1
|
Fredriksson-Ahomaa M, Johansson V, Heljanko V, Nuotio E, Nihtilä H, Heikinheimo A, Kivistö R. Foodborne pathogenic bacteria in wild European hedgehogs (Erinaceus europaeus). Acta Vet Scand 2024; 66:32. [PMID: 39010071 PMCID: PMC11251316 DOI: 10.1186/s13028-024-00747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND European hedgehogs (Erinaceus europaeus) are widely distributed across Europe. They may play an important role by spreading zoonotic bacteria in the environment and to humans and animals. The aim of our work was to study the prevalence and characteristics of the most important foodborne bacterial pathogens in wild hedgehogs. RESULTS Faecal samples from 148 hospitalised wild hedgehogs originating from the Helsinki region in southern Finland were studied. Foodborne pathogens were detected in 60% of the hedgehogs by PCR. Listeria (26%) and STEC (26%) were the most common foodborne pathogens. Salmonella, Yersinia, and Campylobacter were detected in 18%, 16%, and 7% of hedgehogs, respectively. Salmonella and Yersinia were highly susceptible to the tested antimicrobials. Salmonella Enteritidis and Listeria monocytogenes 2a were the most common types found in hedgehogs. All S. Enteritidis belonged to one sequence type (ST11), forming four clusters of closely related isolates. L. monocytogenes was genetically more diverse than Salmonella, belonging to 11 STs. C. jejuni ST45 and ST677, Y. pseudotuberculosis O:1 of ST9 and ST42, and Y. enterocolitica O:9 of ST139 were also found. CONCLUSIONS Our study shows that wild European hedgehogs should be considered an important source of foodborne pathogens, and appropriate hygiene measures after any contact with hedgehogs and strict biosecurity around farms are therefore important.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Venla Johansson
- Department of Food Hygiene and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Nuotio
- Department of Food Hygiene and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Microbiology Unit, Finnish Food Authority, Seinäjoki, 60100, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Poorrashidi M, Hitchcock M, Xu J. Meta-analyses of the global multilocus genotypes of the human pathogen Campylobacter jejuni. Genome 2024; 67:189-203. [PMID: 38427983 DOI: 10.1139/gen-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Campylobacter infections are a leading cause of bacterial diarrheal illness worldwide, with increasing reports of outbreaks in both developing and developed countries. Most studies investigating strain genotypes and epidemiology of Campylobacter jejuni examined on a local scale. Using the archived multilocus sequence typing data at seven loci, and associated strain metadata from the PubMLST database, here we investigated the spatial and temporal genetic structure of the global population of C. jejuni. Our analyses revealed evidence for clonal dispersals of multiple sequence types (STs) among countries and continents. However, despite the observed clonal dispersal and that most genetic variations were found within individual geographic subpopulations, both the non-clone-corrected and clone-corrected samples showed evidence of significant genetic differentiation among national and continental subpopulations, with non-clone-corrected samples showing greater differentiation than clone-corrected samples. Phylogenetic incompatibility analyses provided evidence for recombination within each continental subpopulation. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across the samples. Temporally, multiple STs were found to persist across four decades and the five globally most common STs showed relatively stable frequencies over the last two decades. We discussed the implications of our results to food security, disease transmission, and public health management.
Collapse
Affiliation(s)
- Monir Poorrashidi
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Megan Hitchcock
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
Awad A, Yeh HY, Ramadan H, Rothrock MJ. Genotypic characterization, antimicrobial susceptibility and virulence determinants of Campylobacter jejuni and Campylobacter coli isolated from pastured poultry farms. Front Microbiol 2023; 14:1271551. [PMID: 38029099 PMCID: PMC10668334 DOI: 10.3389/fmicb.2023.1271551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Campylobacter is the leading bacterial pathogen that causes foodborne illnesses worldwide. Pasture farming is regarded as an important source of agricultural production for small farming communities. Consumer preference for pasture-raised animal products has increased; however, there is a paucity of information on the microbiological quality of pasture-raised poultry products. The purpose of this study was to explore genetic relatedness of thermophilic Campylobacter isolates, to assess antibiotic resistance phenotypically and genotypically, and to screen the presence of virulence determinants of Campylobacter isolates from pasture-raised poultry farms from southeastern United States. Methods Ninety-seven Campylobacter isolates previously identified by Q7 BAX® System Real-Time PCR were genotyped by multilocus sequence typing (MLST). Campylobacter isolates were then evaluated for their phenotypic antimicrobial susceptibility against nine antimicrobial agents using Sensititre plates. Additionally, Campylobacter isolates were tested for the presence of antimicrobial resistance-associated elements. Furthermore, Campylobacter isolates were screened for the presence of 13 genes encoding putative virulence factors by PCR. These included genes involved in motility (flaA and flhA), adhesion and colonization (cadF, docC, racR, and virB11), toxin production (cdtA, cdtB, cdtC, wlaN, and ceuE) and invasion (ciaB and iamA). Results Among 97 Campylobacter isolates, Campylobacter jejuni (n = 79) and Campylobacter coli (n = 18) were identified. By MLST, C. jejuni isolates were assigned to seven clonal complexes. Among them, ST-353, ST-607 and ST-21 were the most common STs recognized. All C. coli (n = 18) isolates were included in CC-828. Interestingly, eight STs identified were not belonging any previous identified clonal complex. Campylobacter isolates displayed a high resistance rate against tetracycline (81.4%), while a low rate of resistance was observed against macrolides (azithromycin and erythromycin), quinolones and fluoroquinolones (nalidixic acid and ciprofloxacin), aminoglycosides (gentamicin), ketolide (telithromycin), amphenicol (florfenicol) and lincomycin (clindamycin). Thirteen isolates (13.54%) were pan-susceptible to all tested antibiotics, while nine isolates were multi-antimicrobial resistant (MAR; resist to three or more antimicrobial classes). Interestingly, there were no isolates resistant to all antimicrobial classes. Thr86Ile mutation was identified in all quinolones resistant strains. Erythromycin encoding gene (ermB) was identified in 75% of erythromycin resistant isolates. The A2075 mutation was detected in one erythromycin resistant strain, while A2074 could not be identified. The tetO gene was identified in 93.7% of tetracycline resistant isolates and six tetracycline susceptible isolates. In conclusion, the results of this study revealed that Campylobacter isolates from pasture-raised poultry farms showed the ST relatedness to Campylobacter isolates commonly associated with humans, indicating pasture-raised broiler flocks, similar to conventionally-reared broiler flocks, as a potential vector for antibiotic-resistant and pathogenic strains of thermophilic Campylobacter to humans.
Collapse
Affiliation(s)
- Amal Awad
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hung-Yueh Yeh
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Hazem Ramadan
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Michael J. Rothrock
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| |
Collapse
|
4
|
Mouftah SF, Pascoe B, Calland JK, Mourkas E, Tonkin N, Lefevre C, Deuker D, Smith S, Wickenden H, Hitchings MD, Sheppard SK, Elhadidy M. Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance. Microb Genom 2022; 8. [PMID: 35675117 PMCID: PMC9455717 DOI: 10.1099/mgen.0.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ben Pascoe
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Chiang Mai University, Chiang Mai, Thailand
| | - Jessica K Calland
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Naomi Tonkin
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Charlotte Lefevre
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Danielle Deuker
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Sunny Smith
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Harry Wickenden
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | | | - Samuel K Sheppard
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Conesa A, Garofolo G, Di Pasquale A, Cammà C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011-2021): Microbiological and WGS data risk assessment. EFSA J 2022; 20:e200406. [PMID: 35634560 PMCID: PMC9131813 DOI: 10.2903/j.efsa.2022.e200406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Campylobacter jejuni is considered as the main pathogen in human food-borne outbreaks worldwide. Over the past years, several studies have reported antimicrobial resistance (AMR) in C. jejuni strains. In Europe, the official monitoring of AMR comprises the testing of Campylobacter spp. from food-producing animals because this microorganism is responsible for human infections and usually predominant in poultry. Food-producing animals are considered to be a major source of campylobacteriosis through contamination of food products. Concerns are growing due to the current classification of C. jejuni by the WHO as a 'high priority pathogen' due to the emergence of resistance to multiple drugs such as those belonging to the fluoroquinolones, macrolides and other classes, which limits the treatment alternatives. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritise food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to the understanding of their epidemiology and population structure. Using a population genetic approach and grouping the isolates into sequence types within different clonal complexes, it is possible to investigate the source of the human cases. The work programme was aimed for the fellow to assess the AMR of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats. Given the public health concern represented by resistant pathogens in food-producing animals and the paucity of data about this topic in Italy, the aim was to identify correlations between phenotypic and genotypic AMR and comparing the origin of the isolates. The work programme allowed the fellow to acquire knowledge, skills and competencies on the web-based tools used by IZSAM to process the NGS data and perform bioinformatics analyses for the identification of epidemiological clusters, the study of AMR patterns in C. jejuni isolates, and the assessment of the human exposure to such AMR pathogens. Furthermore, the fellow became able to transfer the acquired knowledge through innovative web-based didactical tools applied to WGS and clustering of specific food-borne pathogens, with particular reference to C. jejuni. To achieve this objective, 2,734 C. jejuni strains isolated from domestic and wild animals and humans, during the period 2011-2021 were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, for the following antibiotics: nalidixic acid, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, streptomycin, tetracycline. The data were complemented by WGS data for each strain, uploaded in the Italian information system for the collection and analysis of complete genome sequence of pathogens isolated from animal, food and environment (GENPAT) developed and maintained at IZSAM; information like clonal complex and sequence type to understand the phylogenetical distance between strains according to their origins were also considered. This work underlines that a better knowledge of the resistance levels of C. jejuni is necessary, and mandatory monitoring of Campylobacter species in the different animal productions is strongly suggested.
Collapse
Affiliation(s)
- A Conesa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - G Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - A Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - C Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| |
Collapse
|
6
|
Campylobacter jejuni in Different Canine Populations: Characteristics and Zoonotic Potential. Microorganisms 2021; 9:microorganisms9112231. [PMID: 34835357 PMCID: PMC8618475 DOI: 10.3390/microorganisms9112231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
With most epidemiological studies focused on poultry, dogs are often overlooked as a reservoir of Campylobacter, even though these animals maintain close daily contact with humans. The present study aimed to obtain a first insight into the presence and characteristics of Campylobacter spp. in different canine populations in Portugal, and to evaluate its zoonotic potential through genomic analysis. From a total of 125 rectal swabs collected from companion (n = 71) and hunting dogs (n = 54) living in two different settings, rural (n = 75) and urban (n = 50), 32 Campylobacter spp. isolates were obtained. Four different Campylobacter species were identified by Multiplex PCR and MALDI-TOF mass spectrometry, of which Campylobacter jejuni (n = 14, 44%) was overall the most frequently found species. Relevant resistance phenotypes were detected in C. jejuni, with 93% of the isolates being resistant to ciprofloxacin, 64% to tetracycline, and 57% to ampicillin, and three isolates being multi-drug-resistant. Comparison of the phenotypic and genotypic traits with human isolates from Portuguese patients revealed great similarity between both groups. Particularly relevant, the wgMLST analysis allowed the identification of isolates from human and dogs without any apparent epidemiological relationship, sharing high genetic proximity. Notwithstanding the limited sample size, considering the high genomic diversity of C. jejuni, the genetic overlap between human and dog strains observed in this study confirmed that the occurrence of this species in dogs is of public health concern, reinforcing the call for a One Health approach.
Collapse
|
7
|
Duqué B, Canon J, Haddad N, Guillou S, Membré JM. Quantitative approach to assess the compliance to a performance objective (PO) of Campylobacter jejuni in poultry meat in France. Int J Food Microbiol 2020; 336:108916. [PMID: 33091756 DOI: 10.1016/j.ijfoodmicro.2020.108916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/19/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
Predictive modelling is used in microbiological risk assessment to quantify the growth and inactivation of microorganisms through the use of mathematical models. Campylobacter jejuni is one of the main foodborne pathogens and broiler meat is considered as the most important source of human campylobacteriosis. The purpose of this study was to assess the effects of heating and chilling during the poultry slaughter process on inactivation kinetics of Campylobacter jejuni during chilled storage in order to predict its contamination level prior to preparation and consumption in the consumer's home, and then to assess the compliance to a Performance Objective (PO). Three strains of C. jejuni were submitted to consecutive heat (54 °C for 3 min) and cold (3 °C for 2 h) stresses, mimicking the two main slaughtering steps, i.e. scalding and chilling, by inoculating chicken fillets with three different concentrations (4, 6 and 8 log10 CFU/g). Fillets were then stored at 6 °C during 17 days under the modified atmosphere currently used by food processors (70% O2/30% CO2). For all strains, bacterial log reduction was the lowest when inoculated at 8 log10 CFU/g. One strain showed an enhanced resistance during cold storage after application of stressing steps, suggesting an impact of the cell history on further bacterial resistance. Taking strain variability into account, after six days of storage, predictions showed compliance of ready-to-be-cooked chicken meat with a hypothetical PO of 2.55 log10 CFU/g, value set before the meat enters the consumer's home by the ICMSF (International Commission on Microbiological Specifications for Foods). This study opens the path to assess the compliance to a PO of Campylobacter jejuni in poultry meat and more generally provides inputs to refine microbiological risk assessment by taking into account the cell history and more particularly the impact of stressful steps on the subsequent inactivation at consumer's home.
Collapse
|
8
|
Pascoe B, Schiaffino F, Murray S, Méric G, Bayliss SC, Hitchings MD, Mourkas E, Calland JK, Burga R, Yori PP, Jolley KA, Cooper KK, Parker CT, Olortegui MP, Kosek MN, Sheppard SK. Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. PLoS Negl Trop Dis 2020; 14:e0008533. [PMID: 32776937 PMCID: PMC7440661 DOI: 10.1371/journal.pntd.0008533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/20/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Campylobacter is the leading bacterial cause of gastroenteritis worldwide and its incidence is especially high in low- and middle-income countries (LMIC). Disease epidemiology in LMICs is different compared to high income countries like the USA or in Europe. Children in LMICs commonly have repeated and chronic infections even in the absence of symptoms, which can lead to deficits in early childhood development. In this study, we sequenced and characterized C. jejuni (n = 62) from a longitudinal cohort study of children under the age of 5 with and without diarrheal symptoms, and contextualized them within a global C. jejuni genome collection. Epidemiological differences in disease presentation were reflected in the genomes, specifically by the absence of some of the most common global disease-causing lineages. As in many other countries, poultry-associated strains were likely a major source of human infection but almost half of local disease cases (15 of 31) were attributable to genotypes that are rare outside of Peru. Asymptomatic infection was not limited to a single (or few) human adapted lineages but resulted from phylogenetically divergent strains suggesting an important role for host factors in the cryptic epidemiology of campylobacteriosis in LMICs.
Collapse
Affiliation(s)
- Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Francesca Schiaffino
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Susan Murray
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jessica K. Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rosa Burga
- Bacteriology Department, Naval Medical Research Unit-6 (NAMRU-6), Iquitos, Peru
| | - Pablo Peñataro Yori
- The Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Asociacion Benefica Prisma, Loreto, Peru
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, United States of America
| | | | - Margaret N. Kosek
- The Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Asociacion Benefica Prisma, Loreto, Peru
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
9
|
Prevalence and Genetic Diversity of C. Jejuni Isolated from Broilers and their Environment Using flaA-RFLP Typing and MLST Analysis. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Campylobacter is highly diverse genetically and also undergoes frequent intraspecific recombination. A major source of campylobacteriosis, which is transmitted to humans is found in poultry. The assessment of the genetic diversity among Campylobacter population is critical to our understanding of the epidemiology. The genetic diversity of Campylobacter jejuni isolates in broilers and their environment were investigated by flaA-restriction fragment length polymorphism (RFLP) and multilocus sequence typing (MLST). The study revealed that 92.3% of the examined broiler flocks were contaminated with Campylobacter spp. A total number of 35 different flaA types defined by flaA-RFLP were found in 448 C. jejuni isolates originated from broilers, litter, puddles, zones, anteroom and wild birds. The most dominant flaA type was XXV. MLST defined 20 sequence types (STs) belonging to 10 clonal complexes (CCs). Among all the STs 9 isolates (15%) were consigned to 2 different STs (ST-7413 and ST-4800), which could not be assigned. The most common CCs were ST-21 and ST-179. The ST-21 CC was common in broilers and environment (puddle water and concentric zones) and the ST-179 CC was specific to wild birds, but also was found in puddle water and concentric zones.
Collapse
|
10
|
Marotta F, Janowicz A, Di Marcantonio L, Ercole C, Di Donato G, Garofolo G, Di Giannatale E. Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Pathogens 2020; 9:E304. [PMID: 32326051 PMCID: PMC7238051 DOI: 10.3390/pathogens9040304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance.
Collapse
Affiliation(s)
- Francesca Marotta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Anna Janowicz
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Lisa Di Marcantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Guido Di Donato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| |
Collapse
|
11
|
Wieczorek K, Wołkowicz T, Osek J. MLST-based genetic relatedness of Campylobacter jejuni isolated from chickens and humans in Poland. PLoS One 2020; 15:e0226238. [PMID: 31978059 PMCID: PMC6980552 DOI: 10.1371/journal.pone.0226238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/24/2019] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni infection is one of the most frequently reported foodborne bacterial diseases worldwide. The main transmission route of these microorganisms to humans is consumption of contaminated food, especially of chicken origin. The aim of this study was to analyze the genetic relatedness of C. jejuni from chicken sources (feces, carcasses, and meat) and from humans with diarrhea as well as to subtype the isolates to gain better insight into their population structure present in Poland. C. jejuni were genotyped using multilocus sequence typing (MLST) and sequence types (STs) were assigned in the MLST database. Among 602 isolates tested, a total of 121 different STs, including 70 (57.9%) unique to the isolates' origin, and 32 STs that were not present in the MLST database were identified. The most prevalent STs were ST464 and ST257, with 58 (9.6%) and 52 (8.6%) C. jejuni isolates, respectively. Isolates with some STs (464, 6411, 257, 50) were shown to be common in chickens, whereas others (e.g. ST21 and ST572) were more often identified among human C. jejuni. It was shown that of 47 human sequence types, 26 STs (106 isolates), 23 STs (102 isolates), and 29 STs (100 isolates) were also identified in chicken feces, meat, and carcasses, respectively. These results, together with the high and similar proportional similarity indexes (PSI) calculated for C. jejuni isolated from patients and chickens, may suggest that human campylobacteriosis was associated with contaminated chicken meat or meat products or other kinds of food cross-contaminated with campylobacters of chicken origin. The frequency of various sequence types identified in the present study generally reflects of the prevalence of STs in other countries which may suggest that C. jejuni with some STs have a global distribution, while other genotypes may be more restricted to certain countries.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Tomasz Wołkowicz
- Department of Bacteriology and Biocontamination Control, National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
12
|
Duqué B, Haddad N, Rossero A, Membré JM, Guillou S. Influence of cell history on the subsequent inactivation of Campylobacter jejuni during cold storage under modified atmosphere. Food Microbiol 2019; 84:103263. [DOI: 10.1016/j.fm.2019.103263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 07/05/2019] [Indexed: 11/15/2022]
|
13
|
Berthenet E, Thépault A, Chemaly M, Rivoal K, Ducournau A, Buissonnière A, Bénéjat L, Bessède E, Mégraud F, Sheppard SK, Lehours P. Source attribution of Campylobacter jejuni shows variable importance of chicken and ruminants reservoirs in non-invasive and invasive French clinical isolates. Sci Rep 2019; 9:8098. [PMID: 31147581 PMCID: PMC6542803 DOI: 10.1038/s41598-019-44454-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial gastroenteritis worldwide. Mainly isolated from stool samples, C. jejuni can also become invasive. C. jejuni belongs to the commensal microbiota of a number of hosts, and infection by this bacterium can sometimes be traced back to exposure to a specific source. Here we genome sequenced 200 clinical isolates (2010–2016) and analyzed them with 701 isolate genomes from human infection, chicken, ruminants and the environment to examine the relative contribution of different reservoirs to non-invasive and invasive infection in France. Host-segregating genetic markers that can discriminate C. jejuni source were used with STRUCTURE software to probabilistically attribute the source of clinical strains. A self-attribution correction step, based upon the accuracy of source apportionment within each potential reservoir, improved attribution accuracy of clinical strains and suggested an important role for ruminant reservoirs in non-invasive infection and a potentially increased contribution of chicken as a source of invasive isolates. Structured sampling of Campylobacter in the clinic and from potential reservoirs provided evidence for variation in the contribution of different infection sources over time and an important role for non-poultry reservoirs in France. This provides a basis for ongoing genomic epidemiology surveillance and targeted interventions.
Collapse
Affiliation(s)
- Elvire Berthenet
- French National Reference Center for Campylobacters & Helicobacters, Bordeaux, France
| | - Amandine Thépault
- Unit of Hygiene and Quality of Poultry & Pork Products, Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Marianne Chemaly
- Unit of Hygiene and Quality of Poultry & Pork Products, Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Katell Rivoal
- Unit of Hygiene and Quality of Poultry & Pork Products, Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Astrid Ducournau
- French National Reference Center for Campylobacters & Helicobacters, Bordeaux, France
| | - Alice Buissonnière
- French National Reference Center for Campylobacters & Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- French National Reference Center for Campylobacters & Helicobacters, Bordeaux, France
| | - Emilie Bessède
- French National Reference Center for Campylobacters & Helicobacters, Bordeaux, France.,Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33076, Bordeaux, France
| | - Francis Mégraud
- French National Reference Center for Campylobacters & Helicobacters, Bordeaux, France.,Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33076, Bordeaux, France
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Philippe Lehours
- French National Reference Center for Campylobacters & Helicobacters, Bordeaux, France. .,Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33076, Bordeaux, France.
| |
Collapse
|
14
|
Kovanen S, Rossi M, Pohja-Mykrä M, Nieminen T, Raunio-Saarnisto M, Sauvala M, Fredriksson-Ahomaa M, Hänninen ML, Kivistö R. Population Genetics and Characterization of Campylobacter jejuni Isolates from Western Jackdaws and Game Birds in Finland. Appl Environ Microbiol 2019; 85:e02365-18. [PMID: 30552190 PMCID: PMC6365822 DOI: 10.1128/aem.02365-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/08/2018] [Indexed: 01/18/2023] Open
Abstract
Poultry are considered a major reservoir and source of human campylobacteriosis, but the roles of environmental reservoirs, including wild birds, have not been assessed in depth. In this study, we isolated and characterized Campylobacter jejuni from western jackdaws (n = 91, 43%), mallard ducks (n = 82, 76%), and pheasants (n = 9, 9%). Most of the western jackdaw and mallard duck C. jejuni isolates represented multilocus sequence typing (MLST) sequence types (STs) that diverged from those previously isolated from human patients and various animal species, whereas all pheasant isolates represented ST-19, a common ST among human patients and other hosts worldwide. Whole-genome MLST revealed that mallard duck ST-2314 and pheasant ST-19 isolates represented bacterial clones that were genetically highly similar to human isolates detected previously. Further analyses revealed that in addition to a divergent ClonalFrame genealogy, certain genomic characteristics of the western jackdaw C. jejuni isolates, e.g., a novel cdtABC gene cluster and the type VI secretion system (T6SS), may affect their host specificity and virulence. Game birds may thus pose a risk for acquiring campylobacteriosis; therefore, hygienic measures during slaughter and meat handling warrant special attention.IMPORTANCE The roles of environmental reservoirs, including wild birds, in the molecular epidemiology of Campylobacter jejuni have not been assessed in depth. Our results showed that game birds may pose a risk for acquiring campylobacteriosis, because they had C. jejuni genomotypes highly similar to human isolates detected previously. Therefore, hygienic measures during slaughter and meat handling warrant special attention. On the contrary, a unique phylogeny was revealed for the western jackdaw isolates, and certain genomic characteristics identified among these isolates are hypothesized to affect their host specificity and virulence. Comparative genomics within sequence types (STs), using whole-genome multilocus sequence typing (wgMLST), and phylogenomics are efficient methods to analyze the genomic relationships of C. jejuni isolates.
Collapse
Affiliation(s)
- Sara Kovanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Pohja-Mykrä
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | - Timo Nieminen
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | | | - Mikaela Sauvala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Awad A, Elkenany R, Sadat A, Ragab W, Elhadidy M. Multilocus Sequence Typing (MLST) of Campylobacter jejuni Isolated From Broiler Meat in Egypt. Pak J Biol Sci 2019; 22:574-579. [PMID: 31930855 DOI: 10.3923/pjbs.2019.574.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Infection with Campylobacter jejuni is one of the most common causes of bacterial gastroenteritis. Infections are mostly acquired due to consumption of raw or undercooked poultry. The aim of this pilot study is to determine the prevalence and the sequence types (STs) distribution of C. jejuni isolated from broiler meat in Egypt. MATERIALS AND METHODS A total of 190 broiler meat samples were collected from retail chicken shops located at Mansoura, Egypt and examined bacteriologically for the presence of Campylobacter spp. The biochemically identified Campylobacter isolates were confirmed by Multiplex PCR (m-PCR). In addition, multilocus sequencing typing (MLST) was used for genotyping of C. jejuni isolates. RESULTS Thirty two Campylobacter isolates divided into C. coli (25 isolates) and C. jejuni (7 isolates) were recovered. Multiplex PCR results found to be 100% in line with biochemical identification. Out of 7 C. jejuni isolates genotyped by MLST, 4 isolates were assigned to ST21, 2 isolates were assigned to ST48 and one isolate was assigned to ST464. CONCLUSION This study provides valuable information concerning the prevalence of thermophilic Campylobacter spp. and sequence types distribution of C. jejuni recovered from broiler meat for the first time in Egypt. The identified sequence types from this study were frequently reported in human illnesses. Thus, the present results highlight the importance of the retail broiler meat as a significant source for human Campylobacter infection.
Collapse
|
16
|
Nilsson A, Johansson C, Skarp A, Kaden R, Bertilsson S, Rautelin H. Survival ofCampylobacter jejuniandCampylobacter coliwater isolates in lake and well water. APMIS 2018; 126:762-770. [DOI: 10.1111/apm.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Anna Nilsson
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Cecilia Johansson
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Astrid Skarp
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - René Kaden
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, and Science for Life Laboratory; Uppsala University; Uppsala Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| |
Collapse
|
17
|
Thépault A, Rose V, Quesne S, Poezevara T, Béven V, Hirchaud E, Touzain F, Lucas P, Méric G, Mageiros L, Sheppard SK, Chemaly M, Rivoal K. Ruminant and chicken: important sources of campylobacteriosis in France despite a variation of source attribution in 2009 and 2015. Sci Rep 2018; 8:9305. [PMID: 29915208 PMCID: PMC6006168 DOI: 10.1038/s41598-018-27558-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/30/2018] [Indexed: 11/17/2022] Open
Abstract
Pathogen source attribution studies are a useful tool for identifying reservoirs of human infection. Based on Multilocus Sequence Typing (MLST) data, such studies have identified chicken as a major source of C. jejuni human infection. The use of whole genome sequence-based typing methods offers potential to improve the precision of attribution beyond that which is possible from 7 MLST loci. Using published data and 156 novel C. jejuni genomes sequenced in this study, we performed probabilistic host source attribution of clinical C. jejuni isolates from France using three types of genotype data: comparative genomic fingerprints; MLST genes; 15 host segregating genes previously identified by whole genome sequencing. Consistent with previous studies, chicken was an important source of campylobacteriosis in France (31-63% of clinical isolates assigned). There was also evidence that ruminants are a source (22-55% of clinical isolates assigned), suggesting that further investigation of potential transmission routes from ruminants to human would be useful. Additionally, we found evidence of environmental and pet sources. However, the relative importance as sources varied according to the year of isolation and the genotyping technique used. Annual variations in attribution emphasize the dynamic nature of zoonotic transmission and the need to perform source attribution regularly.
Collapse
Affiliation(s)
- Amandine Thépault
- Hygiene and Quality of Poultry & Pork Products Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
- University of Rennes 1, Rennes, France
| | - Valérie Rose
- Hygiene and Quality of Poultry & Pork Products Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Ségolène Quesne
- Hygiene and Quality of Poultry & Pork Products Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Typhaine Poezevara
- Hygiene and Quality of Poultry & Pork Products Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Véronique Béven
- Viral Genetics & Biosafety Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Edouard Hirchaud
- Viral Genetics & Biosafety Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Fabrice Touzain
- Viral Genetics & Biosafety Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Pierrick Lucas
- Viral Genetics & Biosafety Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Leonardos Mageiros
- Swansea University, Medical School, Institute of Life Science, Singleton Campus, Swansea, United Kingdom
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - Marianne Chemaly
- Hygiene and Quality of Poultry & Pork Products Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France
| | - Katell Rivoal
- Hygiene and Quality of Poultry & Pork Products Unit, Laboratory of Ploufragan-Plouzané, French Agency for Food Environmental and Occupational Health & Safety (Anses), Ploufragan, France.
| |
Collapse
|
18
|
Elhadidy M, Arguello H, Álvarez-Ordóñez A, Miller WG, Duarte A, Martiny D, Hallin M, Vandenberg O, Dierick K, Botteldoorn N. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness. Int J Food Microbiol 2018; 275:66-75. [PMID: 29649751 DOI: 10.1016/j.ijfoodmicro.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| | - Hector Arguello
- Genomic and Animal Biotechnology, Department of Genetics, Veterinary Faculty, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, Spain
| | - William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Alexandra Duarte
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium; National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| | - Delphine Martiny
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Marie Hallin
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium; Department of Molecular Diagnosis, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Olivier Vandenberg
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium; Center for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Katelijne Dierick
- National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| | - Nadine Botteldoorn
- National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| |
Collapse
|
19
|
Atterby C, Mourkas E, Méric G, Pascoe B, Wang H, Waldenström J, Sheppard SK, Olsen B, Järhult JD, Ellström P. The Potential of Isolation Source to Predict Colonization in Avian Hosts: A Case Study in Campylobacter jejuni Strains From Three Bird Species. Front Microbiol 2018; 9:591. [PMID: 29651281 PMCID: PMC5884941 DOI: 10.3389/fmicb.2018.00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is the primary cause of bacterial gastroenteritis worldwide, infecting humans mostly through consumption of contaminated poultry. C. jejuni is common in the gut of wild birds, and shows distinct strain-specific association to particular bird species. This contrasts with farm animals, in which several genotypes co-exist. It is unclear if the barriers restricting transmission between host species of such specialist strains are related to environmental factors such as contact between host species, bacterial survival in the environment, etc., or rather to strain specific adaptation to the intestinal environment of specific hosts. We compared colonization dynamics in vivo between two host-specific C. jejuni from a song thrush (ST-1304 complex) and a mallard (ST-995), and a generalist strain from chicken (ST-21 complex) in a wild host, the mallard (Anas platyrhynchos). In 18-days infection experiments, the song thrush strain showed only weak colonization and was cleared from all birds after 10 days, whereas both mallard and chicken strains remained stable. When the chicken strain was given 4 days prior to co-infection of the same birds with a mallard strain, it was rapidly outcompeted by the latter. In contrast, when the mallard strain was given 4 days prior to co-infection with the chicken strain, the mallard strain remained and expansion of the chicken strain was delayed. Our results suggest strain-specific differences in the ability of C. jejuni to colonize mallards, likely associated with host origin. This difference might explain observed host association patterns in C. jejuni from wild birds.
Collapse
Affiliation(s)
- Clara Atterby
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Evangelos Mourkas
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Guillaume Méric
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Ben Pascoe
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,MRC CLIMB Consortium, Bath, United Kingdom
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Samuel K Sheppard
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,MRC CLIMB Consortium, Bath, United Kingdom
| | - Björn Olsen
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Wysok B, Wojtacka J. Detection of virulence genes determining the ability to adhere and invade in Campylobacter spp. from cattle and swine in Poland. Microb Pathog 2018; 115:257-263. [DOI: 10.1016/j.micpath.2017.12.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
|
21
|
Nilsson A, Johansson C, Skarp A, Kaden R, Engstrand L, Rautelin H. Genomic and phenotypic characteristics of Swedish C. jejuni water isolates. PLoS One 2017; 12:e0189222. [PMID: 29216271 PMCID: PMC5720728 DOI: 10.1371/journal.pone.0189222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial gastroenteritis. Major reservoirs are warm-blooded animals, poultry in particular, but Campylobacter can also be transmitted via water. In this paper, we have taken a closer look at the biology and potential virulence of C. jejuni water isolates. Seven C. jejuni isolates from incoming surface water at water plants in Sweden were characterized with whole genome sequencing and phenotypical testing. Multi locus sequence typing analysis revealed that these isolates belonged to groups known to include both common (ST48CC) and uncommon (ST1275CC, ST683, ST793 and ST8853) human pathogens. Further genomic characterization revealed that these isolates had potential for arsenic resistance (due to presence of arsB gene in all isolates), an anaerobic dimethyl sulfoxide oxidoreductase (in three isolates) and lacked the MarR-type transcriptional regulator gene rrpB (in all but one isolate) earlier shown to be involved in better survival under oxidative and aerobic stress. As putative virulence factors were concerned, there were differences between the water isolates in the presence of genes coding for cytolethal distending toxin (cdtABC), Type VI secretion system and sialylated LOS, as well as in biofilm formation. However, all isolates were motile and could adhere to and invade the human HT-29 colon cancer cell line in vitro and induce IL-8 secretion suggesting potential to infect humans. This is, to the best of our knowledge, the first study where C. jejuni water isolates have been characterized using whole genome sequencing and phenotypical assays. We found differences and shared traits among the isolates but also potential to infect humans.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Johansson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Astrid Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, and Science for Life Laboratory, Stockholm, Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Ramonaite S, Tamuleviciene E, Alter T, Kasnauskyte N, Malakauskas M. MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania. BMC Infect Dis 2017; 17:430. [PMID: 28619013 PMCID: PMC5472909 DOI: 10.1186/s12879-017-2535-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/08/2017] [Indexed: 11/21/2022] Open
Abstract
Background Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. Methods The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database (http://pubmlst.org/campylobacter). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Results Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database (http://pubmlst.org/campylobacter). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson’s index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Conclusion Our results suggest that broiler products are the most important source of human campylobacteriosis in Lithuania. The study provides information on MLST type distribution and genetic relatedness of C. jejuni strains from humans, broiler products and dairy cattle in Lithuania for the first time, enabling a better understanding of the transmission pathways of C. jejuni in this country.
Collapse
Affiliation(s)
- Sigita Ramonaite
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, A. Mickeviciaus st. 9, LT 44307, Kaunas, LT, Lithuania.
| | - Egle Tamuleviciene
- Clinic of Children Diseases, Medicine Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Neringa Kasnauskyte
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, A. Mickeviciaus st. 9, LT 44307, Kaunas, LT, Lithuania
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, A. Mickeviciaus st. 9, LT 44307, Kaunas, LT, Lithuania
| |
Collapse
|
23
|
Accessory genetic content in Campylobacter jejuni ST21CC isolates from feces and blood. Int J Med Microbiol 2017; 307:233-240. [PMID: 28408091 DOI: 10.1016/j.ijmm.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/30/2017] [Accepted: 04/02/2017] [Indexed: 01/06/2023] Open
Abstract
Campylobacter jejuni is an important foodborne pathogen and the most commonly reported bacterial cause of gastroenteritis. C. jejuni is occasionally found in blood, although mechanisms important for invasiveness have remained unclear. C. jejuni is divided into many different lineages, of which the ST21 clonal complex (CC) is widely distributed. Here, we performed comparative genomic and in vitro analyses on 17C. jejuni ST21CC strains derived from human blood and feces in order to identify features associated with isolation site. The ST21CC lineage is divided into two large groups; centered around ST-21 and ST-50. Our clinical strains, typed as ST-50, showed further microevolution into two distinct clusters. These clusters were distinguished by major differences in their capsule loci and the distribution of accessory genetic content, including C. jejuni integrated elements (CJIEs) and plasmids. Accessory genetic content was more common among fecal than blood strains, whereas blood strains contained a hybrid capsule locus which partially consisted of C. jejuni subsp. doylei-like content. In vitro infection assays with human colon cell lines did not show significant differences in adherence and invasion between the blood and fecal strains. Our results showed that CJIEs and plasmid derived genetic material were less common among blood isolates than fecal isolates; in contrast, hybrid capsule loci, especially those containing C. jejuni subsp. doylei-like gene content, were found among many isolates derived from blood. The role of these findings requires more detailed investigation.
Collapse
|
24
|
Casey E, Fitzgerald E, Lucey B. Towards understanding clinical campylobacter infection and its transmission: time for a different approach? Br J Biomed Sci 2017; 74:53-64. [PMID: 28367739 DOI: 10.1080/09674845.2017.1291205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Campylobacter spp. are among the most commonly diagnosed causes of human infection. Methods for detection of the 29 campylobacter species have mainly focused on cultivation of the thermophilic species. More than 99% of clinical campylobacter isolates notified in the UK in the recent past have been from faecal samples and associated with gastroenteritis. Campylobacter enteritis notifications in temperate zones show a seasonal increase during the summer months with a sharp decrease in the winter months, a pattern which remains incompletely understood. The striking seasonality in the expression of many human genes, some concerned with inflammation and immunity, suggests a need for further study of the host regarding the temporal distribution of many human infections, including campylobacteriosis. A tendency for campylobacter to enter a non-cultivable state under adverse conditions effects a reduction in the number of isolations. A Polymerase Chain Reaction (PCR)-based screening approach for the presence of the Campylobacter genus and followed by speciation has provided some insight into the limitations of cultivation for campylobacter, also allowing the discovery of new species. The increased sensitivity of the PCR-based approach over culture-based methods may make it difficult for the laboratory to differentiate asymptomatic campylobacter carriage from clinical campylobacter infection in non-sterile body sites. Campylobacter infection depends on a combination of host factors, and on acquisition of a suitably virulent strain with a tropism for human epithelium. The possibility of persistence of campylobacter in a viable but non-culturable latent form in the human body may also require further investigation. The scope of this review includes a discussion of current methods for diagnosing acute campylobacter infection and for detecting campylobacter in water and foodstuffs. The review also questions the prevailing view that poultry is the most common source of campylobacteriosis.
Collapse
Affiliation(s)
- E Casey
- a Department of Biological Sciences , Cork Institute of Technology , Bishopstown , Ireland
| | - E Fitzgerald
- a Department of Biological Sciences , Cork Institute of Technology , Bishopstown , Ireland
| | - B Lucey
- a Department of Biological Sciences , Cork Institute of Technology , Bishopstown , Ireland
| |
Collapse
|
25
|
Llarena AK, Zhang J, Vehkala M, Välimäki N, Hakkinen M, Hänninen ML, Roasto M, Mäesaar M, Taboada E, Barker D, Garofolo G, Cammà C, Di Giannatale E, Corander J, Rossi M. Monomorphic genotypes within a generalist lineage of Campylobacter jejuni show signs of global dispersion. Microb Genom 2016; 2:e000088. [PMID: 28348829 PMCID: PMC5359405 DOI: 10.1099/mgen.0.000088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/12/2016] [Indexed: 01/05/2023] Open
Abstract
The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ji Zhang
- Institute of Veterinary, Animal & Biomedical Sciences, College of Sciences, Massey University, Palmerstone North, New Zealand
| | - Minna Vehkala
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Marjaana Hakkinen
- Food and Feed Microbiology Research Unit, Research and Laboratory Department, Finnish Food Safety Authority Evira, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mati Roasto
- Department of Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mihkel Mäesaar
- Department of Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Veterinary and Food Laboratory, VFL, Tartu, Estonia
| | - Eduardo Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, c/o Animal Diseases Research Institute, Lethbridge, Canada
| | - Dillon Barker
- National Microbiology Laboratory, Public Health Agency of Canada, c/o Animal Diseases Research Institute, Lethbridge, Canada
| | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Cesare Cammà
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Elisabetta Di Giannatale
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Jukka Corander
- Institute of Basic Medical Sciences, Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Klein-Jöbstl D, Sofka D, Iwersen M, Drillich M, Hilbert F. Multilocus Sequence Typing and Antimicrobial Resistance of Campylobacter jejuni Isolated from Dairy Calves in Austria. Front Microbiol 2016; 7:72. [PMID: 26870027 PMCID: PMC4737881 DOI: 10.3389/fmicb.2016.00072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
Human campylobacteriosis is primarily associated with poultry but also cattle. In this study, 55 Campylobacter jejuni strains isolated from 382 dairy calves’ feces were differentiated by multilocus sequence typing and tested for antimicrobial resistance. The most prevalent sequence type (ST) was ST883 (20.0%), followed by ST48 (14.5%), and ST50 (9.1%). In contrast to ST48 and ST50, ST883 has rarely been described in cattle previously. Furthermore, risk factor analysis was performed for the presence of the most prevalent STs in these calves. Multiple regression analysis revealed that the type of farm (organic vs. conventional) and calf housing (place, and individual vs. group) were identified as significantly (p < 0.05) associated with the presence of ST883 in calves, and ST50 was associated with calf diarrhea. Antimicrobial resistance was detected in 58.2% of the isolates. Most of the resistant isolates (81.3%) were resistant to more than one antimicrobial. Most frequently, resistance to ciprofloxacin (49.1%), followed by nalidixic acid (42.8%), and tetracycline (14.5%) was observed. The results of the present study support the hypothesis that dairy calves may serve as a potential reservoir for C. jejuni and pose a risk for transmission, including antimicrobial resistant isolates to the environment and to humans.
Collapse
Affiliation(s)
- Daniela Klein-Jöbstl
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna Vienna, Austria
| | - Dmitri Sofka
- Institute of Meat Hygiene, Meat Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna Vienna, Austria
| | - Michael Iwersen
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna Vienna, Austria
| | - Marc Drillich
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna Vienna, Austria
| | - Friederike Hilbert
- Institute of Meat Hygiene, Meat Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna Vienna, Austria
| |
Collapse
|
27
|
Manfreda G, Parisi A, De Cesare A, Mion D, Piva S, Zanoni RG. Typing of Campylobacter jejuni Isolated from Turkey by Genotypic Methods, Antimicrobial Susceptibility, and Virulence Gene Patterns: A Retrospective Study. Foodborne Pathog Dis 2015; 13:93-100. [PMID: 26693797 DOI: 10.1089/fpd.2015.2048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this retrospective study, typing ability, discriminatory power, and concordance between typing results obtained on 123 Campylobacter jejuni turkey isolates, collected in 1998, within 14 different farms, applying multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), antibiotic resistance profile, and virulence gene pattern, were assessed and compared. Overall, 33 sequence types, 28 pulsotypes, 10 resistotypes, and 5 pathotypes were identified. MLST and PFGE showed the better discriminatory ability (i.e., Simpson's diversity index >0.90) as well as unidirectional (i.e., Wallace and adjusted Wallace coefficients >0.86) and bidirectional (i.e., adjusted Rand coefficient >0.60) concordance. Moreover, both methods showed a good unidirectional and bidirectional concordance with the resistotype. On the contrary, the congruence of both genotyping methods and resistotype with the pathotype seemed due to chance alone. A clonal relationship was identified among 66.7% of the isolates. Furthermore, 59.7% of the investigated isolates were resistant to two or more antimicrobials and 92% to tetracycline. All the isolates harbored cadF and pldA genes, whereas a flaA gene product and a cdtB gene product were amplified from 85.4% and 79.7% of the isolates, respectively, using the primers designed by Bang et al. (2003). The results of this study clarify the level of genetic diversity among the C. jejuni originating from turkeys. MLST level of correlation with PFGE, resistotype, and pathotype is assessed. This result supports the selection of type and number of typing methods to use in epidemiological studies. Finally, the identification of clonal complexes (i.e., groups of profiles differing by no more than one gene from at least one other profile of the group using the entire Campylobacter MLST database) shared between turkey and human isolates suggests that turkeys could be a possible source of Campylobacter infection.
Collapse
Affiliation(s)
- Gerardo Manfreda
- 1 Department of Agricultural and Food Sciences, University of Bologna , Ozzano dell'Emilia, Italy
| | - Antonio Parisi
- 2 Experimental Zooprophylactic Institute of Apulia and Basilicata , Foggia, Italy
| | - Alessandra De Cesare
- 1 Department of Agricultural and Food Sciences, University of Bologna , Ozzano dell'Emilia, Italy
| | - Domenico Mion
- 3 Department of Veterinary Medical Sciences, University of Bologna , Ozzano dell'Emilia, Italy
| | - Silvia Piva
- 3 Department of Veterinary Medical Sciences, University of Bologna , Ozzano dell'Emilia, Italy
| | - Renato G Zanoni
- 3 Department of Veterinary Medical Sciences, University of Bologna , Ozzano dell'Emilia, Italy
| |
Collapse
|
28
|
Skarp CPA, Hänninen ML, Rautelin HIK. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect 2015; 22:103-109. [PMID: 26686808 DOI: 10.1016/j.cmi.2015.11.019] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 11/26/2022]
Abstract
The incidence of human infections caused by Campylobacter jejuni and Campylobacter coli, the main bacterial agents of gastrointestinal disease, has been increasing worldwide. Here, we review the role of poultry as a source and reservoir for Campylobacter. Contamination and subsequent colonization of broiler flocks at the farm level often lead to transmission of Campylobacter along the poultry production chain and contamination of poultry meat at retail. Yet Campylobacter prevalence in poultry, as well as the contamination level of poultry products, vary greatly between different countries so there are differences in the intervention strategies that need to be applied. Temporal patterns in poultry do not always coincide with those found in human infections. Studies in rural and urban areas have revealed differences in Campylobacter infections attributed to poultry, as poultry seems to be the predominant reservoir in urban, but not necessarily in rural, settings. Furthermore, foreign travel is considered a major risk factor in acquiring the disease, especially for individuals living in the northern European countries. Intervention strategies aimed at reducing Campylobacter colonization in poultry and focused at the farm level have been successful in reducing the number of Campylobacter cases in several countries. Increasing farm biosecurity and education of consumers are likely to limit the risk of infection. Overall, poultry is an important reservoir and source of human campylobacteriosis, although the contribution of other sources, reservoirs and transmission warrants more research.
Collapse
Affiliation(s)
- C P A Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - M-L Hänninen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - H I K Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
29
|
Skarp CPA, Akinrinade O, Nilsson AJE, Ellström P, Myllykangas S, Rautelin H. Comparative genomics and genome biology of invasive Campylobacter jejuni. Sci Rep 2015; 5:17300. [PMID: 26603914 PMCID: PMC4658567 DOI: 10.1038/srep17300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/28/2015] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is a major pathogen in bacterial gastroenteritis worldwide and can cause bacteremia in severe cases. C. jejuni is highly structured into clonal lineages of which the ST677CC lineage has been overrepresented among C. jejuni isolates derived from blood. In this study, we characterized the genomes of 31 C. jejuni blood isolates and 24 faecal isolates belonging to ST677CC in order to study the genome biology related to C. jejuni invasiveness. We combined the genome analyses with phenotypical evidence on serum resistance which was associated with phase variation of wcbK; a GDP-mannose 4,6-dehydratase involved in capsular biosynthesis. We also describe the finding of a Type III restriction-modification system unique to the ST-794 sublineage. However, features previously considered to be related to pathogenesis of C. jejuni were either absent or disrupted among our strains. Our results refine the role of capsule features associated with invasive disease and accentuate the possibility of methylation and restriction enzymes in the potential of C. jejuni to establish invasive infections. Our findings underline the importance of studying clinically relevant well-characterized bacterial strains in order to understand pathogenesis mechanisms important in human infections.
Collapse
Affiliation(s)
- C. P. A. Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - O. Akinrinade
- Institute of Clinical Medicine, University of Helsinki,
Helsinki, Finland
- Institute of Biomedicine, University of Helsinki,
Helsinki, Finland
| | - A. J. E. Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - P. Ellström
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - S. Myllykangas
- Institute of Biomedicine, University of Helsinki,
Helsinki, Finland
| | - H. Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
- Department of Bacteriology and Immunology, University of
Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Guyard-Nicodème M, Rivoal K, Houard E, Rose V, Quesne S, Mourand G, Rouxel S, Kempf I, Guillier L, Gauchard F, Chemaly M. Prevalence and characterization of Campylobacter jejuni from chicken meat sold in French retail outlets. Int J Food Microbiol 2015; 203:8-14. [DOI: 10.1016/j.ijfoodmicro.2015.02.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
|
31
|
Llarena AK, Huneau A, Hakkinen M, Hänninen ML. Predominant Campylobacter jejuni sequence types persist in Finnish chicken production. PLoS One 2015; 10:e0116585. [PMID: 25700264 PMCID: PMC4336332 DOI: 10.1371/journal.pone.0116585] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/11/2014] [Indexed: 12/04/2022] Open
Abstract
Consumption and handling of chicken meat are well-known risk factors for acquiring campylobacteriosis. This study aimed to describe the Campylobacter jejuni population in Finnish chickens and to investigate the distribution of C. jejuni genotypes on Finnish chicken farms over a period of several years. We included 89.8% of the total C. jejuni population recovered in Finnish poultry during 2004, 2006, 2007, 2008, and 2012 and used multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to characterize the 380 isolates. The typing data was combined with isolate information on collection-time and farm of origin. The C. jejuni prevalence in chicken slaughter batches was low (mean 3.0%, CI95% [1.8%, 4.2%]), and approximately a quarter of Finnish chicken farms delivered at least one positive chicken batch yearly. In general, the C. jejuni population was diverse as represented by a total of 63 sequence types (ST), but certain predominant MLST lineages were identified. ST-45 clonal complex (CC) accounted for 53% of the isolates while ST-21 CC and ST-677 CC covered 11% and 9% of the isolates, respectively. Less than half of the Campylobacter positive farms (40.3%) delivered C. jejuni-contaminated batches in multiple years, but the genotypes (ST and PFGE types) generally varied from year to year. Therefore, no evidence for a persistent C. jejuni source for the colonization of Finnish chickens emerged. Finnish chicken farms are infrequently contaminated with C. jejuni compared to other European Union (EU) countries, making Finland a valuable model for further epidemiological studies of the C. jejuni in poultry flocks.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Adeline Huneau
- Anses, Ploufragan-Plouzané laboratory, BP 53, 22440, Ploufragan, France
| | - Marjaana Hakkinen
- Food and Feed Microbiology Research Unit, Research and Laboratory Department, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Multilocus sequence typing (MLST) and whole-genome MLST of Campylobacter jejuni isolates from human infections in three districts during a seasonal peak in Finland. J Clin Microbiol 2014; 52:4147-54. [PMID: 25232158 DOI: 10.1128/jcm.01959-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A total of 95 human Campylobacter jejuni isolates acquired from domestic infections and collected from three districts in Finland during the seasonal peak (June to September) in 2012 were analyzed by PCR-based multilocus sequence typing (MLST) and by whole-genome sequencing (WGS). Four predominant sequence types (STs) were detected among the isolates: ST-45 (21%) and ST-230 (14%, ST-45 clonal complex [CC]), ST-267 (21%, ST-283 CC), and ST-677 (19%, ST-677 CC). In districts 1 and 3, most of the infections occurred from early July to the middle of August, with a peak at weeks 29 to 31, but in district 2, the infections were dispersed more evenly throughout 3 months (June to August). WGS data were used for further whole-genome MLST (wgMLST) analyses of the isolates representing the four common STs. Shared loci of the isolates within each ST were analyzed as distance matrices of allelic profiles by the neighbor-net algorithm. The highest allelic variations (>400 different alleles) were detected between different clusters of ST-45 isolates (1,121 shared loci), while ST-230 (1,264 shared loci), ST-677 (1,169 shared loci), and ST-267 isolates (1,217 shared loci) were less diverse with the clusters differing by <40 alleles. Closely related isolates showing no allelic variation (subclusters) were detected among all four major STs. In some cases, they originated from different districts, suggesting that isolates can be epidemiologically connected and may have the same infection source despite being originally identified as sporadic infections.
Collapse
|
33
|
Kivistö RI, Kovanen S, Skarp-de Haan A, Schott T, Rahkio M, Rossi M, Hänninen ML. Evolution and comparative genomics of Campylobacter jejuni ST-677 clonal complex. Genome Biol Evol 2014; 6:2424-38. [PMID: 25193305 PMCID: PMC4202330 DOI: 10.1093/gbe/evu194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Campylobacter is the most common bacterial cause of gastroenteritis in the European Union with over 200,000 laboratory-confirmed cases reported annually. This is the first study to describe findings related to comparative genomics analyses of the sequence type (ST)-677 clonal complex (CC), a Campylobacter jejuni lineage associated with bacteremia cases in humans. We performed whole-genome sequencing, using Illumina HiSeq sequencing technology, on five related ST-677 CC isolates from two chicken farms to identify microevolution taking place at the farms. Our further aim was to identify novel putative virulence determinants from the ST-677 CC genomes. For this purpose, clinical isolates of the same CC were included in comparative genomic analyses against well-known reference strains of C. jejuni. Overall, the ST-677 CC was recognized as a highly clonal lineage with relatively small differences between the genomes. Among the farm isolates differences were identified mainly in the lengths of the homopolymeric tracts in genes related to the capsule, lipo-oligosaccharide, and flagella. We identified genomic features shared with C. jejuni subsp. doylei, which has also been shown to be associated with bacteremia in humans. These included the degradation of the cytolethal distending toxin operon and similarities between the capsular polysaccharide biosynthesis loci. The phase-variable GDP-mannose 4,6-dehydratase (EC 4.2.1.47) (wcbK, CAMP1649), associated with the capsular polysaccharide biosynthesis locus, may play a central role in ST-677 CC conferring acid and serum resistance during different stages of infection. Homology-based searches revealed several additional novel features and characteristics, including two putative type Vb secretion systems and a novel restriction modification/methyltransferase gene cluster, putatively associated with pathogenesis and niche adaptation.
Collapse
Affiliation(s)
- Rauni I Kivistö
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Sara Kovanen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Astrid Skarp-de Haan
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland Present address: Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Thomas Schott
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland Present address: Biology Oceanography, Leibniz Institute for Baltic Sea Research, Rostock-Warnemünde, Germany
| | - Marjatta Rahkio
- Finnish Meat Research Institute, Hämeenlinna, Finland Present address: Finnish Association for Milk Hygiene, Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| |
Collapse
|
34
|
Kwan PSL, Xavier C, Santovenia M, Pruckler J, Stroika S, Joyce K, Gardner T, Fields PI, McLaughlin J, Tauxe RV, Fitzgerald C. Multilocus sequence typing confirms wild birds as the source of a Campylobacter outbreak associated with the consumption of raw peas. Appl Environ Microbiol 2014; 80:4540-6. [PMID: 24837383 PMCID: PMC4148789 DOI: 10.1128/aem.00537-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
From August to September 2008, the Centers for Disease Control and Prevention (CDC) assisted the Alaska Division of Public Health with an outbreak investigation of campylobacteriosis occurring among the residents of Southcentral Alaska. During the investigation, pulsed-field gel electrophoresis (PFGE) of Campylobacter jejuni isolates from human, raw pea, and wild bird fecal samples confirmed the epidemiologic link between illness and the consumption of raw peas contaminated by sandhill cranes for 15 of 43 epidemiologically linked human isolates. However, an association between the remaining epidemiologically linked human infections and the pea and wild bird isolates was not established. To better understand the molecular epidemiology of the outbreak, C. jejuni isolates (n=130; 59 from humans, 40 from peas, and 31 from wild birds) were further characterized by multilocus sequence typing (MLST). Here we present the molecular evidence to demonstrate the association of many more human C.jejuni infections associated with the outbreak with raw peas and wild bird feces. Among all sequence types (STs) identified, 26 of 39 (67%) were novel and exclusive to the outbreak. Five clusters of overlapping STs (n=32 isolates; 17 from humans, 2 from peas, and 13 from wild birds) were identified. In particular, cluster E (n=7 isolates; ST-5049) consisted of isolates from humans,peas, and wild birds. Novel STs clustered closely with isolates typically associated with wild birds and the environment but distinct from lineages commonly seen in human infections. Novel STs and alleles recovered from human outbreak isolates allowed additional infections caused by these rare genotypes to be attributed to the contaminated raw peas.
Collapse
Affiliation(s)
- Patrick S. L. Kwan
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Catherine Xavier
- Alaska State Public Health Laboratories, Division of Public Health, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Monica Santovenia
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet Pruckler
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Steven Stroika
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Joyce
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracie Gardner
- Epidemic Intelligence Service Assigned to the State of Alaska Section of Epidemiology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patricia I. Fields
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joe McLaughlin
- Alaska State Public Health Laboratories, Division of Public Health, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Robert V. Tauxe
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Collette Fitzgerald
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Ramonaite S, Kudirkiene E, Tamuleviciene E, Leviniene G, Malakauskas A, Gölz G, Alter T, Malakauskas M. Prevalence and genotypes of Campylobacter jejuni from urban environmental sources in comparison with clinical isolates from children. J Med Microbiol 2014; 63:1205-1213. [PMID: 24987101 DOI: 10.1099/jmm.0.072892-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate the prevalence of Campylobacter jejuni in potential contamination sources that are not regularly monitored such as free-living urban pigeons and crows, dogs, cats and urban environmental water and to assess the possible impact on the epidemiology of campylobacteriosis in children using multilocus sequence typing (MLST). Campylobacter spp. were detected in 36.2 % of faecal samples of free-living urban birds and in 40.4 % of environmental water samples. A low prevalence of Campylobacter spp. was detected in dogs and cats, with 7.9 and 9.1 %, respectively. Further identification of isolates revealed that environmental water and pet samples were mostly contaminated by other Campylobacter spp. than C. jejuni, whereas C. jejuni was the most prevalent species in faecal samples of free-living birds (35.4 %). This species was the dominant cause of campylobacteriosis in children (91.5 %). In addition, the diversity of C. jejuni MLST types in free-living birds and children was investigated. Clonal complex (CC) 179 was predominant among free-living urban birds; however, only two isolates from children were assigned to this CC. One dog and one child isolate were assigned to the same clonal complex (CC48) and sequence type (ST) 918. The dominant two clonal complexes among the child clinical isolates (CC353 and CC21) were not detected among C. jejuni strains isolated from environmental sources examined in this study. As only two CCs were shared by environmental and child C. jejuni isolates and a high number of novel alleles and STs were found in C. jejuni isolated from free-living urban birds and environmental water, there is probably only a limited link between urban environmental sources and campylobacteriosis in children, particularly in rather cold climatic conditions.
Collapse
Affiliation(s)
- Sigita Ramonaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str.18, Kaunas LT-47181, Lithuania
| | - Egle Kudirkiene
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbojlen 4, 1780 Frederiksberg C, Denmark.,Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str.18, Kaunas LT-47181, Lithuania
| | - Egle Tamuleviciene
- Clinic of Children Diseases, Medicine Academy, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas, LT 44307
| | - Giedra Leviniene
- Clinic of Children Diseases, Medicine Academy, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas, LT 44307
| | - Alvydas Malakauskas
- Department of Infectious Diseases, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str.18, Kaunas LT-47181, Lithuania
| | - Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str.18, Kaunas LT-47181, Lithuania
| |
Collapse
|
36
|
Llarena AK, Skarp-de Haan CPA, Rossi M, Hänninen ML. Characterization of the Campylobacter jejuni population in the barnacle geese reservoir. Zoonoses Public Health 2014; 62:209-21. [PMID: 24948379 DOI: 10.1111/zph.12141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Campylobacter spp. are the most common cause of bacterial gastroenteritis worldwide and have been isolated from a wide number of different hosts and environmental sources. Waterfowl is considered a natural reservoir for this zoonotic bacterium and may act as a potential infection source for human campylobacteriosis. In this study, faecal samples from 924 barnacle geese were tested for the presence of C. jejuni and C. coli. The resulting C. jejuni and C. coli populations were characterized by multilocus sequence typing (MLST), structure analysis by BAPS and phylogenetic analysis based on full genome sequences. The prevalences of C. jejuni in barnacle geese faeces were 11.5% and 23.1% in 2011 and 2012, respectively, and only 0.2% of the samples were positive for C. coli in both years. Furthermore, a possible adaption of the clonal complexes (CCs) ST-702 and ST-1034 to the barnacle geese reservoir was found, as these two CCs represented the majority of the typed isolates and were repeatedly isolated from different flocks at several time-points. Further core genome phylogenetic analysis using ClonalFrame revealed a formation of a distinct monophyletic lineage by these two CCs, suggesting a certain degree of clonality of the C. jejuni population adapted to barnacle geese. Therefore, although STs also commonly found in humans patients (e.g. ST-45) were among the barnacle geese C. jejuni isolates, this reservoir is probably an infrequent source for human campylobacteriosis.
Collapse
Affiliation(s)
- A-K Llarena
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
37
|
Ellström P, Hansson I, Söderström C, Engvall EO, Rautelin H. A prospective follow-up study on transmission of Campylobacter from poultry to abattoir workers. Foodborne Pathog Dis 2014; 11:684-8. [PMID: 24885791 DOI: 10.1089/fpd.2014.1753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Contact with poultry or poultry meat is a well-known risk factor for campylobacteriosis, but prospective studies on transmission of Campylobacter from chickens to humans during slaughter are scarce. In this study, we monitored transmission of Campylobacter from slaughtered chicken to originally culture-negative abattoir workers during the peak season of colonized chicken and human Campylobacter infection. Stool samples were obtained from 28 abattoir workers together with data on health status once a month between June and September 2010, with a follow-up sample collected in February 2011. Campylobacter-positive individuals and chicken flocks were identified by culture, and isolates were further characterized using molecular techniques. Campylobacter was isolated from seven asymptomatic individuals. Four of them had been newly employed and had not reported any previous Campylobacter infection. Four human isolates had matching genetic fingerprints with isolates from recently slaughtered chickens. Our results further support the role of chicken as the source of human Campylobacter infection but suggest that asymptomatic Campylobacter infection may occur even in individuals with only limited earlier exposure to Campylobacter.
Collapse
Affiliation(s)
- Patrik Ellström
- 1 Department of Medical Sciences, Clinical Bacteriology, Uppsala University , Uppsala, Sweden
| | | | | | | | | |
Collapse
|
38
|
Feodoroff B, de Haan CP, Ellström P, Sarna S, Hänninen ML, Rautelin H. Clonal distribution and virulence of Campylobacter jejuni isolates in blood. Emerg Infect Dis 2014; 19:1653-5. [PMID: 24047729 PMCID: PMC3810732 DOI: 10.3201/eid1910.121537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni bacteria are highly diverse enteropathogens. Seventy-three C. jejuni isolates from blood collected in Finland were analyzed by multilocus sequence typing and serum resistance. Approximately half of the isolates belonged to the otherwise uncommon sequence type 677 clonal complex. Isolates of this clonal complex were more resistant than other isolates to human serum.
Collapse
|
39
|
Kovanen SM, Kivistö RI, Rossi M, Hänninen ML. A combination of MLST and CRISPR typing reveals dominant Campylobacter jejuni types in organically farmed laying hens. J Appl Microbiol 2014; 117:249-57. [PMID: 24655229 DOI: 10.1111/jam.12503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/05/2014] [Accepted: 03/19/2014] [Indexed: 11/27/2022]
Abstract
AIM To elucidate the Campylobacter jejuni population in organically farmed laying hens in Finland, multilocus sequence typing (MLST) was combined with characterization of clustered regularly interspaced short palindromic repeat (CRISPR) sequences. METHODS AND RESULTS A total of 147 Camp. jejuni isolates, collected from organically farmed laying hens from 18 farms in 2003-2004, were previously analysed by pulsed-field gel electrophoresis. In the present study, subsets of the isolates were further analysed by MLST and CRISPR sequences. Fourteen STs were found by MLST. ST-50 (27%, 7/18 farms), ST-3272 (20%, 8/18 farms), ST-45 (12%, 7/18 farms) and ST-356 (12%, 5/18 farms) were the most common STs. CRISPR types were identical among all isolates of ST-50 (ST-21 clonal complex (CC)) and the most variable among ST-45 (ST-45 CC). CONCLUSIONS ST-3272 (UA), a common ST in this study, has been infrequently detected in other hosts. Other major STs (ST-50 and ST-45) have been common in several hosts such as conventional poultry and bovines. CRISPR typing provided additional discrimination between isolates of certain dominant STs and could be useful in further epidemiological studies. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives new information about MLST and CRISPR types of Camp. jejuni among organically farmed laying hens.
Collapse
Affiliation(s)
- S M Kovanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
40
|
Skarp-de Haan CPA, Culebro A, Schott T, Revez J, Schweda EKH, Hänninen ML, Rossi M. Comparative genomics of unintrogressed Campylobacter coli clades 2 and 3. BMC Genomics 2014; 15:129. [PMID: 24524824 PMCID: PMC3928612 DOI: 10.1186/1471-2164-15-129] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/05/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Campylobacter jejuni and C. coli share a multitude of risk factors associated with human gastrointestinal disease, yet their phylogeny differs significantly. C. jejuni is scattered into several lineages, with no apparent linkage, whereas C. coli clusters into three distinct phylogenetic groups (clades) of which clade 1 has shown extensive genome-wide introgression with C. jejuni, yet the other two clades (2 and 3) have less than 2% of C. jejuni ancestry. We characterized a C. coli strain (76339) with four novel multilocus sequence type alleles (ST-5088) and having the capability to express gamma-glutamyltranspeptidase (GGT); an accessory feature in C. jejuni. Our aim was to further characterize unintrogressed C. coli clades 2 and 3, using comparative genomics and with additional genome sequences available, to investigate the impact of horizontal gene transfer in shaping the accessory and core gene pools in unintrogressed C. coli. RESULTS Here, we present the first fully closed C. coli clade 3 genome (76339). The phylogenomic analysis of strain 76339, revealed that it belonged to clade 3 of unintrogressed C. coli. A more extensive respiratory metabolism among unintrogressed C. coli strains was found compared to introgressed C. coli (clade 1). We also identified other genes, such as serine proteases and an active sialyltransferase in the lipooligosaccharide locus, not present in C. coli clade 1 and we further propose a unique scenario for the evolution of Campylobacter ggt. CONCLUSIONS We propose new insights into the evolution of the accessory genome of C. coli clade 3 and C. jejuni. Also, in silico analysis of the gene content revealed that C. coli clades 2 and 3 have genes associated with infection, suggesting they are a potent human pathogen, and may currently be underreported in human infections due to niche separation.
Collapse
|
41
|
Lévesque S, Fournier E, Carrier N, Frost E, Arbeit RD, Michaud S. Campylobacteriosis in urban versus rural areas: a case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection. PLoS One 2013; 8:e83731. [PMID: 24386265 PMCID: PMC3873381 DOI: 10.1371/journal.pone.0083731] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022] Open
Abstract
Campylobacter infection is a leading cause of bacterial gastroenteritis worldwide, and most clinical cases appear as isolated, sporadic infections for which the source is rarely apparent. From July 2005 to December 2007 we conducted a prospective case-case study of sporadic, domestically-acquired Campylobacter enteritis in rural versus urban areas and a prevalence study of Campylobacter in animal and environmental sources in the Eastern Townships, Quebec. Isolates were typed using Multilocus Sequence Typing (MLST) to reinforce the case-case findings and to assign a source probability estimate for each human isolate. The risk of human campylobacteriosis was 1.89-fold higher in rural than urban areas. Unconditional multivariate logistic regression analysis identified two independent risk factors associated with human Campylobacter infections acquired in rural area: occupational exposure to animals (OR = 10.6, 95% CI: 1.2–91, p = 0.032), and household water coming from a private well (OR = 8.3, 95% CI: 3.4–20.4, p<0.0001). A total of 851 C. jejuni isolates (178 human, 257 chicken, 87 bovine, 266 water, 63 wild bird) were typed using MLST. Among human isolates, the incidence rates of clonal complexes (CC) CC-21, CC-45, and CC-61 were higher in rural than urban areas. MLST-based source attribution analysis indicated that 64.5% of human C. jejuni isolates were attributable to chicken, followed by cattle (25.8%), water (7.4%), and wild birds (2.3%). Chicken was the attributable source for the majority of cases, independent of residential area, sex and age. The increased incidence in rural compared to urban areas was associated with occupational exposure to animals, particularly cattle among those aged 15–34 years, and with consumption of private well water. Both bovine and water exposure appeared to contribute to the seasonal variation in campylobacteriosis. These results provide a basis for developing public education and preventive programs targeting the risk factors identified.
Collapse
Affiliation(s)
- Simon Lévesque
- Department of Microbiology and Infectious Diseases, Faculté de Médecine de l'Université de Sherbrooke, Québec, Canada
| | - Eric Fournier
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Nathalie Carrier
- Centre de Recherche Clinique Étienne-Le Bel du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Frost
- Department of Microbiology and Infectious Diseases, Faculté de Médecine de l'Université de Sherbrooke, Québec, Canada
- Centre de Recherche Clinique Étienne-Le Bel du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert D. Arbeit
- Infectious Diseases Section, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sophie Michaud
- Department of Microbiology and Infectious Diseases, Faculté de Médecine de l'Université de Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
42
|
Increased risk forCampylobacter jejuniandC. coliinfection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets. Epidemiol Infect 2013; 141:2526-35. [DOI: 10.1017/s0950268813000356] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYWe comparedCampylobacter jejuni/colimultilocus sequence types (STs) from pets (dogs/cats) and their owners and investigated risk factors for pet-associated human campylobacteriosis using a combined source-attribution and case-control analysis. In total, 132/687 pet stools wereCampylobacter-positive, resulting in 499 strains isolated (320C. upsaliensis/helveticus, 100C. jejuni, 33C. hyointestinalis/fetus, 10C. lari, 4C. coli, 32 unidentified). There were 737 human and 104 petC. jejuni/colistrains assigned to 154 and 49 STs, respectively. Dog, particularly puppy, owners were at increased risk of infection with pet-associated STs. In 2/68 casesvs.0·134/68 expected by chance, a pet and its owner were infected with an identical ST (ST45, ST658). Although common sources of infection and directionality of transmission between pets and humans were unknown, dog ownership significantly increased the risk for pet-associated humanC. jejuni/coliinfection and isolation of identical strains in humans and their pets occurred significantly more often than expected.
Collapse
|
43
|
Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis. PLoS One 2013; 8:e55029. [PMID: 23405107 PMCID: PMC3566096 DOI: 10.1371/journal.pone.0055029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/17/2012] [Indexed: 11/26/2022] Open
Abstract
In this study, 1208 Campylobacter jejuni and C. coli isolates from humans and 400 isolates from chicken, collected in two separate periods over 12 years in The Netherlands, were typed using multilocus sequence typing (MLST). Statistical evidence was found for a shift of ST frequencies in human isolates over time. The human MLST data were also compared to published data from other countries to determine geographical variation. Because only MLST typed data from chicken, taken from the same time point and spatial location, were available in addition to the human data, MLST datasets for other Campylobacter reservoirs from selected countries were used. The selection was based on the degree of similarity of the human isolates between countries. The main aim of this study was to better understand the consequences of using non-local or non-recent MLST data for attributing domestically acquired human Campylobacter infections to specific sources of origin when applying the asymmetric island model for source attribution. In addition, a power-analysis was done to find the minimum number of source isolates needed to perform source attribution using an asymmetric island model. This study showed that using source data from other countries can have a significant biasing effect on the attribution results so it is important to carefully select data if the available local data lack in quality and/or quantity. Methods aimed at reducing this bias were proposed.
Collapse
|
44
|
Lipooligosaccharide locus classes are associated with certain Campylobacter jejuni multilocus sequence types. Eur J Clin Microbiol Infect Dis 2013; 31:2203-9. [PMID: 22298242 DOI: 10.1007/s10096-012-1556-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
The lipooligosaccharide (LOS) locus class was determined using polymerase chain reaction (PCR) in 335 Finnish Campylobacter jejuni strains isolated from humans, poultry and bovines with known multilocus sequence types. The results revealed an association between clonal complexes/sequence types (STs) and LOS locus classes. Based on these results, we further predicted the LOS locus classes distribution among the STs of 209 additional C. jejuni strains from Finnish human domestically acquired infections. Non-sialylated LOS locus classes were associated with STs that comprised ≈55% of patient strains. Sialylated LOS locus classes A and B were associated with STs infrequently isolated, whereas class C was correlated with the ST-21 complex, found in ≈14% of human strains. A combination of the LOS locus class and multilocus sequence type may provide new information on the epidemiology and association of C. jejuni strains with certain disease outcomes.
Collapse
|
45
|
Clark CG, Grant CCR, Pollari F, Marshall B, Moses J, Tracz DM, Gilmour MW. Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection. BMC Microbiol 2012; 12:269. [PMID: 23167543 PMCID: PMC3519530 DOI: 10.1186/1471-2180-12-269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/12/2012] [Indexed: 09/03/2023] Open
Abstract
Background Prophages of enteric bacteria are frequently of key importance for the biology, virulence, or host adaptation of their host. Some C. jejuni isolates carry homologs of the CJIE1 (CMLP 1) prophage that carry cargo genes potentially involved in virulence. Possible role(s) of CJIE1 homologs in the biology and virulence of C. jejuni were therefore investigated by using in vitro cell culture assays and by assessing the association of C. jejuni isolates with and without these prophages with patients’ symptoms, with source, and with clonal lineages within the C. jejuni population. Results Four C. jejuni isolates, three carrying the CJIE1-like prophage and one without, were tested in cell culture assays for adherence and invasion. Both adherence and invasion of C. jejuni to cells in culture were increased by the presence of the CJIE1-family prophage. Differences in motility and growth rate did not appear to be responsible. The CJIE1 prophage was present in 23% of isolates from human and non-human sources combined that were obtained through sentinel-site surveillance, and the distribution of CJIE1 in this population showed modest clonal associations. There was no correlation between the presence of the CJIE1 prophage in C. jejuni and patient symptoms, although there was some statistical support for lower rates of abdominal pain and fever when the prophage was present. Little evidence was found for a role of the prophage in host adaptation or host specificity. Conclusion These biological effects suggest that the presence of the prophage may be a marker for differential virulence of some C. jejuni isolates. Ongoing research into the effects of the prophage on protein expression may provide additional insights into the roles the prophage may play in the biology of its host bacterium.
Collapse
Affiliation(s)
- Clifford G Clark
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.
| | | | | | | | | | | | | |
Collapse
|
46
|
Colles FM, Maiden MCJ. Campylobacter sequence typing databases: applications and future prospects. Microbiology (Reading) 2012; 158:2695-2709. [DOI: 10.1099/mic.0.062000-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- F. M. Colles
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - M. C. J. Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
47
|
Shin E, Oh Y, Kim M, Jung J, Lee Y. Antimicrobial resistance patterns and corresponding multilocus sequence types of the Campylobacter jejuni isolates from human diarrheal samples. Microb Drug Resist 2012; 19:110-6. [PMID: 23098555 DOI: 10.1089/mdr.2012.0099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A total of 121 Campylobacter isolates from 4,788 humans with gastroenteritis were identified and characterized by biochemical detection methods, polymerase chain reaction, and multilocus sequence typing (MLST). These samples were obtained during a 3-year period, from January 2007 to December 2009, using the National Notifiable Diseases Surveillance System at the Research Institute of Public Health and Environment in Seoul Metropolitan, Korea. Antimicrobial susceptibilities of the bacterium were also determined with the agar dilution method. All 121 isolates were identified as Campylobacter jejuni, with all (100%) of them having two virulence genes (ceuE and cadF) and a toxin gene (cdtB). Twenty-three different sequence types (STs), including 9 new STs, were determined by MLST. The most prevalent ST and clonal complex (CC) observed in this study were ST-45 (28.9%) and ST-45 CC (53.7%), respectively. Percentages of antimicrobial-resistant isolates were 1.9% for ampicillin, 0.8% for chloramphenicol, 24% for ciprofloxacin, 46.3% for enrofloxacin, 0.8% for erythromycin, 6.6% for gentamicin, and 46.3% for tetracycline. This study demonstrated that the majority of the Campylobacter isolates obtained from human samples in Korea were C. jejuni with ST-45 CC, which has been detected mainly in broilers worldwide, and all strains with new STs were uniformly resistant to enrofloxacin and tetracycline. This study indicates that broilers may be a breeding ground for bacteria as well as an important potential source of human campylobacteriosis.
Collapse
Affiliation(s)
- Eunju Shin
- Culture Collection of Antimicrobial Resistant Microbes, Department of Biology, Seoul Women's University, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
Abstract
Human campylobacteriosis exhibits a distinctive seasonality in temperate regions. This paper aims to identify the origins of this seasonality. Clinical isolates [typed by multi-locus sequence typing (MLST)] and epidemiological data were collected from Scotland. Young rural children were found to have an increased burden of disease in the late spring due to strains of non-chicken origin (e.g. ruminant and wild bird strains from environmental sources). In contrast the adult population had an extended summer peak associated with chicken strains. Travel abroad and UK mainland travel were associated with up to 17% and 18% of cases, respectively. International strains were associated with chicken, had a higher diversity than indigenous strains and a different spectrum of MLST types representative of these countries. Integrating empirical epidemiology and molecular subtyping can successfully elucidate the seasonal components of human campylobacteriosis. The findings will enable public health officials to focus strategies to reduce the disease burden.
Collapse
|
49
|
Dietary supplementation with bovine lactoferrampin-lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets. Appl Biochem Biotechnol 2012; 168:887-98. [PMID: 22923175 DOI: 10.1007/s12010-012-9827-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 08/03/2012] [Indexed: 12/31/2022]
Abstract
This work is aimed at investigating the effects of recombinant bovine lactoferrampin-lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(6(4)) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P<0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.
Collapse
|
50
|
de Haan CPA, Lampén K, Corander J, Hänninen ML. Multilocus Sequence Types of EnvironmentalCampylobacter jejuniIsolates and their Similarities to those of Human, Poultry and BovineC. jejuniIsolates. Zoonoses Public Health 2012; 60:125-33. [DOI: 10.1111/j.1863-2378.2012.01525.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|