish from East Mississippi and showed resistance to florfenicol, chloramphenicol, oxytetracycline, doxycycline, erythromycin, tetracycline, azitromycin, spectinomycin, sulfonamide, and bacitracin. To explore the mechanisms of resistance in E. piscicida strain MS-18-199, genomic DNA was extracted and subjected to whole genome sequencing (WGS) using a combination of long (Oxford Nanopore) and short (Illumina) reads. The genome of strain MS-18-199 revealed a novel plasmid named pEPMS-18199. The 117,448 bp plasmid contains several antimicrobial resistance (AMR) elements/genes, including florfenicol efflux pump (floR), tetracycline efflux pump (tetA), tetracycline repressor protein (tetR), sulfonamide resistance (sul2), aminoglycoside O-phosphotransferase aph(6)-Id (strB), and aminoglycoside O-phosphotransferase aph(3)-Ib (strA). Two genes, arsA and arsD, that encode protein components related to transport/resistance to arsenic were also found in pEPMS-18199. In addition, pEPMS-18199 carried twelve conjugative transfer genes (tra), eight transposases and insertion elements, two plasmid stability proteins, two replication proteins, and three partitioning proteins (par system). Results from mobilization and stability experiments revealed that pEPMS-18199 is highly stable in the host cell and could be transferred to Escherichia coli and Edwardsiella ictaluri by conjugation. To our knowledge, this is the first detection of a multidrug resistance (MDR) conjugative plasmid in E. piscicida in the United States. Careful tracking of this plasmid in the aquaculture system is warranted. Knowledge regarding the molecular mechanisms of AMR in aquaculture is important for antimicrobial stewardship.
Collapse
Affiliation(s)
- Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Reshma Ramachandran
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Ozan Ozdemir
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Geoffrey Waldbieser
- Warmwater Aquaculture Research Unit, Thad Cochran National Warmwater Aquaculture Center (USDA-ARS), Stoneville, MS, United States
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
11
|
Soltysiak MPM, Meaney RS, Hamadache S, Janakirama P, Edgell DR, Karas BJ. Trans-Kingdom Conjugation within Solid Media from Escherichia coli to Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:E5212. [PMID: 31640164 PMCID: PMC6829330 DOI: 10.3390/ijms20205212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022] Open
Abstract
Conjugation is a bacterial mechanism for DNA transfer from a donor cell to a wide range of recipients, including both prokaryotic and eukaryotic cells. In contrast to conventional DNA delivery techniques, such as electroporation and chemical transformation, conjugation eliminates the need for DNA extraction, thereby preventing DNA damage during isolation. While most established conjugation protocols allow for DNA transfer in liquid media or on a solid surface, we developed a procedure for conjugation within solid media. Such a protocol may expand conjugation as a tool for DNA transfer to species that require semi-solid or solid media for growth. Conjugation within solid media could also provide a more stable microenvironment in which the conjugative pilus can establish and maintain contact with recipient cells for the successful delivery of plasmid DNA. Furthermore, transfer in solid media may enhance the ability to transfer plasmids and chromosomes greater than 100 kbp. Using our optimized method, plasmids of varying sizes were tested for transfer from Escherichia coli to Saccharomyces cerevisiae. We demonstrated that there was no significant change in conjugation frequency when plasmid size increased from 56.5 to 138.6 kbp in length. Finally, we established an efficient PCR-based synthesis protocol to generate custom conjugative plasmids.
Collapse
Affiliation(s)
| | - Rebecca S Meaney
- Designer Microbes Inc., London, ON N5Z 3N2, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Samir Hamadache
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | | | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bogumil J Karas
- Designer Microbes Inc., London, ON N5Z 3N2, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
12
|
Rozwandowicz M, Brouwer MSM, Mughini-Gras L, Wagenaar JA, Gonzalez-Zorn B, Mevius DJ, Hordijk J. Successful Host Adaptation of IncK2 Plasmids. Front Microbiol 2019; 10:2384. [PMID: 31681238 PMCID: PMC6803427 DOI: 10.3389/fmicb.2019.02384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
The IncK plasmid group can be divided into two separate lineages named IncK1 and IncK2. IncK2 is found predominantly in poultry while IncK1 was reported in various mammals, including animals and humans. The physiological basis of this distinction is not known. In this manuscript we examined fitness cost of IncK1 and IncK2 plasmids at 37 and 42°C, which resembles mammalian and chicken body temperatures, respectively. We analyzed conjugation frequency, plasmid copy number and plasmid fitness cost in direct competition. Additionally, we measured levels of σ-32 in Escherichia coli carrying either wild type or conjugation-deficient IncK plasmids. The results show that IncK2 plasmids have a higher conjugation frequency and lower copy number at 42°C compared to IncK1. While the overall fitness cost to the host bacterium of IncK2 plasmids was higher than that of IncK1, it was not affected by the temperature while the fitness cost of IncK1 was shown to increase at 42°C compared to 37°C. These differences correlate with an increased expression of σ-32, a regulator of heat-shock protein expression, in E. coli with IncK2 compared to cells containing IncK1. This effect was not seen in cells containing conjugation deficient plasmids. Therefore, it is hypothesized that the assembly of the functional T4S may lead to these increased levels of σ–32. Increased activation of CpxR at 42°C may explain why IncK2 plasmids, and not IncK1, are predominantly found in chicken isolates.
Collapse
Affiliation(s)
- Marta Rozwandowicz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment, Bilthoven, Netherlands.,Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit, Department of Animal Health and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - Dik J Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Joost Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Shabbir MA, Wu Q, Shabbir MZ, Sajid A, Ahmed S, Sattar A, Tang Y, Li J, Maan MK, Hao H, Yuan Z. The CRISPR-cas system promotes antimicrobial resistance in Campylobacter jejuni. Future Microbiol 2018; 13:1757-1774. [PMID: 30526040 DOI: 10.2217/fmb-2018-0234] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
AIM The purpose of current study is to find out relationship between cas9 gene and antimicrobial resistance in Campylobacter jejuni NCTC11168. MATERIALS & METHODS The involvement of the cas9 gene in antimicrobial resistance of C. jejuni was determined by assessment of minimum inhibitory concentration, clustered regularly interspaced short palindromic repeats (CRISPR)-cas gene expression in standard strains, in vitro resistance development and transcriptome analysis of a cas9 deletion mutant and wild strains. RESULTS Increased expression of CRISPR-related genes was observed in standard strains. We also observed that Δcas9 mutant strain is more sensitive to antibiotics than its wild strain. Transcriptome analysis revealed that cas9 gene regulate several genes to promote antimicrobial resistance in C. jejuni. CONCLUSION CRISPR-cas system plays role in the enhancement of antimicrobial resistance in C. jejuni.
Collapse
Affiliation(s)
- Muhammad Ab Shabbir
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qin Wu
- National Reference Laboratory of Veterinary Drug Residues & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Z Shabbir
- Quality Operation Laboratory at University of Veterinary & Animal Sciences, Lahore, 54600, Pakistan
| | - Abdul Sajid
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China.,College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Saeed Ahmed
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Adeel Sattar
- Department of Pharmacology & Toxicology, University of Veterinary & Animal Sciences, Lahore, 54600, Pakistan
| | - Yanping Tang
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jun Li
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad K Maan
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haihong Hao
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China.,National Reference Laboratory of Veterinary Drug Residues & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zonghui Yuan
- China MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, PR China.,National Reference Laboratory of Veterinary Drug Residues & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
14
|
A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni. Appl Environ Microbiol 2018; 84:AEM.02004-18. [PMID: 30242003 DOI: 10.1128/aem.02004-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
Conjugation is an important mechanism for horizontal gene transfer in Campylobacter jejuni, the leading cause of human bacterial gastroenteritis in developed countries. However, to date, the factors that significantly influence conjugation efficiency in Campylobacter spp. are still largely unknown. Given that multiple recombinant loci could independently occur within one recipient cell during natural transformation, the genetic materials from a high-frequency conjugation (HFC) C. jejuni strain may be cotransformed with a selection marker into a low-frequency conjugation (LFC) recipient strain, creating new HFC transformants suitable for the identification of conjugation factors using a comparative genomics approach. To test this, an erythromycin resistance selection marker was created in an HFC C. jejuni strain; subsequently, the DNA of this strain was naturally transformed into NCTC 11168, an LFC C. jejuni strain, leading to the isolation of NCTC 11168-derived HFC transformants. Whole-genome sequencing analysis and subsequent site-directed mutagenesis identified Cj1051c, a putative restriction-modification enzyme (aka CjeI) that could drastically reduce the conjugation efficiency of NCTC 11168 (>5,000-fold). Chromosomal complementation of three diverse HFC C. jejuni strains with CjeI also led to a dramatic reduction in conjugation efficiency (∼1,000-fold). The purified recombinant CjeI could effectively digest the Escherichia coli-derived shuttle vector pRY107. The endonuclease activity of CjeI was abolished upon short heat shock treatment at 50°C, which is consistent with our previous observation that heat shock enhanced conjugation efficiency in C. jejuni Together, in this study, we successfully developed and utilized a unique cotransformation strategy to identify a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni IMPORTANCE Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. Campylobacter jejuni, the leading foodborne bacterial organism, displays significant strain diversity due to horizontal gene transfer; however, the molecular components influencing conjugation efficiency in C. jejuni are still largely unknown. In this study, we developed a cotransformation strategy for comparative genomics analysis and successfully identified a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni The new cotransformation strategy developed in this study is also expected to be broadly applied in other naturally competent bacteria for functional comparative genomics research.
Collapse
|
15
|
Jaworski P, Donczew R, Mielke T, Weigel C, Stingl K, Zawilak-Pawlik A. Structure and Function of the Campylobacter jejuni Chromosome Replication Origin. Front Microbiol 2018; 9:1533. [PMID: 30050516 PMCID: PMC6052347 DOI: 10.3389/fmicb.2018.01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 01/23/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of foodborne infections worldwide. However, our understanding of its cell cycle is poor. We identified the probable C. jejuni origin of replication (oriC) - a key element for initiation of chromosome replication, which is also important for chromosome structure, maintenance and dynamics. The herein characterized C. jejuni oriC is monopartite and contains (i) the DnaA box cluster, (ii) the DnaA-dependent DNA unwinding element (DUE) and (iii) binding sites for regulatory proteins. The cluster of five DnaA boxes and the DUE were found in the dnaA-dnaN intergenic region. Binding of DnaA to this cluster of DnaA-boxes enabled unwinding of the DUE in vitro. However, it was not sufficient to sustain replication of minichromosomes, unless the cluster was extended by additional DnaA boxes located in the 3' end of dnaA. This suggests, that C. jejuni oriC requires these boxes to initiate or to regulate replication of its chromosome. However, further detailed mutagenesis is required to confirm the role of these two boxes in initiation of C. jejuni chromosome replication and thus to confirm partial localization of C. jejuni oriC within a coding region, which has not been reported thus far for any bacterial oriC. In vitro DUE unwinding by DnaA was inhibited by Cj1509, an orphan response regulator and a homolog of HP1021, that has been previously shown to inhibit replication in Helicobacter pylori. Thus, Cj1509 might play a similar role as a regulator of C. jejuni chromosome replication. This is the first systematic analysis of chromosome replication initiation in C. jejuni, and we expect that these studies will provide a basis for future research examining the structure and dynamics of the C. jejuni chromosome, which will be crucial for understanding the pathogens' life cycle and virulence.
Collapse
Affiliation(s)
- Pawel Jaworski
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafal Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christoph Weigel
- Department of Life Science Engineering, Fachbereich 2, HTW Berlin, Berlin, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
16
|
Abstract
Iron acquisition systems are critical for bacterial pathogenesis and thus have been proposed as attractive targets for iron-dependent pathogen control. Of these systems, high-affinity iron acquisition mediated by siderophore, a small iron chelator, is the most efficient iron-scavenging mechanism in gram-negative bacteria. Campylobacter does not produce any siderophores but has the ability to utilize exogenous siderophores. In particular, the enterobactin (Ent)-mediated iron scavenging is tightly linked to Campylobacter pathogenesis. To date, Ent, a triscatecholate with the highest known affinity for ferric iron, is a well-characterized siderophore used by Campylobacter for iron acquisition during in vivo infection. Here, we describe the key methods used to characterize Ent-mediated high affinity iron acquisition system in Campylobacter jejuni.
Collapse
Affiliation(s)
- Ximin Zeng
- Department of Animal Science, University of Tennessee, 2506 River Drive, Knoxville, TN, 37996-4574, USA
| | - Jun Lin
- Department of Animal Science, University of Tennessee, 2506 River Drive, Knoxville, TN, 37996-4574, USA.
| |
Collapse
|
17
|
Horizontal Dissemination of Antimicrobial Resistance Determinants in Multiple Salmonella Serotypes following Isolation from the Commercial Swine Operation Environment after Manure Application. Appl Environ Microbiol 2017; 83:AEM.01503-17. [PMID: 28802274 DOI: 10.1128/aem.01503-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to characterize the plasmids carrying antimicrobial resistance (AMR) determinants in multiple Salmonella serotypes recovered from the commercial swine farm environment after manure application on land. Manure and soil samples were collected on day 0 before and after manure application on six farms in North Carolina, and sequential soil samples were recollected on days 7, 14, and 21 from the same plots. All environmental samples were processed for Salmonella, and their plasmid contents were further characterized. A total of 14 isolates including Salmonella enterica serotypes Johannesburg (n = 2), Ohio (n = 2), Rissen (n = 1), Typhimurium var5- (n = 5), Worthington (n = 3), and 4,12:i:- (n = 1), representing different farms, were selected for plasmid analysis. Antimicrobial susceptibility testing was done by broth microdilution against a panel of 14 antimicrobials on the 14 confirmed transconjugants after conjugation assays. The plasmids were isolated by modified alkaline lysis, and PCRs were performed on purified plasmid DNA to identify the AMR determinants and the plasmid replicon types. The plasmids were sequenced for further analysis and to compare profiles and create phylogenetic trees. A class 1 integron with an ANT(2″)-Ia-aadA2 cassette was detected in the 50-kb IncN plasmids identified in S Worthington isolates. We identified 100-kb and 90-kb IncI1 plasmids in S Johannesburg and S Rissen isolates carrying the blaCMY-2 and tet(A) genes, respectively. An identical 95-kb IncF plasmid was widely disseminated among the different serotypes and across different farms. Our study provides evidence on the importance of horizontal dissemination of resistance determinants through plasmids of multiple Salmonella serotypes distributed across commercial swine farms after manure application.IMPORTANCE The horizontal gene transfer of antimicrobial resistance (AMR) determinants located on plasmids is considered to be the main reason for the rapid proliferation and spread of drug resistance. The deposition of manure generated in swine production systems into the environment is identified as a potential source of AMR dissemination. In this study, AMR gene-carrying plasmids were detected in multiple Salmonella serotypes across different commercial swine farms in North Carolina. The plasmid profiles were characterized based on Salmonella serotype donors and incompatibility (Inc) groups. We found that different Inc plasmids showed evidence of AMR gene transfer in multiple Salmonella serotypes. We detected an identical 95-kb plasmid that was widely distributed across swine farms in North Carolina. These conjugable resistance plasmids were able to persist on land after swine manure application. Our study provides strong evidence of AMR determinant dissemination present in plasmids of multiple Salmonella serotypes in the environment after manure application.
Collapse
|
18
|
Kirk JA, Fagan RP. Heat shock increases conjugation efficiency in Clostridium difficile. Anaerobe 2016; 42:1-5. [PMID: 27377776 PMCID: PMC5154368 DOI: 10.1016/j.anaerobe.2016.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2016] [Revised: 06/15/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022]
Abstract
Clostridium difficile infection has increased in incidence and severity over the past decade, and poses a unique threat to human health. However, genetic manipulation of C. difficile remains in its infancy and the bacterium remains relatively poorly characterised. Low-efficiency conjugation is currently the only available method for transfer of plasmid DNA into C. difficile. This is practically limiting and has slowed progress in understanding this important pathogen. Conjugation efficiency varies widely between strains, with important clinically relevant strains such as R20291 being particularly refractory to plasmid transfer. Here we present an optimised conjugation method in which the recipient C. difficile is heat treated prior to conjugation. This significantly improves conjugation efficiency in all C. difficile strains tested including R20291. Conjugation efficiency was also affected by the choice of media on which conjugations were performed, with standard BHI media giving most transconjugant recovery. Using our optimised method greatly increased the ease with which the chromosome of R20291 could be precisely manipulated by homologous recombination. Our method improves on current conjugation protocols and will help speed genetic manipulation of strains otherwise difficult to work with. Conjugation efficiency in Clostridium difficile can be increased through heat treatment of recipient C. difficile. Conjugation efficiency using an optimised heat treatment conjugation protocol is affected by media choice. Conjugation efficiency is improved when a heat treatment step is included, using a plasmid with a pBP1 replicon. Heat treatment improves conjugation efficiency in all C. difficile strains tested.
Collapse
Affiliation(s)
- Joseph A Kirk
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Robert P Fagan
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|