1
|
Tu T, Gao Z, Li L, Chen J, Ye K, Xu T, Mai S, Han Q, Chen C, Wu S, Dong Y, Chen J, Huang L, Guan Y, Xie F, Chen X. Soybean symbiotic-nodule zonation and cell differentiation are defined by NIN2 signaling and GH3-dependent auxin homeostasis. Dev Cell 2024; 59:2254-2269.e6. [PMID: 39053471 DOI: 10.1016/j.devcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones. Auxin governs infection zone maintenance. GRETCHEN HAGEN 3 (GH3) enzymes deactivate auxin by conjugation and promote cell differentiation. gh3 mutants increased undifferentiated cells and enlarged infection zones. The central symbiosis-transcription factor NIN2a activates GH3.1 to reduce auxin levels and facilitates cell differentiation. High auxin promotes NIN2a protein accumulation and enhances signaling, further deactivating auxin and depleting infection zones. Our findings shed light on the NIN2a-GH3-auxin module that drives soybean nodule cell differentiation. This study challenges our understanding of determinate nodule development and proposes that the regulation of nodule zonation offers valuable insights into broader mechanisms of cell differentiation across plant species.
Collapse
Affiliation(s)
- Tianli Tu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Gao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linfang Li
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiansheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kangzhuo Ye
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qingqing Han
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaofan Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengwei Wu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yankun Dong
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
3
|
Chang YL, Chang YC, Kurniawan A, Chang PC, Liou TY, Wang WD, Chuang HW. Employing Genomic Tools to Explore the Molecular Mechanisms behind the Enhancement of Plant Growth and Stress Resilience Facilitated by a Burkholderia Rhizobacterial Strain. Int J Mol Sci 2024; 25:6091. [PMID: 38892282 PMCID: PMC11172717 DOI: 10.3390/ijms25116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.
Collapse
Affiliation(s)
- Yueh-Long Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Yu-Cheng Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Andi Kurniawan
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
- Department of Agronomy, Brawijaya University, Malang 65145, Indonesia
| | - Po-Chun Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Ting-Yu Liou
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Wen-Der Wang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
4
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
6
|
Tang J, Li Y, Zhang L, Mu J, Jiang Y, Fu H, Zhang Y, Cui H, Yu X, Ye Z. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms 2023; 11:2077. [PMID: 37630637 PMCID: PMC10459833 DOI: 10.3390/microorganisms11082077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regulates almost all aspects of plant growth and development, and is one of the most important plant hormones. In microorganisms too, IAA plays an important role in growth, development, and even plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microorganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly summarizes the biosynthesis pathways that have been reported in microorganisms, including the indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some pathways interact with each other through common key genes to constitute a network of IAA biosynthesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial impacts on plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.); (L.Z.)
| |
Collapse
|
7
|
Schwardmann LS, Wu T, Dransfeld AK, Lindner SN, Wendisch VF. Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12592-3. [PMID: 37246985 DOI: 10.1007/s00253-023-12592-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Formamide is rarely used as nitrogen source by microorganisms. Therefore, formamide and formamidase have been used as protection system to allow for growth under non-sterile conditions and for non-sterile production of acetoin, a product lacking nitrogen. Here, we equipped Corynebacterium glutamicum, a renowned workhorse for industrial amino acid production for 60 years, with formamidase from Helicobacter pylori 26695, enabling growth with formamide as sole nitrogen source. Thereupon, the formamide/formamidase system was exploited for efficient formamide-based production of the nitrogenous compounds L-glutamate, L-lysine, N-methylphenylalanine, and dipicolinic acid by transfer of the formamide/formamidase system to established producer strains. Stable isotope labeling verified the incorporation of nitrogen from formamide into biomass and the representative product L-lysine. Moreover, we showed ammonium leakage during formamidase-based access of formamide to be exploitable to support growth of formamidase-deficient C. glutamicum in co-cultivation and demonstrated that efficient utilization of formamide as sole nitrogen source benefitted from overexpression of formate dehydrogenase. KEY POINTS: • C. glutamicum was engineered to access formamide. • Formamide-based production of nitrogenous compounds was established. • Nitrogen cross-feeding supported growth of a formamidase-negative strain.
Collapse
Affiliation(s)
- Lynn S Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Tong Wu
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Aron K Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Steffen N Lindner
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
8
|
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1653. [PMID: 37111876 PMCID: PMC10141480 DOI: 10.3390/plants12081653] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths and weaknesses, and the effects of microorganisms on metallophytes and plant endophytes resistant to trace elements (TEs) were summarised and described in this manuscript. Prospectively, bio-combined phytoremediation with microorganisms appears to be an ideal, economically viable and environmentally sound solution. The novelty of the work is the description of the potential of "green roofs" to contribute to the capture and accumulation of many metal-bearing and suspended dust and other toxic compounds resulting from anthropopressure. Attention was drawn to the great potential of using phytoremediation on less contaminated soils located along traffic routes and urban parks and green spaces. It also focused on the supportive treatments for phytoremediation using genetic engineering, sorbents, phytohormones, microbiota, microalgae or nanoparticles and highlighted the important role of energy crops in phytoremediation. Perceptions of phytoremediation on different continents are also presented, and new international perspectives are presented. Further development of phytoremediation requires much more funding and increased interdisciplinary research in this direction.
Collapse
Affiliation(s)
- Agnieszka Mocek-Płóciniak
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Justyna Mencel
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Wiktor Zakrzewski
- Regional Chemical and Agricultural Station in Poznan, Sieradzka 29, 60-163 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
9
|
Yusfi LA, Tjong DH, Chaniago I, Salsabilla A, Jamsari J. Growth Phase Influence the Gene Expression and Metabolite Production Related to Indole-3-Acetic Acid (IAA) Biosynthesis by Serratia plymuthica UBCF_13. Pak J Biol Sci 2022; 25:1047-1057. [PMID: 36978272 DOI: 10.3923/pjbs.2022.1047.1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
<b>Background and Objective:</b> The optimization of the indole-3-acetic acid (IAA) producing capability of <i>Serratia plymuthica</i> UBCF_13 has been intensively studied. This work tried to reveal the effect of growth phases on IAA production, gene expression and metabolite synthesis related to the IAA biosynthesis pathway. <b>Materials and Methods:</b> The growth curve and IAA production were measured every 3 hrs. The putative IAA biosynthesis pathway was investigated based on the UBCF_13 genome. To identify the possible pathway of IAA biosynthesis in UBCF_13, we applied the Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) and High-Performance Liquid Chromatography (HPLC) analysis to measure the transcript levels of each gene and indole metabolite production based on tryptophan treatment at different times of incubation. <b>Results:</b> The optimal IAA production on colorimetric assay was at 9 hrs of incubation (initial stationary phase). The level expression of <i>puuC</i>, <i>DDC</i>, <i>oxdA</i>, <i>amiE</i>, <i>nthA</i> and <i>nthB</i> have been upregulated maximum in 3 hrs of culture time (lag phase), except <i>tyrB</i> and <i>ipdC</i>. The highest transcript level of the genes was found in nitrile hydratase genes (<i>nthA</i> and <i>nthB</i>) and indole-3- acetamide (IAM) has been detected as the only intermediate in the crude extract of UBCF_13 thus the IAM pathway may be used to produce IAA. The maximum IAA production on HPLC analysis was found at 21 hrs of incubation (late stationary phase). <b>Conclusion:</b> This study gives a new insight that the best time to measure gene expression and intermediates related to the IAA biosynthetic pathway in bacteria was found at a specific growth phase.
Collapse
|
10
|
Guerra M, Carrasco-Fernández J, Valdés JH, Panichini M, Franco Castro J. Draft genome of Pseudomonas sp. RGM 2987 isolated from Stevia philippiana roots reveals its potential as a plant biostimulant and potentially constitutes a novel species. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
Zhang K, Pan T, Wang L, Wang H, Ren Y, Wei D. Screening and characterization of a nitrilase with significant nitrile hydratase activity. Biotechnol Lett 2022; 44:1163-1173. [PMID: 36050605 DOI: 10.1007/s10529-022-03291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE We screened nitrilases with significant nitrile hydratase activity to exploit their potential in benzylic amide biosynthesis. We also investigated the factors affecting their hydration activity to support further research on benzylic amide production by nitrilase. METHODS A sequence-based screening method using previously reported crucial positions identified to be essential for amide-forming capacity of nitrilase (referred to as "amide-formation hotspots") as molecular probes to identify putative amide-forming nitrilases. RESULTS Based on the previously reported "amide-formation hotspots," we identified a nitrilase NitPG from Paraburkholderia graminis DSM 17151 that could produce a significant amount of mandelamide toward mandelonitrile and exhibited general hydration activity toward various benzylic nitriles. The time-course experiment with NitPG demonstrated that amide was also a true reaction product of nitrilase, suggesting that the nitrile catalysis by amide-forming nitrilase could be a post-transition state bifurcation-mediated enzymatic reaction. Further research demonstrated that low temperature, metal ion addition, and specific substrate structure could profoundly improve the amide formation capability of nitrilase. CONCLUSIONS NitPG with broad hydration activity is a potential candidate for the enzymatic synthesis of benzylic amides for biotechnological applications. Studying the effect of nitrilase hydration activity could promote our understanding of the factors that influence amide and acid distribution.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Tingze Pan
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liuzhu Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
12
|
Sun H, Zhang J, Liu W, E W, Wang X, Li H, Cui Y, Zhao D, Liu K, Du B, Ding Y, Wang C. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:81. [PMID: 35953838 PMCID: PMC9367139 DOI: 10.1186/s13068-022-02181-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Background Paenibacillus polymyxa is a typical plant growth-promoting rhizobacterium (PGPR), and synthesis of indole-3-acetic acid (IAA) is one of the reasons for its growth-promoting capacity. The synthetic pathways of IAA in P. polymyxa must be identified and modified. Results P. polymyxa SC2 and its spontaneous mutant SC2-M1 could promote plant growth by directly secreting IAA. Through metabonomic and genomic analysis, the genes patA, ilvB3, and fusE in the native IPyA pathway of IAA synthesis in strain SC2-M1 were predicted. A novel strong promoter P04420 was rationally selected, synthetically analyzed, and then evaluated on its ability to express IAA synthetic genes. Co-expression of three genes, patA, ilvB3, and fusE, increased IAA yield by 60% in strain SC2-M1. Furthermore, the heterogeneous gene iaam of the IAM pathway and two heterogeneous IPyA pathways of IAA synthesis were selected to improve the IAA yield of strain SC2-M1. The genes ELJP6_14505, ipdC, and ELJP6_00725 of the entire IPyA pathway from Enterobacter ludwigii JP6 were expressed well by promoter P04420 in strain SC2-M1 and increased IAA yield in the engineered strain SC2-M1 from 13 to 31 μg/mL, which was an increase of 138%. Conclusions The results of our study help reveal and enhance the IAA synthesis pathways of P. polymyxa and its future application. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02181-3. Verifying an entire native IPyA pathway of IAA synthesis in P. polymyxa. Introducing heterologous IAM and IPyA pathways of IAA synthesis to P. polymyxa. Selecting and analyzing a novel strong promoter P04420 to express IAA synthesis genes.
Collapse
|
13
|
Jin T, Ren J, Li Y, Bai B, Liu R, Wang Y. Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express 2022; 12:101. [PMID: 35917000 PMCID: PMC9346032 DOI: 10.1186/s13568-022-01445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Plant growth-promoting rhizobacteria are a type of beneficial bacteria which inhabit in the rhizosphere and possess the abilities to promote plant growth. Pseudomonas putida LWPZF is a plant growth-promoting bacterium isolated from the rhizosphere soil of Cercidiphyllum japonicum. Inoculation treatment with LWPZF could significantly promote the growth of C. japonicum seedlings. P. putida LWPZF has a variety of plant growth-promoting properties, including the ability to solubilize phosphate, synthesize ACC deaminase and IAA. The P. putida LWPZF genome contained a circular chromosome (6,259,530 bp) and a circular plasmid (160,969 bp) with G+C contents of 61.75% and 58.25%, respectively. There were 5632 and 169 predicted protein-coding sequences (CDSs) on the chromosome and the plasmid respectively. Genome sequence analysis revealed lots of genes associated with biosynthesis of IAA, pyoverdine, ACC deaminase, trehalose, volatiles acetoin and 2,3-butanediol, 4-hydroxybenzoate, as well as gluconic acid contributing phosphate solubilization. Additionally, we identified many heavy metal resistance genes, including arsenate, copper, chromate, cobalt-zinc-cadmium, and mercury. These results suggest that P. putida LWPZF shows strong potential in the fields of biofertilizer, biocontrol and heavy metal contamination soil remediation. The data presented in this study will allow us to better understand the mechanisms of plant growth promotion, biocontrol, and anti-heavy metal of P. putida LWPZF.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China.
| | - Yunling Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ruixiang Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ying Wang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| |
Collapse
|
14
|
Draft Genome Sequence of Pseudomonas sp. Strain RGM 3321, a Phyllosphere Endophyte from Fragaria chiloensis subsp.
chiloensis
f.
patagonica. Microbiol Resour Announc 2022; 11:e0033522. [PMID: 35731123 PMCID: PMC9302079 DOI: 10.1128/mra.00335-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain RGM 3321 is a phyllosphere endophyte from Fragaria chiloensis subsp. chiloensis f. patagonica that harbors genes associated with plant growth promotion pathways, as well as genes typically found in plant pathogens.
Collapse
|
15
|
Lu XF, Diao HJ, Wu ZM, Zhang ZL, Zheng RC, Zheng YG. Engineering of reaction specificity, enantioselectivity and catalytic activity of nitrilase for highly efficient synthesis of pregabalin precursor. Biotechnol Bioeng 2022; 119:2399-2412. [PMID: 35750945 DOI: 10.1002/bit.28165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 11/11/2022]
Abstract
Simultaneous evolution of multiple enzyme properties remains challenging in protein engineering. A chimeric nitrilase (BaNITM0 ) with high activity towards isobutylsuccinonitrile (IBSN) was previously constructed for biosynthesis of pregabalin precursor (S)-3-cyano-5-methylhexanoic acid ((S)-CMHA). However, BaNITM0 also catalyzed the hydration of IBSN to produce by-product (S)-3-cyano-5-methylhexanoic amide. In order to obtain industrial nitrilase with vintage performance, we carried out engineering of BaNITM0 for simultaneous evolution of reaction specificity, enantioselectivity and catalytic activity. The best variant V82L/M127I/C237S (BaNITM2 ) displayed higher enantioselectivity (E=515), increased enzyme activity (5.4-fold) and reduced amide formation (from 15.8% to 1.9 %) compared with BaNITM0 . Structure analysis and molecular dynamics simulations indicated that mutation M127I and C237S restricted the movement of E66 in the catalytic triad, resulting in decreased amide formation. Mutation V82L was incorporated to induce the reconstruction of the substrate binding region in the enzyme catalytic pocket, engendering the improvement of stereoselectivity. Enantio- and regio-selective hydrolysis of 150 g/L IBSN using 1.5 g/L E. coli cells harboring BaNITM2 as biocatalyst afforded (S)-CMHA with >99.0% ee and 45.9% conversion, which highlighted the robustness of BaNITM2 for efficient manufacturing of pregabalin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xia-Feng Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhe-Ming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zi-Long Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
16
|
Vaishnav A, Kumar R, Singh HB, Sarma BK. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154170. [PMID: 35227717 DOI: 10.1016/j.scitotenv.2022.154170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Incessant release of nitrile group of compounds such as cyanides into agricultural land through industrial effluents and excessive use of nitrile pesticides has resulted in increased nitrile pollution. Release of nitrile compounds (NCs) as plant root exudates is also contributing to the problem. The released NCs interact with soil elements and persists for a long time. Persistent higher concentration of NCs in soil cause toxicity to beneficial microflora and affect crop productivity. The NCs can cause more problems to human health if they reach groundwater and enter the food chain. Nitrile degradation by soil bacteria can be a solution to the problem if thoroughly exploited. However, the impact of such bacteria in plant and soil environments is still not properly explored. Plant growth-promoting rhizobacteria (PGPR) with nitrilase activity has recently gained attention as potential solution to address the problem. This paper reviews the core issue of nitrile pollution in soil and the prospects of application of nitrile degrading bacteria for soil remediation, soil health improvement and plant growth promotion in nitrile-polluted soils. The possible mechanisms of PGPR that can be exploited to degrade NCs, converting them into plant useful compounds and synthesis of the phytohormone IAA from degraded NCs are also discussed at length.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura 281406, India; Agroecology and Environment, Agroscope (Reckenholz), Zürich 8046, Switzerland
| | - Roshan Kumar
- National Centre for Biological Sciences (TIFR-NCBS), Bengaluru 560065, India
| | | | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221110, India.
| |
Collapse
|
17
|
Shen JD, Cai X, Liu ZQ, Zheng YG. High Throughput Screening of Signal Peptide Library with Novel Fluorescent Probe. Chembiochem 2022; 23:e202100523. [PMID: 35470527 DOI: 10.1002/cbic.202100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Nitrile hydratase (NHase) is an excellent bio-catalyst for the synthesis of amide compounds, was composed of two heterologous subunits. However, the secretory expression of NHase has been difficult to achieve because of its complex expression mechanism. In this work, a novel fluorescent probe Rho-IDA-CoII was synthesized by the one-pot method. Rho-IDA-CoII could specifically label His-tagged proteins in vitro specifically, such as staining in-gel, western blot and ELISA. Furthermore, Rho-IDA-CoII combined with dot blot could quantitatively detect His-tagged proteins between 1 - 10 pmol and perform high-throughput screening for the NHase signal peptide library. The recombinant Bacillus subtilis WB800/phoB-HBA with the extracellular expression of NHase was screened from ca. 6500 clones. After optimization of fermentation conditions, the NHase activity in the culture supernatant reached to 17.34 ± 0.16 U/mL. It was the first time to express secretory NHase in Bacillus subtilis successfully.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Zhejiang University of Technology, College of biotechnology and bioengineering, CHINA
| | - Xue Cai
- Zhejiang University of Technology, college of biotechnology and bioengineering, CHINA
| | - Zhi-Qiang Liu
- Zhejiang University of Technology, College of Biotechnology and Bioengineering, Chaowang Rd. 18#, 3100114, Hangzhou, CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology, college of biotechnology and bioengineering, CHINA
| |
Collapse
|
18
|
Rädisch R, Pátek M, Křístková B, Winkler M, Křen V, Martínková L. Metabolism of Aldoximes and Nitriles in Plant-Associated Bacteria and Its Potential in Plant-Bacteria Interactions. Microorganisms 2022; 10:549. [PMID: 35336124 PMCID: PMC8955678 DOI: 10.3390/microorganisms10030549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime-nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions.
Collapse
Affiliation(s)
- Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
- Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, A-8010 Graz, Austria
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| |
Collapse
|
19
|
Dong L, Ma Y, Chen CY, Shen L, Sun W, Cui G, Naqvi NI, Deng YZ. Identification and Characterization of Auxin/IAA Biosynthesis Pathway in the Rice Blast Fungus Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8020208. [PMID: 35205962 PMCID: PMC8879529 DOI: 10.3390/jof8020208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae has been known to produce the phytohormone auxin/IAA from its hyphae and conidia, but the detailed biological function and biosynthesis pathway is largely unknown. By sequence homology, we identified a complete indole-3-pyruvic acid (IPA)-based IAA biosynthesis pathway in M. oryzae, consisting of the tryptophan aminotransferase (MoTam1) and the indole-3-pyruvate decarboxylase (MoIpd1). In comparison to the wild type, IAA production was significantly reduced in the motam1Δ mutant, and further reduced in the moipd1Δ mutant. Correspondingly, mycelial growth, conidiation, and pathogenicity were defective in the motam1Δ and the moipd1Δ mutants to various degrees. Targeted metabolomics analysis further confirmed the presence of a functional IPA pathway, catalyzed by MoIpd1, which contributes to IAA/auxin production in M. oryzae. Furthermore, the well-established IAA biosynthesis inhibitor, yucasin, suppressed mycelial growth, conidiation, and pathogenicity in M. oryzae. Overall, this study identified an IPA-dependent IAA synthesis pathway crucial for M. oryzae mycelial growth and pathogenic development.
Collapse
Affiliation(s)
- Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Cheng-Yen Chen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (C.-Y.C.); (N.I.N.)
| | - Lizheng Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Wenda Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Guobing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (C.-Y.C.); (N.I.N.)
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
20
|
Rational regulation of reaction specificity of nitrilase for efficient biosynthesis of 2-chloronicotinic acid through a single site mutation. Appl Environ Microbiol 2022; 88:e0239721. [PMID: 35020449 DOI: 10.1128/aem.02397-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrilase-catalyzed hydrolysis of 2-chloronicotinonitrile (2-CN) is a promising approach for efficient synthesis of 2-chloronicotinic acid (2-CA). Development of nitrilase with ideal catalytic properties is crucial for the biosynthetic route with industrial potentail. Herein, a nitrilase from Rhodococcus zopfii (RzNIT), which showed much higher hydration activity than hydrolysis activity, was designed for efficient hydrolysis of 2-CN. Two residues (N165 and W167) significantly affecting the reaction specificity were precisely identified. By tuning these two residues, a single mutation of W167G with abolished hydration activity and 20-fold improved hydrolysis activity was obtained. Molecular dynamics simulation and molecular docking revealed that the mutation generated a larger binding pocket, causing the substrate 2-CN bound more deeply in the pocket and the formation of delocalized π bond between the residues W190 and Y196, which reduced the negative influence of steric hindrance and electron effect caused by chlorine substituent. With mutant W167G as biocatalyst, 100 mM 2-CN was exclusively converted into 2-CA within 16 h. The study provides useful guidance in nitrilase engineering for simultaneous improvement of reaction specificity and catalytic activity, which are highly desirable in value-added carboxylic acids production from nitriles hydrolysis. Importance 2-CA is an important building block for agrochemicals and pharmaceuticals with rapid increase in demand in recent years. It is currently manufactured from 3-cyanopyridine by chemical methods. However, during the final step of 2-CN hydrolysis under high temperature and strong alkaline conditions, by-product 2-CM was generated except for the target product, leading to low yield and tedious separation steps. Nitrilase-mediated hydrolysis is regarded as a promising alternative for 2-CA production, which proceeds under mild conditions. Nevertheless, nitrilase capable of efficient hydrolysis of 2-CN was not reported till now, since the enzymes showed either extremely low activity or surprisingly high hydration activity towards 2-CN. Herein, the reaction specificity of RzNIT was precisely tuned through a single site mutation. The mutant exhibited remarkably enhanced hydrolysis activity without formation of by-products, providing a robust biocatalyst for 2-CA biosynthesis with industrial potential.
Collapse
|
21
|
Rodrigues GL, Matteoli FP, Gazara RK, Rodrigues PSL, Dos Santos ST, Alves AF, Pedrosa-Silva F, Oliveira-Pinheiro I, Canedo-Alvarenga D, Olivares FL, Venancio TM. Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. Microbiol Res 2021; 254:126896. [PMID: 34715447 DOI: 10.1016/j.micres.2021.126896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
Given their remarkable beneficial effects on plant growth, several Azospirillum isolates currently integrate the formulations of various commercial inoculants. Our research group isolated a new strain, Azospirillum sp. UENF-412522, from passion fruit rhizoplane. This isolate uses carbon sources that are partially distinct from closely-related Azospirillum isolates. Scanning electron microscopy analysis and population counts demonstrate the ability of Azospirillum sp. UENF-412522 to colonize the surface of passion fruit roots. In vitro assays demonstrate the ability of Azospirillum sp. UENF-412522 to fix atmospheric nitrogen, to solubilize phosphate and to produce indole-acetic acid. Passion fruit plantlets inoculated with Azospirillum sp. UENF-41255 showed increased shoot and root fresh matter by 13,8% and 88,6% respectively, as well as root dry matter by 61,4%, further highlighting its biotechnological potential for agriculture. We sequenced the genome of Azospirillum sp. UENF-412522 to investigate the genetic basis of its plant-growth promotion properties. We identified the key nif genes for nitrogen fixation, the complete PQQ operon for phosphate solubilization, the acdS gene that alleviates ethylene effects on plant growth, and the napCAB operon, which produces nitrite under anoxic conditions. We also found several genes conferring resistance to common soil antibiotics, which are critical for Azospirillum sp. UENF-412522 survival in the rhizosphere. Finally, we also assessed the Azospirillum pangenome and highlighted key genes involved in plant growth promotion. A phylogenetic reconstruction of the genus was also conducted. Our results support Azospirillum sp. UENF-412522 as a good candidate for bioinoculant formulations focused on plant growth promotion in sustainable systems.
Collapse
Affiliation(s)
- Gustavo L Rodrigues
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Rajesh K Gazara
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | | | - Samuel T Dos Santos
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil
| | - Alice F Alves
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil; Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, UENF, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Isabella Oliveira-Pinheiro
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Daniella Canedo-Alvarenga
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil; Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, UENF, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil.
| |
Collapse
|
22
|
Santos Gomes D, de Andrade Silva EM, de Andrade Rosa EC, Silva Gualberto NG, de Jesus Souza MÁ, Santos G, Pirovani CP, Micheli F. Identification of a key protein set involved in Moniliophthora perniciosa necrotrophic mycelium and basidiocarp development. Fungal Genet Biol 2021; 157:103635. [PMID: 34700000 DOI: 10.1016/j.fgb.2021.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease in cacao (Theobroma cacao L.). The biotrophic fungal phase initiates the disease and is characterized by a monokaryotic mycelium, while the necrotrophic phase is characterized by a dikaryotic mycelium and leads to necrosis of infected tissues. A study of the necrotrophic phase was conducted on bran-based solid medium, which is the only medium that enables basidiocarp and basidiospore production. Six different fungal developmental phases were observed according to the mycelium colour or the organ produced: white, yellow, pink, dark pink, primordium and basidiocarp. In this study, we identified notable proteins in each phase, particularly those accumulated prior to basidiocarp formation. Proteins were analysed by proteomics; 2-D gels showed 300-550 spots. Statistically differentially accumulated spots were sequenced by mass spectrometry and 259 proteins were identified and categorized into nine functional classes. Proteins related to energy metabolism, protein folding and morphogenesis that were potentially involved in primordium and basidiocarp formation were identified; these proteins may represent useful candidates for further analysis related to the spread and pathogenesis of this fungus. To the best of our knowledge, this report describes the first proteomic analysis of the developmental phases of Moniliophthora perniciosa.
Collapse
Affiliation(s)
- Dayane Santos Gomes
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Edson Mario de Andrade Silva
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Emilly Caroline de Andrade Rosa
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Nina Gabriela Silva Gualberto
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Monaliza Átila de Jesus Souza
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gesivaldo Santos
- Universidade Estadual do Sudoeste da Bahia (UESB), Av. José Moreira Sobrinho, Jequié, Bahia 45206-190, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil; CIRAD, UMR AGAP, F-34398 Montpellier, France.
| |
Collapse
|
23
|
Zhang JJ, Yang H. Metabolism and detoxification of pesticides in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148034. [PMID: 34111793 DOI: 10.1016/j.scitotenv.2021.148034] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Pesticides make indispensable contributions to agricultural productivity. However, the residues after their excessive use may be harmful to crop production, food safety and human health. Although the ability of plants (especially crops) to accumulate and metabolize pesticides has been intensively investigated, data describing the chemical and metabolic processes in plants are limited. Understanding how pesticides are metabolized is a key step toward developing cleaner crops with minimal pesticides in crops, creating new green pesticides (or safeners), and building up the engineered plants for environmental remediation. In this review, we describe the recently discovered mechanistic insights into pesticide metabolic pathways, and development of improved plant genotypes that break down pesticides more effectively. We highlight the identification of biological features and functions of major pesticide-metabolized enzymes such as laccases, glycosyltransferases, methyltransferases and ATP binding cassette (ABC) transporters, and discuss their chemical reactions involved in diverse pathways including the formation of pesticide S-conjugates. The recent findings for some signal molecules (phytohomormes) like salicylic acid, jasmonic acid and brassinosteroids involved in metabolism and detoxification of pesticides are summarized. In particular, the emerging research on the epigenetic mechanisms such DNA methylation and histone modification for pesticide metabolism is emphasized. The review would broaden our understanding of the regulatory networks of the pesticide metabolic pathways in higher plants.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Meynet P, Davenport RJ, Fenner K. Understanding the Dependence of Micropollutant Biotransformation Rates on Short-Term Temperature Shifts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12214-12225. [PMID: 32897072 DOI: 10.1021/acs.est.0c04017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Temperature is a key factor that influences chemical biotransformation potential and rates, on which exposure and fate models rely to predict the environmental (micro)pollutant fate. Arrhenius-based models are currently implemented in environmental exposure assessment to adapt biotransformation rates to actual temperatures, assuming validity in the 0-30 °C range. However, evidence on how temperature shifts affect the physicochemical and microbial features in biological systems is scarce, questioning the validity of the existing modeling approaches. In this work, laboratory-scale batch assays were designed to investigate how a mixed microbial community responds to short-term temperature shifts, and how this impacts its ability to biotransform a range of structurally diverse micropollutants. Our results revealed three distinct kinetic responses at temperatures above 20 °C, mostly deviating from the classic Arrhenius-type behavior. Micropollutants with similar temperature responses appeared to undergo mostly similar initial biotransformation reactions, with substitution-type reactions maintaining Arrhenius-type behavior up to higher temperatures than oxidation-type reactions. Above 20 °C, the microbial community also showed marked shifts in both composition and activity, which mostly correlated with the observed deviations from Arrhenius-type behavior, with compositional changes becoming a more relevant factor in biotransformations catalyzed by more specific enzymes (e.g., oxidation reactions). Our findings underline the need to re-examine and further develop current environmental fate models by integrating biological aspects, to improve accuracy in predicting the environmental fate of micropollutants.
Collapse
Affiliation(s)
- Paola Meynet
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Russell J Davenport
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
25
|
Duca DR, Glick BR. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol 2020; 104:8607-8619. [PMID: 32875364 DOI: 10.1007/s00253-020-10869-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
Numerous studies have reported the stimulation of plant growth following inoculation with an IAA-producing PGPB. However, the specific mode of IAA production by the PGPB is rarely elucidated. In part, this is due to the overwhelming complexity of IAA biosynthesis and regulation. The promiscuity of the enzymes implicated in IAA biosynthesis adds another element of complexity when attempting to decipher their role in IAA biosynthesis. To date, the majority of research on IAA biosynthesis describes three separate pathways classified in terms of their intermediates-indole acetonitrile (IAN), indole acetamide (IAM), and indole pyruvic acid (IPA). Each of these pathways is mediated by a set of enzymes, many of which are traditionally assumed to exist for that specific catalytic role. This lends the possibility of missing other, novel, enzymes that may also incidentally serve that function. Some of these pathways are constitutively expressed, while others are inducible. Some enzymes involved in IAA biosynthesis are known to be regulated by IAA or by IAA precursors, as well as by a multitude of environmental cues. This review aims to provide an update to our current understanding of the biosynthesis and regulation of IAA in bacteria. KEY POINTS: • IAA produced by PGPB improves bacterial stress tolerance and promotes plant growth. • Bacterial IAA biosynthesis is convoluted; multiple interdependent pathways. • Biosynthesis of IAA is regulated by IAA, IAA-precursors, and environmental factors.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
26
|
Egelkamp R, Friedrich I, Hertel R, Daniel R. From sequence to function: a new workflow for nitrilase identification. Appl Microbiol Biotechnol 2020; 104:4957-4970. [PMID: 32291488 PMCID: PMC7228900 DOI: 10.1007/s00253-020-10544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
Abstract Nitrilases are industrially important biocatalysts due to their ability to degrade nitriles to carboxylic acids and ammonia. In this study, a workflow for simple and fast recovery of nitrilase candidates from metagenomes is presented. For identification of active enzymes, a NADH-coupled high-throughput assay was established. Purification of enzymes could be omitted as the assay is based on crude extract containing the expressed putative nitrilases. In addition, long incubation times were avoided by combining nitrile and NADH conversion in a single reaction. This allowed the direct measurement of nitrile degradation and provided not only insights into substrate spectrum and specificity but also in degradation efficiency. The novel assay was used for investigation of candidate nitrilase-encoding genes. Seventy putative nitrilase-encoding gene and the corresponding deduced protein sequences identified during sequence-based screens of metagenomes derived from nitrile-treated microbial communities were analyzed. Subsequently, the assay was applied to 13 selected candidate genes and proteins. Six of the generated corresponding Escherichia coli clones produced nitrilases that showed activity and one unusual nitrilase was purified and analyzed. The activity of the novel arylacetonitrilase Nit09 exhibited a broad pH range and a high long-term stability. The enzyme showed high activity for arylacetonitriles with a KM of 1.29 mM and a Vmax of 13.85 U/mg protein for phenylacetonitrile. In conclusion, we provided a setup for simple and rapid analysis of putative nitrilase-encoding genes from sequence to function. The suitability was demonstrated by identification, isolation, and characterization of the arylacetonitrilase. Key points • A simple and fast high-throughput nitrilase screening was developed. • A set of putative nitrilases was successfully screened with the assay. • A novel arylacetonitrilase was identified, purified, and characterized in detail. Electronic supplementary material The online version of this article (10.1007/s00253-020-10544-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Ines Friedrich
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Robert Hertel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany.
| |
Collapse
|
27
|
Ou X, Wu X, Peng F, Zeng Y, Li H, Xu P, Chen G, Guo Z, Yang J, Zong M, Lou W. Metabolic engineering of a robustEscherichia colistrain with a dual protection system. Biotechnol Bioeng 2019; 116:3333-3348. [DOI: 10.1002/bit.27165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao‐Yang Ou
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Xiao‐Ling Wu
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Fei Peng
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Ying‐Jie Zeng
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Hui‐Xian Li
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Pei Xu
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Gu Chen
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Ze‐Wang Guo
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Ji‐Guo Yang
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
- Innovation Center of Bioactive Molecule Development and ApplicationSouth China Institute of Collaborative InnovationDongguan China
| | - Min‐Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou China
| | - Wen‐Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
- Innovation Center of Bioactive Molecule Development and ApplicationSouth China Institute of Collaborative InnovationDongguan China
| |
Collapse
|
28
|
Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol Biol Rep 2019; 46:4661-4673. [DOI: 10.1007/s11033-019-04811-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
|
29
|
Fungal Enzymes for the Textile Industry. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Duca DR, Rose DR, Glick BR. Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 2018; 111:1645-1660. [PMID: 29492769 DOI: 10.1007/s10482-018-1051-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
The plant growth-promoting rhizobacterium Pseudomonas sp. UW4 was transformed to increase the biosynthesis of the auxin, indole-3-acetic acid (IAA). Four native IAA biosynthesis genes from strain UW4 were individually cloned into an expression vector and introduced back into the wild-type strain. Quantitative real-time polymerase chain reaction analysis revealed that the introduced genes ami, nit, nthAB and phe were all overexpressed in these transformants. A significant increase in the production of IAA was observed for all modified strains. Canola plants inoculated with the modified strains showed enhanced root elongation under gnotobiotic conditions. The growth rate and 1-aminocyclopropane-1-carboxylate deaminase activity of transformant strains was lower compared to the wild-type. The indoleacetic acid biosynthesis pathways and the role of this phytohormone in the mechanism of plant growth stimulation by Pseudomonas sp. UW4 is discussed.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - David R Rose
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
31
|
Zou SP, Huang JW, Xue YP, Zheng YG. Highly efficient production of 1-cyanocyclohexaneacetic acid by cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring nitrilase gene. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Abstract
Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria.
Collapse
Affiliation(s)
- Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China.
| | | |
Collapse
|
33
|
Yusuf F, Rather IA, Jamwal U, Gandhi SG, Chaubey A. Cloning and functional characterization of nitrilase from Fusarium proliferatum AUF-2 for detoxification of nitriles. Funct Integr Genomics 2015; 15:413-24. [PMID: 25595333 DOI: 10.1007/s10142-014-0430-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/17/2014] [Accepted: 12/25/2014] [Indexed: 12/14/2022]
Abstract
A fungal nitrilase gene from Fusarium proliferatum AUF-2 was cloned through reverse transcription-PCR. The open reading frame consisted of 903 bp and potentially encoded a protein of 301 amino acid residues with a theoretical molecular mass of 33.0 kDa. The encoding gene was expressed in Escherichia coli strain BL21 and the recombinant protein with His6-tag was purified to electrophoretic homogeneity. The purified enzyme exhibited optimal activity in the range of 35-40 °C and pH 8.0. EDTA, Mg(2+), Zn(2+), Ca(2+), Fe(2+), Fe(3+) and Mn(2+) stimulated hydrolytic activity, whereas Cu(2+), Co(2+) and Ni(2+) had inhibitory effect on nitrilase activity. Ag(+) ions showed a strong inhibitory effect on the recombinant nitrilase activity. This nitrilase was specific towards aliphatic, heterocyclic and aromatic nitriles. The kinetic parameters V(max) and K(m) for benzonitrile substrate were determined to be 14.6 μmol/min/mg protein and 1.55 mM, respectively. Homology modelling and molecular docking studies provided an insight into the substrate specificity and the proposed catalytic triad for recombinant nitrilase consisted of Glu-54, Lys-133 and Cys-175. This is the first report on the cloning and heterologous expression of nitrilase from Fusarium proliferatum.
Collapse
Affiliation(s)
- Farnaz Yusuf
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | | | | | | | |
Collapse
|