1
|
Kergoat L, Dabrin A, Masson M, Datry T, Bonnineau C. Clogging modulates the copper effects on microbial communities of streambed sediments. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:321-335. [PMID: 36930439 DOI: 10.1007/s10646-023-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The hyporheic zone, i.e. the water-saturated sediment beneath and alongside the riverbed, is exposed to multiple stressors. Agricultural-watershed rivers are frequently exposed to two concomitant stressors: clogging and copper contamination. However, one stressor exposure can increase sensitivity to a second stressor. The aim of this study was to experimentally test the cumulative effects of these two stressors on copper distribution and structural and functional microbial communities responses in the hyporheic zone. A slow filtration column experiment was conducted to compare the effects of 3 treatments of increasing complexity: 'Reference', 'Copper-contaminated' (dissolved copper added at 191 µg L-1), and 'Clogging+Copper' (dissolved copper + addition of 2 cm of fine sediment). Microbial community structure and activities were studied at 4 column sediment depths. The results showed that clogging did not modify the distribution of copper, which remained fixed in the first few centimetres. In the first few centimetres, clogging had a stimulating effect on microbial activities whereas copper had limited effects mainly on leucine aminopeptidase activity and microbial community tolerance to copper. The subsurface zone thus hosts significant different microbial communities from the communities in the deeper zones that were protected from surface stressors. This experiment confirms the valuable filtering role played by the hyporheic zone and shows that microbial responses are strongly correlated to microhabitat-scale physicochemical conditions in sediment.
Collapse
|
2
|
Kumar U, Singh RS, Mandal J, Nayak AK, Jha AK. Removal of As(III) and Cr(VI) from aqueous solutions by Bixa orellana leaf biosorbent and As(III) removal using bacterial isolates from heavy metal contaminated site. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Berger S, Shaw DR, Berben T, Ouboter HT, In 't Zandt MH, Frank J, Reimann J, Jetten MSM, Welte CU. Current production by non-methanotrophic bacteria enriched from an anaerobic methane-oxidizing microbial community. Biofilm 2021; 3:100054. [PMID: 34308332 PMCID: PMC8258643 DOI: 10.1016/j.bioflm.2021.100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, the externalization of electrons as part of respiratory metabolic processes has been discovered in many different bacteria and some archaea. Microbial extracellular electron transfer (EET) plays an important role in many anoxic natural or engineered ecosystems. In this study, an anaerobic methane-converting microbial community was investigated with regard to its potential to perform EET. At this point, it is not well-known if or how EET confers a competitive advantage to certain species in methane-converting communities. EET was investigated in a two-chamber electrochemical system, sparged with methane and with an applied potential of +400 mV versus standard hydrogen electrode. A biofilm developed on the working electrode and stable low-density current was produced, confirming that EET indeed did occur. The appearance and presence of redox centers at −140 to −160 mV and at −230 mV in the biofilm was confirmed by cyclic voltammetry scans. Metagenomic analysis and fluorescence in situ hybridization of the biofilm showed that the anaerobic methanotroph ‘Candidatus Methanoperedens BLZ2’ was a significant member of the biofilm community, but its relative abundance did not increase compared to the inoculum. On the contrary, the relative abundance of other members of the microbial community significantly increased (up to 720-fold, 7.2% of mapped reads), placing these microorganisms among the dominant species in the bioanode community. This group included Zoogloea sp., Dechloromonas sp., two members of the Bacteroidetes phylum, and the spirochete Leptonema sp. Genes encoding proteins putatively involved in EET were identified in Zoogloea sp., Dechloromonas sp. and one member of the Bacteroidetes phylum. We suggest that instead of methane, alternative carbon sources such as acetate were the substrate for EET. Hence, EET in a methane-driven chemolithoautotrophic microbial community seems a complex process in which interactions within the microbial community are driving extracellular electron transfer to the electrode.
Collapse
Affiliation(s)
- S Berger
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands
| | - D R Shaw
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, the Netherlands
| | - T Berben
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands
| | - H T Ouboter
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, the Netherlands
| | - M H In 't Zandt
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands.,Netherlands Earth System Science Center, Utrecht University, Utrecht, the Netherlands
| | - J Frank
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, the Netherlands
| | - J Reimann
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands
| | - M S M Jetten
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands.,Netherlands Earth System Science Center, Utrecht University, Utrecht, the Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, the Netherlands
| | - C U Welte
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, the Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Mahamoud Ahmed A, Lyautey E, Bonnineau C, Dabrin A, Pesce S. Environmental Concentrations of Copper, Alone or in Mixture With Arsenic, Can Impact River Sediment Microbial Community Structure and Functions. Front Microbiol 2018; 9:1852. [PMID: 30158909 PMCID: PMC6104476 DOI: 10.3389/fmicb.2018.01852] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
In many aquatic ecosystems, sediments are an essential compartment, which supports high levels of specific and functional biodiversity thus contributing to ecological functioning. Sediments are exposed to inputs from ground or surface waters and from surrounding watershed that can lead to the accumulation of toxic and persistent contaminants potentially harmful for benthic sediment-living communities, including microbial assemblages. As benthic microbial communities play crucial roles in ecological processes such as organic matter recycling and biomass production, we performed a 21-day laboratory channel experiment to assess the structural and functional impact of metals on natural microbial communities chronically exposed to sediments spiked with copper (Cu) and/or arsenic (As) alone or mixed at environmentally relevant concentrations (40 mg kg-1 for each metal). Heterotrophic microbial community responses to metals were evaluated both in terms of genetic structure (using ARISA analysis) and functional potential (using exoenzymatic, metabolic and functional genes analyses). Exposure to Cu had rapid marked effects on the structure and most of the functions of the exposed communities. Exposure to As had almost undetectable effects, possibly due to both lack of As bioavailability or toxicity toward the exposed communities. However, when the two metals were combined, certain functional responses suggested a possible interaction between Cu and As toxicity on heterotrophic communities. We also observed temporal dynamics in the functional response of sediment communities to chronic Cu exposure, alone or in mixture, with some functions being resilient and others being impacted throughout the experiment or only after several weeks of exposure. Taken together, these findings reveal that metal contamination of sediment could impact both the genetic structure and the functional potential of chronically exposed microbial communities. Given their functional role in aquatic ecosystems, it poses an ecological risk as it may impact ecosystem functioning.
Collapse
Affiliation(s)
- Ayanleh Mahamoud Ahmed
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
- CARRTEL, Univ. Savoie Mont Blanc, INRA, Chambéry, France
- Centre de Recherche, Université de Djibouti, Djibouti, Djibouti
| | - Emilie Lyautey
- CARRTEL, Univ. Savoie Mont Blanc, INRA, Chambéry, France
| | - Chloé Bonnineau
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Aymeric Dabrin
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Stéphane Pesce
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| |
Collapse
|
5
|
Hirose S, Matsuura K, Haruta S. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan. Microbes Environ 2016; 31:299-306. [PMID: 27453124 PMCID: PMC5017807 DOI: 10.1264/jsme2.me15209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms.
Collapse
Affiliation(s)
- Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University
| | | | | |
Collapse
|
6
|
Monophyletic group of unclassified γ- Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode. Bioelectrochemistry 2015; 106:167-76. [DOI: 10.1016/j.bioelechem.2015.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
|
7
|
Chabert N, Amin Ali O, Achouak W. All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry 2015; 106:88-96. [PMID: 26298511 DOI: 10.1016/j.bioelechem.2015.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 01/30/2023]
Abstract
Instead of requiring metal catalysts, MFCs utilize bacteria that oxidize organic matter and either transfer electrons to the anode or take electrons from the cathode. These devices are thus based on a wide microbial diversity that can convert a large array of organic matter components into sustainable and renewable energy. A wide variety of explored environments were found to host electrogenic bacteria, including extreme environments. In the present review, we describe how different ecosystems host electrogenic bacteria, as well as the physicochemical, electrochemical and biological parameters that control the currents from MFCs. We also report how using new molecular techniques allowed characterization of electrochemical biofilms and identification of potentially new electrogenic species. Finally we discuss these findings in the context of future research directions.
Collapse
Affiliation(s)
- Nicolas Chabert
- CEA, DSV, IBEB, Lab of Microbial Ecology of the Rhizosphere & Extreme Environment (LEMiRE), 13108 Saint Paul-Lez-Durance, France; CNRS, BVME UMR 7265, ECCOREV FR 3098, 13108 Saint Paul-Lez-Durance, France; Aix Marseille Université, 13284 Marseille Cedex 07, France
| | - Oulfat Amin Ali
- CEA, DSV, IBEB, Lab of Microbial Ecology of the Rhizosphere & Extreme Environment (LEMiRE), 13108 Saint Paul-Lez-Durance, France; CNRS, BVME UMR 7265, ECCOREV FR 3098, 13108 Saint Paul-Lez-Durance, France; Aix Marseille Université, 13284 Marseille Cedex 07, France
| | - Wafa Achouak
- CEA, DSV, IBEB, Lab of Microbial Ecology of the Rhizosphere & Extreme Environment (LEMiRE), 13108 Saint Paul-Lez-Durance, France; CNRS, BVME UMR 7265, ECCOREV FR 3098, 13108 Saint Paul-Lez-Durance, France; Aix Marseille Université, 13284 Marseille Cedex 07, France.
| |
Collapse
|
8
|
Boulêtreau S, Lyautey E, Dubois S, Compin A, Delattre C, Touron-Bodilis A, Mastrorillo S, Garabetian F. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:856-863. [PMID: 23978584 DOI: 10.1016/j.scitotenv.2013.07.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams.
Collapse
Affiliation(s)
- Stéphanie Boulêtreau
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse, France; CNRS, EcoLab, F-31062 Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Walter XA, Greenman J, Ieropoulos IA. Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Erable B, Féron D, Bergel A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. CHEMSUSCHEM 2012; 5:975-87. [PMID: 22615123 DOI: 10.1002/cssc.201100836] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/23/2012] [Indexed: 05/24/2023]
Abstract
The slow kinetics of the electrochemical oxygen reduction reaction (ORR) is a crucial bottleneck in the development of microbial fuel cells (MFCs). This article firstly gives an overview of the particular constraints imposed on ORR by MFC operating conditions: neutral pH, slow oxygen mass transfer, sensitivity to reactive oxygen species, fouling and biofouling. A review of the literature is then proposed to assess how microbial catalysis could afford suitable solutions. Actually, microbial catalysis of ORR occurs spontaneously on the surface of metallic materials and is an effective motor of microbial corrosion. In this framework, several mechanisms have been proposed, which are reviewed in the second part of the article. The last part describes the efforts made in the domain of MFCs to determine the microbial ecology of electroactive biofilms and define efficient protocols for the formation of microbial oxygen-reducing cathodes. Although no clear mechanism has been established yet, several promising solutions have been recently proposed.
Collapse
Affiliation(s)
- Benjamin Erable
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse, 4 allée Emile Monso, BP84234, 31432 Toulouse, France
| | | | | |
Collapse
|