1
|
Herviou P, Balvay A, Bellet D, Bobet S, Maudet C, Staub J, Alric M, Leblond-Bourget N, Delorme C, Rabot S, Denis S, Payot S. Transfer of the Integrative and Conjugative Element ICE St3 of Streptococcus thermophilus in Physiological Conditions Mimicking the Human Digestive Ecosystem. Microbiol Spectr 2023; 11:e0466722. [PMID: 36995244 PMCID: PMC10269554 DOI: 10.1128/spectrum.04667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/12/2023] [Indexed: 03/31/2023] Open
Abstract
Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.
Collapse
Affiliation(s)
- Pauline Herviou
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Aurélie Balvay
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Deborah Bellet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sophie Bobet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Claire Maudet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Johan Staub
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Monique Alric
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | | | - Christine Delorme
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvain Denis
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| |
Collapse
|
2
|
A Novel Mobilizing Tool Based on the Conjugative Transfer System of the IncM Plasmid pCTX-M3. Appl Environ Microbiol 2020; 86:AEM.01205-20. [PMID: 32591385 PMCID: PMC7440800 DOI: 10.1128/aem.01205-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are the main players in horizontal gene transfer in Gram-negative bacteria. DNA transfer tools constructed on the basis of such plasmids enable gene manipulation even in strains of clinical or environmental origin, which are often difficult to work with. The conjugation system of the IncM plasmid pCTX-M3 isolated from a clinical strain of Citrobacter freundii has been shown to enable efficient mobilization of oriT pCTX-M3-bearing plasmids into a broad range of hosts comprising Alpha-, Beta-, and Gammaproteobacteria We constructed a helper plasmid, pMOBS, mediating such mobilization with an efficiency up to 1,000-fold higher than that achieved with native pCTX-M3. We also constructed Escherichia coli donor strains with chromosome-integrated conjugative transfer genes: S14 and S15, devoid of one putative regulator (orf35) of the pCTX-M3 tra genes, and S25 and S26, devoid of two putative regulators (orf35 and orf36) of the pCTX-M3 tra genes. Strains S14 and S15 and strains S25 and S26 are, respectively, up to 100 and 1,000 times more efficient in mobilization than pCTX-M3. Moreover, they also enable plasmid mobilization into the Gram-positive bacteria Bacillus subtilis and Lactococcus lactis Additionally, the constructed E. coli strains carried no antibiotic resistance genes that are present in pCTX-M3 to facilitate manipulations with antibiotic-resistant recipient strains, such as those of clinical origin. To demonstrate possible application of the constructed tool, an antibacterial conjugation-based system was designed. Strain S26 was used for introduction of a mobilizable plasmid coding for a toxin, resulting in the elimination of over 90% of recipient E. coli cells.IMPORTANCE The conjugation of donor and recipient bacterial cells resulting in conjugative transfer of mobilizable plasmids is the preferred method enabling the introduction of DNA into strains for which other transfer methods are difficult to establish (e.g., clinical strains). We have constructed E. coli strains carrying the conjugation system of the IncM plasmid pCTX-M3 integrated into the chromosome. To increase the mobilization efficiency up to 1,000-fold, two putative regulators of this system, orf35 and orf36, were disabled. The constructed strains broaden the repertoire of tools for the introduction of DNA into the Gram-negative Alpha-, Beta-, and Gammaproteobacteria, as well as into Gram-positive bacteria such as Bacillus subtilis and Lactococcus lactis The antibacterial procedure based on conjugation with the use of the orf35- and orf36-deficient strain lowered the recipient cell number by over 90% owing to the mobilizable plasmid-encoded toxin.
Collapse
|
3
|
Kropac AC, Eshwar AK, Stephan R, Tasara T. New Insights on the Role of the pLMST6 Plasmid in Listeria monocytogenes Biocide Tolerance and Virulence. Front Microbiol 2019; 10:1538. [PMID: 31338084 PMCID: PMC6629823 DOI: 10.3389/fmicb.2019.01538] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 11/21/2022] Open
Abstract
Listeria monocytogenes the causative agent of listeriosis is an important public health concern and food safety challenge. Increased tolerance of this bacterium to benzalkonium chloride (BC), an antibacterial agent widely used in industrial settings, is a growing issue. Plasmid pLMST6 harboring the gene of the multidrug efflux pump protein EmrC has been recently linked to enhanced BC tolerance and meningitis due to L. monocytogenes ST6 strains. In this study, occurrence and contribution of this plasmid to BC tolerance was examined using PCR, plasmid curing and transformation, RT-qPCR and proteome analysis, respectively. Furthermore, the substrate specificity of the pLMST6 associated EmrC efflux pump and the impact of the plasmid on L. monocytogenes virulence were investigated. pLMST6 was detected in 7 (1.6%) of 439 L. monocytogenes strains isolated from different sources. A phenotypic role of this plasmid in conferring increased BC tolerance was confirmed by showing that plasmid cure increases BC susceptibility whereas plasmid complementation and transformation increased BC tolerance in different L. monocytogenes genetic backgrounds and L. innocua. RT-qPCR showed that BC stress exposure strongly induces the expression of mRNAs associated with pLMST6 genes for EmrC and a TetR transcription regulator. A full proteome analysis in a plasmid harboring L. monocytogenes strain revealed that the pLMST6 encoded putative TetR family transcription regulator protein is the most upregulated protein in response to BC stress exposure. An investigation into the EmrC efflux pump's substrate spectrum showed that while pLMST6 confers increased tolerance to other quaternary ammonium compounds (QACs) based disinfectants it has no impact on the sensitivity of L. monocytogenes to non-QAC disinfectants as well as on antibiotics such as ampicillin, tetracycline and gentamicin. A reduction in the survival of zebrafish embryos infected with pLMST6 plasmid harboring L. monocytogenes strains was observed when compared with plasmid cured variants of the same strains suggesting that some pLMST6 harbored genes might contribute to increased virulence capacity. Overall these results confirm the phenotypic contribution of pLMST6 plasmid in promoting and dissemination of BC tolerance in L. monocytogenes as well as provide new insights on different molecular levels of pLMST6 associated genes in response to BC stress.
Collapse
Affiliation(s)
| | | | | | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Wu M, Han H, Zheng X, Bai M, Xu T, Ding GC, Li J. Dynamics of oxytetracycline and resistance genes in soil under long-term intensive compost fertilization in Northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21381-21393. [PMID: 31119549 DOI: 10.1007/s11356-019-05173-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
In the present study, we explored the dynamics of antibiotics (ciprofloxacin, norfloxacin, enrofloxacin, and oxytetracycline), tetracycline resistance genes (TRGs), and bacterial communities over 2013-2015 in soils fertilized conventionally or with two levels (82.5 and 165 t/ha) of compost for 12 years. In the soil receiving 165 t/ha of compost, only oxytetracycline was 46% higher than that in the conventionally fertilized soil. Transient enrichment of both tetM (20% to 9-fold) and tetK (25% to 67-fold) was observed in multiple instances immediately after the application of compost. The majority of genera which positively correlated with tetM or tetK were affiliated to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The structural equation model analysis indicated that fertilization regimes directly affected the bacterial composition and antibiotics and had an indirect effect on the abundance of tetK and tetM via these antibiotics. In summary, this study shed light into the complex interactions between fertilization, antibiotics, and antibiotic resistance pollution in greenhouse soil.
Collapse
Affiliation(s)
- Ming Wu
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Xiangnan Zheng
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Mohan Bai
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ting Xu
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute of China Agricultural University(Suzhou), Wuzhong, 215128, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
- Organic Recycling Institute of China Agricultural University(Suzhou), Wuzhong, 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
- Organic Recycling Institute of China Agricultural University(Suzhou), Wuzhong, 215128, China.
| |
Collapse
|
5
|
Conjugation-Mediated Horizontal Gene Transfer of Clostridium perfringens Plasmids in the Chicken Gastrointestinal Tract Results in the Formation of New Virulent Strains. Appl Environ Microbiol 2017; 83:AEM.01814-17. [PMID: 29030439 DOI: 10.1128/aem.01814-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
Clostridium perfringens is a gastrointestinal pathogen capable of causing disease in a variety of hosts. Necrotic enteritis in chickens is caused by C. perfringens strains that produce the pore-forming toxin NetB, the major virulence factor for this disease. Like many other C. perfringens toxins and antibiotic resistance genes, NetB is encoded on a conjugative plasmid. Conjugative transfer of the netB-containing plasmid pJIR3535 has been demonstrated in vitro with a netB-null mutant. This study has investigated the effect of plasmid transfer on disease pathogenesis, with two genetically distinct transconjugants constructed under in vitro conditions, within the intestinal tract of chickens. This study also demonstrates that plasmid transfer can occur naturally in the host gut environment without the need for antibiotic selective pressure to be applied. The demonstration of plasmid transfer within the chicken host may have implications for the progression and pathogenesis of C. perfringens-mediated disease. Such horizontal gene transfer events are likely to be common in the clostridia and may be a key factor in strain evolution, both within animals and in the wider environment.IMPORTANCE Clostridium perfringens is a major gastrointestinal pathogen of poultry. C. perfringens strains that express the NetB pore-forming toxin, which is encoded on a conjugative plasmid, cause necrotic enteritis. This study demonstrated that the conjugative transfer of the netB-containing plasmid to two different nonpathogenic strains converted them into disease-causing strains with disease-causing capability similar to that of the donor strain. Plasmid transfer of netB and antibiotic resistance was also demonstrated to occur within the gastrointestinal tract of chickens, with approximately 14% of the isolates recovered comprising three distinct, in vivo-derived, transconjugant types. The demonstration of in vivo plasmid transfer indicates the potential importance of strain plasticity and the contribution of plasmids to strain virulence.
Collapse
|
6
|
Radziwill-Bienkowska JM, Robert V, Drabot K, Chain F, Cherbuy C, Langella P, Thomas M, Bardowski JK, Mercier-Bonin M, Kowalczyk M. Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of Lactococcus lactis IBB477 strain. Appl Microbiol Biotechnol 2017; 101:5709-5721. [PMID: 28540425 PMCID: PMC5501904 DOI: 10.1007/s00253-017-8334-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/25/2017] [Accepted: 05/06/2017] [Indexed: 12/28/2022]
Abstract
The ability of Lactococcus lactis to adhere to the intestinal mucosa can potentially prolong the contact with the host, and therefore favour its persistence in the gut. In the present study, the contribution of plasmid-encoded factors to the adhesive and transit properties of the L. lactis subsp. cremoris IBB477 strain was investigated. Plasmid-cured derivatives as well as deletion mutants were obtained and analysed. Adhesion tests were performed using non-coated polystyrene plates, plates coated with mucin or fibronectin and mucus-secreting HT29-MTX intestinal epithelial cells. The results indicate that two plasmids, pIBB477a and b, are involved in adhesion of the IBB477 strain. One of the genes localised on plasmid pIBB477b (AJ89_14230), which encodes cell wall-associated peptidase S8 (PrtP), mediates adhesion of the IBB477 strain to bare, mucin- and fibronectin-coated polystyrene, as well as to HT29-MTX cells. Interactions between bacteria and mucus secreted by HT29-MTX cells were further investigated by fluorescent staining and confocal microscopy. Confocal images showed that IBB477 forms dense clusters embedded in secreted mucus. Finally, the ability of IBB477 strain and its ΔprtP deletion mutant to colonise the gastrointestinal tract of conventional C57Bl/6 mice was determined. Both strains were present in the gut for up to 72 h. In summary, adhesion and persistence of IBB477 were analysed by in vitro and in vivo approaches, respectively. Our studies revealed that plasmidic genes encoding cell surface proteins are more involved in the adhesion of IBB477 strain than in the ability to confer a selective advantage in the gut.
Collapse
Affiliation(s)
| | - Véronique Robert
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Karolina Drabot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.,Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Florian Chain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Claire Cherbuy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Muriel Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jacek Karol Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Muriel Mercier-Bonin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Toxalim (Research Centre in Food Toxicology) UMR INRA 1331, 180 chemin de Tournefeuille, BP 93173, 31027, Toulouse cedex 3, France
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Silva IN, Duarte S, Moreira LM, Monteiro GA. Draft Genome Sequence of the Plasmid-Free Lactococcus lactis subsp. lactis Strain LMG 19460. GENOME ANNOUNCEMENTS 2017; 5:e00210-17. [PMID: 28428305 PMCID: PMC5399264 DOI: 10.1128/genomea.00210-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 11/28/2022]
Abstract
We report here the draft genome sequence of the plasmid-free Lactococcus lactis subsp. lactis strain LMG 19460. This strain has potential application for a cost-effective production of food-grade plasmid DNA to use in DNA vaccines, produce recombinant proteins, and be used as a mucosal delivery vehicle of therapeutic molecules.
Collapse
Affiliation(s)
- Inês N Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Duarte
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Leonilde M Moreira
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel A Monteiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M. Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol 2017; 123:325-339. [PMID: 28295939 PMCID: PMC7166332 DOI: 10.1111/jam.13446] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/18/2023]
Abstract
Gram‐positive, nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of novel, safe production and delivery systems of heterologous proteins. Recombinant LAB strains were shown to elicit specific systemic and mucosal immune responses against selected antigens. For this reason, this group of bacteria is considered as a potential replacement of classical, often pathogenic, attenuated microbial carriers. Mucosal administration of recombinant LAB, especially via the best explored and universal oral route, offers many advantages in comparison to systemic inoculation, and is attractive from the immunological and practical point of view. Research aimed at designing efficient, mucosally applied vaccines in combination with improved immunization efficiency, monitoring of in vivo antigen production, determination of optimal dose for vaccination, strain selection and characterization is a priority in modern vaccinology. This paper summarizes and organizes the available knowledge on the application of LAB as live oral vaccine vectors. It constitutes a valuable source of general information for researchers interested in mucosal vaccine development and constructing LAB strains with vaccine potential.
Collapse
Affiliation(s)
- K Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - A K Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M Chmielewska-Jeznach
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Miśta D, Króliczewska B, Pecka-Kiełb E, Kapuśniak V, Zawadzki W, Graczyk S, Kowalczyk A, Łukaszewicz E, Bednarczyk M. Effect of in ovo injected prebiotics and synbiotics on the caecal fermentation and intestinal morphology of broiler chickens. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an16257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Manipulations of the intestinal microbiota composition may improve the health and performance of chickens. In ovo technology allows the administration of a bioactive substance to enter directly into the incubating egg. The objective of the present study was to investigate the effect of in ovo administered prebiotics or synbiotics on microbial activity products in the caeca and the development of the small intestine of broiler chickens. Ross 308 male chickens hatched from eggs injected in ovo with prebiotics or synbiotics were used in this study. Five experimental groups were formed: C (Control) – injected with 0.9% NaCl, the Pre-1 and Pre-2 groups – injected with prebiotics: inulin or Bi2tos, respectively, and the Syn-1 and Syn-2 groups – injected with synbiotics: inulin with Lactococcus lactis subsp. lactis IBB SL1 or Bi2tos with Lactococcus lactis subsp. cremoris IBB SC1, respectively. At the age of 7, 21 and 35 days, 10 chicks of each group were randomly selected, weighed and slaughtered, and the jejunal samples were collected for histological examinations, whereas caecal samples were collected to analyse the end products of microbial fermentation. Synbiotic treatment increased bodyweight, as observed in the Syn-1 group (P < 0.05). The propionate molar proportion was highest in the groups treated with synbiotics, especially in the Syn-1 group (P < 0.01). Furthermore, the molar proportion of acetate was also lowest in the Syn-1 group (P < 0.05). In ovo synbiotics treatment increased the villus length : crypt depth ratio in the jejunal mucosa, which might improve nutrient absorption and contribute to the increased weight of chickens. These effects suggest that the in ovo administration of synbiotics may be an effective method to increase bodyweight, improve the short-chain fatty acid caecal profile and increase the villus length : crypt depth ratio in the jejunal mucosa. These effects were more pronounced in the Syn-1 group than the Syn-2 group.
Collapse
|
10
|
Radziwill-Bienkowska JM, Le DTL, Szczesny P, Duviau MP, Aleksandrzak-Piekarczyk T, Loubière P, Mercier-Bonin M, Bardowski JK, Kowalczyk M. Adhesion of the genome-sequenced Lactococcus lactis subsp. cremoris IBB477 strain is mediated by specific molecular determinants. Appl Microbiol Biotechnol 2016; 100:9605-9617. [PMID: 27687992 PMCID: PMC5071367 DOI: 10.1007/s00253-016-7813-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/30/2016] [Accepted: 08/09/2016] [Indexed: 11/11/2022]
Abstract
Understanding the nature of mucus-microbe interactions will provide important information that can help to elucidate the mechanisms underlying probiotic adhesion. This study focused on the adhesive properties of the Lactococcus lactis subsp. cremoris IBB477 strain, previously shown to persist in the gastrointestinal tract of germ-free rats. The shear flow-induced detachment of L. lactis cells was investigated under laminar flow conditions. Such a dynamic approach demonstrated increased adhesion to bare and mucin-coated polystyrene for IBB477, compared to that observed for the MG1820 control strain. To identify potential genetic determinants giving adhesive properties to IBB477, the improved high-quality draft genome sequence comprising chromosome and five plasmids was obtained and analysed. The number of putative adhesion proteins was determined on the basis of surface/extracellular localisation and/or the presence of adhesion domains. To identify proteins essential for the IBB477 specific adhesion property, nine deletion mutants in chromosomal genes have been constructed and analysed using adhesion tests on bare polystyrene as well as mucin-, fibronectin- or collagen IV-coated polystyrene plates in comparison to the wild-type strain. These experiments demonstrated that gene AJ89_07570 encoding a protein containing DUF285, MucBP and four Big_3 domains is involved in adhesion to bare and mucin-coated polystyrene. To summarise, in the present work, we characterised the adhesion of IBB477 under laminar flow conditions; identified the putative adherence factors present in IBB477, which is the first L. lactis strain exhibiting adhesive and mucoadhesive properties to be sequenced and demonstrated that one of the proteins containing adhesion domains contributes to adhesion.
Collapse
Affiliation(s)
| | | | - Pawel Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.,Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | - Pascal Loubière
- LISBP - Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Muriel Mercier-Bonin
- LISBP - Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.,INRA/INPT/UPS Toxalim UMR 1331, 180 chemin de Tournefeuille, F-31027, Toulouse, France
| | - Jacek Karol Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
11
|
Lee JH, Jeong DW. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance. PLoS One 2015; 10:e0140190. [PMID: 26448648 PMCID: PMC4598088 DOI: 10.1371/journal.pone.0140190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1–3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 443–760, Republic of Korea
| | - Do-Won Jeong
- Department of Food Science and Biotechnology, Shinansan University, Ansan, 425–792, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Zycka-Krzesinska J, Boguslawska J, Aleksandrzak-Piekarczyk T, Jopek J, Bardowski JK. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products. Int J Food Microbiol 2015. [PMID: 26204235 DOI: 10.1016/j.ijfoodmicro.2015.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon.
Collapse
Affiliation(s)
- Joanna Zycka-Krzesinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Joanna Boguslawska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland; Department of Biochemistry and Molecular Biology, The Centre of Postgraduate Medical Education, Marymoncka 99, 01-813 Warsaw, Poland
| | | | - Jakub Jopek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Jacek K Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland.
| |
Collapse
|
13
|
Beabout K, Hammerstrom TG, Wang TT, Bhatty M, Christie PJ, Saxer G, Shamoo Y. Rampant Parasexuality Evolves in a Hospital Pathogen during Antibiotic Selection. Mol Biol Evol 2015; 32:2585-97. [PMID: 26060280 DOI: 10.1093/molbev/msv133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Horizontal gene transfer threatens the therapeutic success of antibiotics by facilitating the rapid dissemination of resistance alleles among bacterial species. The conjugative mobile element Tn916 provides an excellent context for examining the role of adaptive parasexuality as it carries the tetracycline-resistance allele tetM and has been identified in a wide range of pathogens. We have used a combination of experimental evolution and allelic frequency measurements to gain insights into the adaptive trajectories leading to tigecycline resistance in a hospital strain of Enterococcus faecalis and predict what mechanisms of resistance are most likely to appear in the clinical setting. Here, we show that antibiotic selection led to the near fixation of adaptive alleles that simultaneously altered TetM expression and produced remarkably increased levels of Tn916 horizontal gene transfer. In the absence of drug, approximately 1 in 120,000 of the nonadapted E. faecalis S613 cells had an excised copy of Tn916, whereas nearly 1 in 50 cells had an excised copy of Tn916 upon selection for resistance resulting in a more than 1,000-fold increase in conjugation rates. We also show that tigecycline, a translation inhibitor, selected for a mutation in the ribosomal S10 protein. Our results show the first example of mutations that concurrently confer resistance to an antibiotic and lead to constitutive conjugal-transfer of the resistance allele. Selection created a highly parasexual phenotype and high frequency of Tn916 jumping demonstrating how the use of antibiotics can lead directly to the proliferation of resistance in, and potentially among, pathogens.
Collapse
Affiliation(s)
| | | | - Tim T Wang
- Department of BioSciences, Rice University
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston
| | | | | |
Collapse
|
14
|
Raftis EJ, Forde BM, Claesson MJ, O'Toole PW. Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics 2014; 15:771. [PMID: 25201645 PMCID: PMC4165912 DOI: 10.1186/1471-2164-15-771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
Background Lactobacillus salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. Dissemination of antibiotic resistance genes among species with food or probiotic-association is undesirable and is often mediated by plasmids or integrative and conjugative elements. L. salivarius strains typically have multireplicon genomes including circular megaplasmids that encode strain-specific traits for intestinal survival and probiotic activity. Linear plasmids are less common in lactobacilli and show a very limited distribution in L. salivarius. Here we present experimental evidence that supports an unusually complex multireplicon genome structure in the porcine isolate L. salivarius JCM1046. Results JCM1046 harbours a 1.83 Mb chromosome, and four plasmids which constitute 20% of the genome. In addition to the known 219 kb repA-type megaplasmid pMP1046A, we identified and experimentally validated the topology of three additional replicons, the circular pMP1046B (129 kb), a linear plasmid pLMP1046 (101 kb) and pCTN1046 (33 kb) harbouring a conjugative transposon. pMP1046B harbours both plasmid-associated replication genes and paralogues of chromosomally encoded housekeeping and information-processing related genes, thus qualifying it as a putative chromid. pLMP1046 shares limited sequence homology or gene synteny with other L. salivarius plasmids, and its putative replication-associated protein is homologous to the RepA/E proteins found in the large circular megaplasmids of L. salivarius. Plasmid pCTN1046 harbours a single copy of an integrated conjugative transposon (Tn6224) which appears to be functionally intact and includes the tetracycline resistance gene tetM. Conclusion Experimental validation of sequence assemblies and plasmid topology resolved the complex genome architecture of L. salivarius JCM1046. A high-coverage draft genome sequence would not have elucidated the genome complexity in this strain. Given the expanding use of L. salivarius as a probiotic, it is important to determine the genotypic and phenotypic organization of L. salivarius strains. The identification of Tn6224-like elements in this species has implications for strain selection for probiotic applications. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-771) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Paul W O'Toole
- School of Microbiology University College Cork, Cork, Ireland.
| |
Collapse
|
15
|
Le DTL, Tran TL, Duviau MP, Meyrand M, Guérardel Y, Castelain M, Loubière P, Chapot-Chartier MP, Dague E, Mercier-Bonin M. Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis. PLoS One 2013; 8:e79850. [PMID: 24260308 PMCID: PMC3832589 DOI: 10.1371/journal.pone.0079850] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Adhesion of bacteria to mucus may favor their persistence within the gut and their beneficial effects to the host. Interactions between pig gastric mucin (PGM) and a natural isolate of Lactococcus lactis (TIL448) were measured at the single-cell scale and under static conditions, using atomic force microscopy (AFM). In parallel, these interactions were monitored at the bacterial population level and under shear flow. AFM experiments with a L. lactis cell-probe and a PGM-coated surface revealed a high proportion of specific adhesive events (60%) and a low level of non-adhesive ones (2%). The strain muco-adhesive properties were confirmed by the weak detachment of bacteria from the PGM-coated surface under shear flow. In AFM, rupture events were detected at short (100−200 nm) and long distances (up to 600−800 nm). AFM measurements on pili and mucus-binding protein defective mutants demonstrated the comparable role played by these two surface proteinaceous components in adhesion to PGM under static conditions. Under shear flow, a more important contribution of the mucus-binding protein than the pili one was observed. Both methods differ by the way of probing the adhesion force, i.e. negative force contact vs. sedimentation and normal-to-substratum retraction vs. tangential detachment conditions, using AFM and flow chamber, respectively. AFM blocking assays with free PGM or O-glycan fractions purified from PGM demonstrated that neutral oligosaccharides played a major role in adhesion of L. lactis TIL448 to PGM. This study dissects L. lactis muco-adhesive phenotype, in relation with the nature of the bacterial surface determinants.
Collapse
Affiliation(s)
- Doan Thanh Lam Le
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- CNRS, LAAS, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
- Université de Toulouse, LAAS, Toulouse, France
| | - Thi-Ly Tran
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Marie-Pierre Duviau
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Mickael Meyrand
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Yann Guérardel
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, UGSF, Villeneuve d'Ascq, France
- CNRS, UMR 8576, Villeneuve d'Ascq, France
| | - Mickaël Castelain
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Pascal Loubière
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | | | - Etienne Dague
- CNRS, LAAS, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
- Université de Toulouse, LAAS, Toulouse, France
- * E-mail: (MMB); (ED)
| | - Muriel Mercier-Bonin
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- * E-mail: (MMB); (ED)
| |
Collapse
|
16
|
|
17
|
Devirgiliis C, Zinno P, Perozzi G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 2013; 4:301. [PMID: 24115946 PMCID: PMC3792357 DOI: 10.3389/fmicb.2013.00301] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022] Open
Abstract
Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.
Collapse
Affiliation(s)
- Chiara Devirgiliis
- CRA-NUT, Food and Nutrition Research Center, Agricultural Research Council Roma, Italy
| | | | | |
Collapse
|
18
|
Conjugal transfer of bacteriocin plasmids from different genera of lactic acid bacteria into Enterococcus faecalis JH2-2. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0624-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
19
|
Maiorano G, Sobolewska A, Cianciullo D, Walasik K, Elminowska-Wenda G, Sławińska A, Tavaniello S, Żylińska J, Bardowski J, Bednarczyk M. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens. Poult Sci 2012; 91:2963-9. [DOI: 10.3382/ps.2012-02208] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis. Res Microbiol 2012; 164:46-54. [PMID: 22985829 DOI: 10.1016/j.resmic.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 11/20/2022]
Abstract
Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.
Collapse
|
21
|
Le DTL, Guérardel Y, Loubière P, Mercier-Bonin M, Dague E. Measuring kinetic dissociation/association constants between Lactococcus lactis bacteria and mucins using living cell probes. Biophys J 2012; 101:2843-53. [PMID: 22261074 DOI: 10.1016/j.bpj.2011.10.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023] Open
Abstract
In this work we focused on quantifying adhesion between Lactococcus lactis, the model for lactic acid bacteria (LAB) and mucins. Interactions between two strains of L. lactis (IBB477 and MG1820 as control) and pig gastric mucin-based coating were measured and compared with the use of atomic force microscopy. Analysis of retraction force-distance curves shed light on the differential contributions of nonspecific and specific forces. An increased proportion of specific adhesive events was obtained for IBB477 (20% vs. 5% for the control). Blocking assays with free pig gastric mucin and its O-glycan moiety showed that oligosaccharides play a major (but not exclusive) role in L. lactis-mucins interactions. Specific interactions were analyzed in terms of kinetic constants. An increase in the loading rate of atomic force microscope tip led to a higher force between interacting biological entities, which was directly linked to the kinetic dissociation constant (K(off)). Enhancing the contact time between the tip and the sample allowed an increase in the interaction probability, which can be related to the kinetic association constant (K(on)). Variations in the loading rate and contact time enabled us to determine K(on) (3.3 × 10(2) M(-1)·s(-1)) and K(off) (0.46 s(-1)), and the latter was consistent with values given in the literature for sugar-protein interactions.
Collapse
Affiliation(s)
- Doan Thanh Lam Le
- INSA, UPS, INP, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
22
|
Le DTL, Zanna S, Frateur I, Marcus P, Loubière P, Dague E, Mercier-Bonin M. Real-time investigation of the muco-adhesive properties of Lactococcus lactis using a quartz crystal microbalance with dissipation monitoring. BIOFOULING 2012; 28:479-490. [PMID: 22594395 DOI: 10.1080/08927014.2012.688103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work was devoted to probe, at the entire population level, interactions between mucins and Lactococcus lactis, using QCM-D. Real-time monitoring of adsorption on polystyrene of PGM (Pig Gastric Mucin) and subsequent adhesion of L. lactis was performed for IBB477 and MG1820 strains. Measuring simultaneously shifts in resonance frequency and dissipation on the polystyrene-coated crystal demonstrated a two-phase process for PGM adsorption. XPS analysis confirmed the presence of adsorbed mucin. The Voigt-based model was used to describe the QCM-D outputs. The predicted thickness of the PGM layer was consistent with the AFM experimental value. Adhesion of L. lactis to bare or PGM-coated polystyrene was then monitored, in combination with DAPI cell counting. Positive frequency shifts were caused by adhering bacteria. The presence of adsorbed PGM strongly reduced bacterial adhesion. However, adhesion of IBB477 to the PGM coating was greatly increased in comparison with that of MG1820. Muco-adhesion may be a highly variable and valuable phenotypic trait among L. lactis strains.
Collapse
Affiliation(s)
- Doan Thanh Lam Le
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Haug MC, Tanner SA, Lacroix C, Stevens MJ, Meile L. Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. FEMS Microbiol Ecol 2011; 78:210-9. [DOI: 10.1111/j.1574-6941.2011.01149.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
24
|
Brtková A, Revallová M, Bujdáková H. Detection of tetracycline and macrolide resistance determinants in Enterococci of animal and environmental origin using multiplex PCR. Folia Microbiol (Praha) 2011; 56:236-40. [PMID: 21656006 DOI: 10.1007/s12223-011-0042-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 04/06/2011] [Indexed: 11/30/2022]
Abstract
An occurrence of resistance to tetracycline (TET) and erythromycin (ERY) was ascertained in 82 isolates of Enterococcus spp. of animal and environmental origin. Using E test, 33 isolates were resistant to TET and three isolates to ERY. Using polymerase chain reaction (PCR; single and multiplex), the TET determinants tet(M) and tet(L) were detected in 35 and 13 isolates, respectively. Twelve isolates carried both tet(M) and tet(L) genes. Eight isolates possessed ermB gene associated with ERY resistance. Multiplex PCR was shown to be a suitable method for simultaneous determination of all three resistance determinants that occurred most frequently in bacteria isolated from poultry. This study also demonstrates that gastrointestinal tract of broilers may be a reservoir of enterococci with acquired resistance to both TET and ERY that can be transferred to humans via food chain.
Collapse
Affiliation(s)
- A Brtková
- State Veterinary and Food Institute, Janoskova 1611/58, 026 01, Dolny Kubin, Slovakia
| | | | | |
Collapse
|
25
|
Devirgiliis C, Barile S, Perozzi G. Antibiotic resistance determinants in the interplay between food and gut microbiota. GENES AND NUTRITION 2011; 6:275-84. [PMID: 21526400 PMCID: PMC3145056 DOI: 10.1007/s12263-011-0226-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/07/2011] [Indexed: 01/31/2023]
Abstract
A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such “fermented food microbiota” are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods.
Collapse
Affiliation(s)
- Chiara Devirgiliis
- INRAN, National Research Institute on Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Simona Barile
- INRAN, National Research Institute on Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Giuditta Perozzi
- INRAN, National Research Institute on Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
26
|
Haug MC, Tanner SA, Lacroix C, Meile L, Stevens MJA. Construction and characterization of Enterococcus faecalis CG110/gfp/pRE25*, a tool for monitoring horizontal gene transfer in complex microbial ecosystems. FEMS Microbiol Lett 2010; 313:111-9. [PMID: 21029153 DOI: 10.1111/j.1574-6968.2010.02131.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Enterococci are among the most notorious bacteria involved in the spread of antibiotic resistance (ABR) determinants via horizontal gene transfer, a process that leads to increased prevalence of antibiotic-resistant bacteria. In complex microbial communities with a high background of ABR genes, detection of gene transfer is possible only when the ABR determinant is marked. Therefore, the conjugative multiresistance plasmid pRE25, originating from a sausage-associated Enterococcus faecalis, was tagged with a 34-bp random sequence marker spliced by tet(M). The plasmid constructed, designated pRE25(*) , was introduced into E. faecalis CG110/gfp, a strain containing a gfp gene as chromosomal marker. The plasmid pRE25(*) is fully functional compared with its parental pRE25, occurs at one to two copies per chromosome, and can be transferred to Listeria monocytogenes and Listeria innocua at frequencies of 6 × 10(-6) to 8 × 10(-8) transconjugants per donor. The markers on the chromosome and the plasmid enable independent quantification of donor and plasmid, even if ABR genes occur at high numbers in the background ecosystem. Both markers were stable for at least 200 generations, permitting application of the strain in long-running experiments. Enterococcus faecalis CG110/gfp/pRE25(*) is a potent tool for the investigation of horizontal ABR gene transfer in complex environments such as food matrices, biofilms or colonic models.
Collapse
Affiliation(s)
- Martina C Haug
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|