1
|
Creppy JR, Delache B, Lemaitre J, Horvat B, Vecellio L, Ducancel F. Administration of airborne pathogens in non-human primates. Inhal Toxicol 2024:1-26. [PMID: 39388247 DOI: 10.1080/08958378.2024.2412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.
Collapse
Affiliation(s)
- Justina R Creppy
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Benoit Delache
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université de Lyon, Lyon, France
| | - Laurent Vecellio
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Frédéric Ducancel
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
2
|
Connors KA, Chapman NS, McMillen CM, Hoehl RM, McGaughey JJ, Frey ZD, Midgett M, Williams C, Reed DS, Crowe JE, Hartman AL. Potent neutralizing human monoclonal antibodies protect from Rift Valley fever encephalitis. JCI Insight 2024; 9:e180151. [PMID: 39088277 PMCID: PMC11457859 DOI: 10.1172/jci.insight.180151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development. Few small-animal models of RVF encephalitis exist, further complicating countermeasure assessment. Human mAbs RVFV-140, RVFV-268, and RVFV-379 are recombinant potently neutralizing antibodies that prevent infection by binding the RVFV surface glycoproteins. Previous studies showed that both RVFV-268 and RVFV-140 improve survival in a lethal mouse model of disease, and RVFV-268 has prevented vertical transmission in a pregnant rat model of infection. Despite these successes, evaluation of mAbs in the context of brain disease has been limited. This is the first study to our knowledge to assess neutralizing antibodies for prevention of RVF neurologic disease using a rat model. Administration of RVFV-140, RVFV-268, or RVFV-379 24 hours prior to aerosol exposure to the virulent ZH501 strain of RVFV resulted in substantially enhanced survival and lack of neurological signs of disease. These results using a stringent and highly lethal aerosol infection model support the potential use of human mAbs to prevent the development of RVF encephalitis.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel S. Chapman
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cynthia M. McMillen
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jackson J. McGaughey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Malouli D, Tiwary M, Gilbride RM, Morrow DW, Hughes CM, Selseth A, Penney T, Castanha P, Wallace M, Yeung Y, Midgett M, Williams C, Reed J, Yu Y, Gao L, Yun G, Treaster L, Laughlin A, Lundy J, Tisoncik-Go J, Whitmore LS, Aye PP, Schiro F, Dufour JP, Papen CR, Taher H, Picker LJ, Früh K, Gale M, Maness NJ, Hansen SG, Barratt-Boyes S, Reed DS, Sacha JB. Cytomegalovirus vaccine vector-induced effector memory CD4 + T cells protect cynomolgus macaques from lethal aerosolized heterologous avian influenza challenge. Nat Commun 2024; 15:6007. [PMID: 39030218 PMCID: PMC11272155 DOI: 10.1038/s41467-024-50345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
An influenza vaccine approach that overcomes the problem of viral sequence diversity and provides long-lived heterosubtypic protection is urgently needed to protect against pandemic influenza viruses. Here, to determine if lung-resident effector memory T cells induced by cytomegalovirus (CMV)-vectored vaccines expressing conserved internal influenza antigens could protect against lethal influenza challenge, we immunize Mauritian cynomolgus macaques (MCM) with cynomolgus CMV (CyCMV) vaccines expressing H1N1 1918 influenza M1, NP, and PB1 antigens (CyCMV/Flu), and challenge with heterologous, aerosolized avian H5N1 influenza. All six unvaccinated MCM died by seven days post infection with acute respiratory distress, while 54.5% (6/11) CyCMV/Flu-vaccinated MCM survived. Survival correlates with the magnitude of lung-resident influenza-specific CD4 + T cells prior to challenge. These data demonstrate that CD4 + T cells targeting conserved internal influenza proteins can protect against highly pathogenic heterologous influenza challenge and support further exploration of effector memory T cell-based vaccines for universal influenza vaccine development.
Collapse
Affiliation(s)
- Daniel Malouli
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Meenakshi Tiwary
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Roxanne M Gilbride
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - David W Morrow
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Colette M Hughes
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Andrea Selseth
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Toni Penney
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Priscila Castanha
- Department of Infectious Diseases and Microbiology, Pittsburgh, PA, USA
| | - Megan Wallace
- Department of Infectious Diseases and Microbiology, Pittsburgh, PA, USA
| | - Yulia Yeung
- Department of Infectious Diseases and Microbiology, Pittsburgh, PA, USA
| | | | - Connor Williams
- Department of Infectious Diseases and Microbiology, Pittsburgh, PA, USA
| | - Jason Reed
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Yun Yu
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Lina Gao
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Gabin Yun
- Department of Diagnostic Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luke Treaster
- Department of Diagnostic Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Courtney R Papen
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Husam Taher
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J Picker
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Scott G Hansen
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | - Jonah B Sacha
- Oregon National Primate Research Center, Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
4
|
Reed DS, McElroy AK, Barbeau DJ, McMillen CM, Tilston-Lunel NL, Nambulli S, Cottle E, Gilliland TC, Rannulu H, Lundy J, Olsen EL, O’Malley KJ, Xia M, Hartman AL, Luke TC, Egland K, Bausch C, Wu H, Sullivan EJ, Klimstra WB, Duprex WP. No evidence for enhanced disease with human polyclonal SARS-CoV-2 antibody in the ferret model. PLoS One 2024; 19:e0290909. [PMID: 38900732 PMCID: PMC11189238 DOI: 10.1371/journal.pone.0290909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Since SARS-CoV-2 emerged in late 2019, it spread from China to the rest of the world. An initial concern was the potential for vaccine- or antibody-dependent enhancement (ADE) of disease as had been reported with other coronaviruses. To evaluate this, we first developed a ferret model by exposing ferrets to SARS-CoV-2 by either mucosal inoculation (intranasal/oral/ocular) or inhalation using a small particle aerosol. Mucosal inoculation caused a mild fever and weight loss that resolved quickly; inoculation via either route resulted in virus shedding detected in the nares, throat, and rectum for 7-10 days post-infection. To evaluate the potential for ADE, we then inoculated groups of ferrets intravenously with 0.1, 0.5, or 1 mg/kg doses of a human polyclonal anti-SARS-CoV-2 IgG from hyper-immunized transchromosomic bovines (SAB-185). Twelve hours later, ferrets were challenged by mucosal inoculation with SARS-CoV-2. We found no significant differences in fever, weight loss, or viral shedding after infection between the three antibody groups or the controls. Signs of pathology in the lungs were noted in infected ferrets but no differences were found between control and antibody groups. The results of this study indicate that healthy, young adult ferrets of both sexes are a suitable model of mild COVID-19 and that low doses of specific IgG in SAB-185 are unlikely to enhance the disease caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita K. McElroy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dominique J. Barbeau
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Natasha L. Tilston-Lunel
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Shamkumar Nambulli
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron C. Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hasala Rannulu
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve Lundy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Olsen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mengying Xia
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas C. Luke
- SAB Biotherapetuics, Sioux Falls, SD, United States of America
| | - Kristi Egland
- SAB Biotherapetuics, Sioux Falls, SD, United States of America
| | | | - Hua Wu
- SAB Biotherapetuics, Sioux Falls, SD, United States of America
| | | | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W. Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
5
|
Liao L, Luo ZQ, Byeon JH, Park JH. Size-selective sampler combined with an immunochromatographic assay for the rapid detection of airborne Legionella pneumophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172085. [PMID: 38554967 DOI: 10.1016/j.scitotenv.2024.172085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Airborne biological aerosols (also called bioaerosols) are found in various environmental and occupational settings. Among these, pathogenic bioaerosols can cause diseases such as legionellosis, influenza, measles, and tuberculosis. To prevent or minimize people's exposure to these pathogenic bioaerosols in the field, a rapid detection method is required. In this study, a size-selective bioaerosol (SSB) sampler was combined with the immunochromatographic assay (ICA). The SSB sampler can collect bioaerosols on the sampling swab and the lateral flow test kit used in ICA can rapidly detect the pathogens in bioaerosols collected on the swab. Before testing the combined method, the lower limit of detection (LOD) of the lateral flow test kit was determined. Legionella pneumophila (L. pneumophila) was used as a target pathogen. The results show that at least 1.3 × 103L. pneumophila cells are required to be detected by the lateral flow test kit. To test the developed method, L. pneumophila suspension was aerosolized in the sampling chamber and collected using two SSB samplers with different sampling times (10 and 20 min). The developed method could detect aerosolized L. pneumophila and also estimate the concentrations from the lower LOD, sampling time, and formation of a positive line on a test strip. When positive results were obtained from sampling for 10 min and 20 min, concentrations of respirable L. pneumophila were estimated ≥5.2 × 104 CFUresp/m3 and ≥2.6 × 104 CFUresp/m3, respectively. The conventional sampler Andersen impactor with colony counting was also used for comparison. In all cases, the estimated concentrations obtained by the developed method were higher than those obtained by the conventional method. These findings confirm that the developed method can overcome the limitations of conventional methods and eventually benefit environmental and occupational health by providing a better method for risk assessment.
Collapse
Affiliation(s)
- Li Liao
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jae Hong Park
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
6
|
Gonsalves A, Menon JU. Impact of Nebulization on the Physicochemical Properties of Polymer-Lipid Hybrid Nanoparticles for Pulmonary Drug Delivery. Int J Mol Sci 2024; 25:5028. [PMID: 38732246 PMCID: PMC11084240 DOI: 10.3390/ijms25095028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Nanoparticles (NPs) have shown significant potential for pulmonary administration of therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebulization is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired due to lung diseases. However, there are limited studies evaluating the physicochemical properties of NPs after they are passed through a nebulizer. High shear stress generated during nebulization could potentially affect the surface properties of NPs, resulting in the loss of encapsulated drugs and alteration in the release kinetics. Herein, we thoroughly examined the physicochemical properties as well as the therapeutic effectiveness of Infasurf lung surfactant (IFS)-coated PLGA NPs previously developed by us after passing through a commercial Aeroneb® vibrating-mesh nebulizer. Nebulization did not alter the size, surface charge, IFS coating and bi-phasic release pattern exhibited by the NPs. However, there was a temporary reduction in the initial release of encapsulated therapeutics in the nebulized compared to non-nebulized NPs. This underscores the importance of evaluating the drug release kinetics of NPs using the inhalation method of choice to ensure suitability for the intended medical application. The cellular uptake studies demonstrated that both nebulized and non-nebulized NPs were less readily taken up by alveolar macrophages compared to lung cancer cells, confirming the IFS coating retention. Overall, nebulization did not significantly compromise the physicochemical properties as well as therapeutic efficacy of the prepared nanotherapeutics.
Collapse
Affiliation(s)
- Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
7
|
Rox K, Medina E. Aerosolized delivery of ESKAPE pathogens for murine pneumonia models. Sci Rep 2024; 14:2558. [PMID: 38297183 PMCID: PMC10830452 DOI: 10.1038/s41598-024-52958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Murine pneumonia models for ESKAPE pathogens serve to evaluate novel antibacterials or to investigate immunological responses. The majority of published models uses intranasal or to a limited extent the intratracheal instillation to challenge animals. In this study, we propose the aerosol delivery of pathogens using a nebulizer. Aerosol delivery typically results in homogeneous distribution of the inoculum in the lungs because of lower particle size. This is of particular importance when compounds are assessed for their pharmacokinetic and pharmacodynamic (PK/PD) relationships as it allows to conduct several analysis with the same sample material. Moreover, aerosol delivery has the advantage that it mimics the 'natural route' of respiratory infection. In this short and concise study, we show that aerosol delivery of pathogens resulted in a sustained bacterial burden in the neutropenic lung infection model for five pathogens tested, whereas it gave a similar result in immunocompetent mice for three out of five pathogens. Moreover, a substantial bacterial burden in the lungs was already achieved 2 h post inhalation. Hence, this study constitutes a viable alternative for intranasal administration and a refinement of murine pneumonia models for PK/PD assessments of novel antibacterial compounds allowing to study multiple readouts with the same sample material.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| | - Eva Medina
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
- Infection Immunology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| |
Collapse
|
8
|
Abelson D, Barajas J, Stuart L, Kim D, Marimuthu A, Hu C, Yamamoto B, Ailor E, Whaley KJ, Vu H, Agans KN, Borisevich V, Deer DJ, Dobias NS, Woolsey C, Prasad AN, Peel JE, Lawrence WS, Cross RW, Geisbert TW, Fenton KA, Zeitlin L. Long-term Prophylaxis Against Aerosolized Marburg Virus in Nonhuman Primates With an Afucosylated Monoclonal Antibody. J Infect Dis 2023; 228:S701-S711. [PMID: 37474248 PMCID: PMC11009508 DOI: 10.1093/infdis/jiad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.
Collapse
Affiliation(s)
- Dafna Abelson
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Lauren Stuart
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | - Do Kim
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Chris Hu
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Eric Ailor
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Hong Vu
- Integrated Biotherapeutics, Rockville, Maryland, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer E Peel
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S Lawrence
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| |
Collapse
|
9
|
Kanekiyo M, Gillespie RA, Midgett M, O’Malley KJ, Williams C, Moin SM, Wallace M, Treaster L, Cooper K, Syeda H, Kettenburg G, Rannulu H, Schmer T, Ortiz L, Da Silva Castanha P, Corry J, Xia M, Olsen E, Perez D, Yun G, Graham BS, Barratt-Boyes SM, Reed DS. Refined semi-lethal aerosol H5N1 influenza model in cynomolgus macaques for evaluation of medical countermeasures. iScience 2023; 26:107830. [PMID: 37766976 PMCID: PMC10520834 DOI: 10.1016/j.isci.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A. Gillespie
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed M. Moin
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Megan Wallace
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luke Treaster
- Division of Cardiothoracic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hubza Syeda
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Gwenddolen Kettenburg
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hasala Rannulu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Schmer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucia Ortiz
- Department of Population Health, University of Georgia, Athens, GA, USA
| | | | - Jacqueline Corry
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengying Xia
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Olsen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Perez
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Gabin Yun
- Division of Cardiothoracic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Barney S. Graham
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Redmann RK, Kaushal D, Golden N, Threeton B, Killeen SZ, Kuehl PJ, Roy CJ. Particle Dynamics and Bioaerosol Viability of Aerosolized Bacillus Calmette-Guérin Vaccine Using Jet and Vibrating Mesh Clinical Nebulizers. J Aerosol Med Pulm Drug Deliv 2022; 35:50-56. [PMID: 34619040 PMCID: PMC8867098 DOI: 10.1089/jamp.2021.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Bacillus Calmette-Guérin (BCG) is a vaccine used to protect against tuberculosis primarily in infants to stop early infection in areas of the world where the disease is endemic. Normally administered as a percutaneous injection, BCG is a live significantly attenuated bacteria that is now being investigated for its potential within an inhalable vaccine formulation. This study investigates the feasibility and performance of two jet and two vibrating mesh nebulizers aerosolizing BCG and the resulting particle characteristics and residual viability of the bacteria postaerosolization. Methods: A jet nebulizer (Collison), outfitted either with a 3- or 6-jet head, was compared with two clinical nebulizers, the vibrating mesh Omron MicroAir and Aerogen Solo devices. Particle characteristics, including aerodynamic particle sizing, was performed on all devices within a common aerosol chamber configuration and comparable BCG innocula concentrations. Integrated aerosol samples were collected for each generator and assayed for bacterial viability using conventional microbiological technique. Results: A batch lot of BCG (Danish) was grown to titer and used in all generator assessments. Aerosol particles within the respirable range were generated from all nebulizers at four different concentrations of BCG. The jet nebulizers produced a uniformly smaller particle size than the vibrating mesh devices, although particle concentrations by mass were similar across all devices tested with the exception of the Aerogen Solo, which resulted in a low concentration of BCG aerosols. Conclusions: The resulting measured viable BCG aerosol concentration fraction produced by each device approximated one another; however, a measurable decrease of efficiency and overall viability reduction in the jet nebulizer was observed in higher BCG inoculum starting concentrations, whereas the vibrating mesh nebulizer returned a remarkably stable viable aerosol fraction irrespective of inoculum concentration.
Collapse
Affiliation(s)
- Rachel K. Redmann
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Nadia Golden
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Breeanna Threeton
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Stephanie Z. Killeen
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Chad J. Roy
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA.,Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, Louisiana, USA.,Address correspondence to: Chad J. Roy, PhD, Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| |
Collapse
|
11
|
Inherent heterogeneity of influenza A virus stability following aerosolization. Appl Environ Microbiol 2022; 88:e0227121. [PMID: 34985975 DOI: 10.1128/aem.02271-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employ a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, and avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. Importance Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization, and if influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared with seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.
Collapse
|
12
|
Do plexiglass barriers reduce the risk for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)? Infect Control Hosp Epidemiol 2021:1-4. [PMID: 34726150 DOI: 10.1017/ice.2021.383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Barriers are commonly installed in workplace situations where physical distancing cannot be maintained, but their effectiveness in decreasing viral transmission is unknown. In simulations, physical barriers with no openings were effective in reducing contamination with an aerosolized benign virus or fluorescent microspheres, but barriers with openings were not.
Collapse
|
13
|
Kutter JS, de Meulder D, Bestebroer TM, Mulders A, Fouchier RA, Herfst S. Comparison of three air samplers for the collection of four nebulized respiratory viruses - Collection of respiratory viruses from air. INDOOR AIR 2021; 31:1874-1885. [PMID: 34124803 PMCID: PMC8530848 DOI: 10.1111/ina.12875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 05/13/2023]
Abstract
Viral respiratory tract infections are a leading cause of morbidity and mortality worldwide. Unfortunately, the transmission routes and shedding kinetics of respiratory viruses remain poorly understood. Air sampling techniques to quantify infectious viruses in the air are indispensable to improve intervention strategies to control and prevent spreading of respiratory viruses. Here, the collection of infectious virus with the six-stage Andersen cascade impactor was optimized with semi-solid gelatin as collection surface. Subsequently, the collection efficiency of the cascade impactor, the SKC BioSampler, and an in-house developed electrostatic precipitator was compared. In an in vitro set-up, influenza A virus, human metapneumovirus, parainfluenza virus type 3, and respiratory syncytial virus were nebulized and the amount of collected infectious virus and viral RNA was quantified with each air sampler. Whereas only low amounts of virus were collected using the electrostatic precipitator, high amounts were collected with the BioSampler and cascade impactor. The BioSampler allowed straight-forward sampling in liquid medium, whereas the more laborious cascade impactor allowed size fractionation of virus-containing particles. Depending on the research question, either the BioSampler or the cascade impactor can be applied in laboratory and field settings, such as hospitals to gain more insight into the transmission routes of respiratory viruses.
Collapse
Affiliation(s)
- Jasmin S. Kutter
- Department of ViroscienceErasmus University Medical CenterRotterdamthe Netherlands
| | - Dennis de Meulder
- Department of ViroscienceErasmus University Medical CenterRotterdamthe Netherlands
| | - Theo M. Bestebroer
- Department of ViroscienceErasmus University Medical CenterRotterdamthe Netherlands
| | - Ard Mulders
- Department of ViroscienceErasmus University Medical CenterRotterdamthe Netherlands
| | - Ron A.M. Fouchier
- Department of ViroscienceErasmus University Medical CenterRotterdamthe Netherlands
| | - Sander Herfst
- Department of ViroscienceErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
14
|
Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses. Appl Environ Microbiol 2021; 87:e0049721. [PMID: 34085856 DOI: 10.1128/aem.00497-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory-generated bioaerosols are widely used in aerobiology studies of viruses; however, few comparisons of alternative nebulizers exist. We compared aerosol production and virus survival for a Collison nebulizer, vibrating mesh nebulizer (VMN), and hydraulic spray atomizer (HSA). We also measured the dry size distribution of the aerosols produced and calculated the droplet sizes before evaporation and the dry size distribution from normal saline solution. Dry count median diameters of 0.11, 0.22, and 0.30 μm were found for normal saline from the Collison nebulizer, VMN, and HSA, respectively. The volume median diameters were 0.323, 1.70, and 1.30 μm, respectively. The effect of nebulization on the viability of two influenza A viruses (IAVs) (H1N1 and H3N2) and human rhinovirus 16 (HRV-16) was assessed by nebulization into an SKC BioSampler. The HSA had the least impact on surviving fractions (SFs) of H1N1 and H3N2 (89% ± 3% and 94% ± 2%, respectively), followed by the Collison nebulizer (83% ± 1% and 82% ± 2%, respectively). The VMN yielded SFs of 78% ± 2% and 76% ± 2%, respectively. Conversely, for HRV-16, the VMN produced higher SFs (87% ± 8%). Our findings indicate that there were no statistical differences between SFs of the viruses nebulized by these nebulizers. However, VMN produced higher aerosol concentrations within the airborne size range, making it more suitable where high aerosol mass production is required. IMPORTANCE Viral respiratory tract infections cause millions of lost days of work and physician visits globally, accounting for significant morbidity and mortality. Respiratory droplets and droplet nuclei from infected hosts are the potential carriers of such viruses within indoor environments. Laboratory-generated bioaerosols are applied in understanding the transmission and infection of viruses, modeling the physiological aspects of bioaerosol generation in a controlled environment. However, little comparative characterization exists for nebulizers used in infectious disease aerobiology, including Collison nebulizer, vibrating mesh nebulizer, and hydraulic spray atomizer. This study characterized the physical features of aerosols generated by laboratory nebulizers and their performance in producing aerosols at a size relevant to airborne transmission used in infectious disease aerobiology. We also determined the impact of nebulization mechanisms of these nebulizers on the viability of human respiratory viruses, including IAV H1N1, IAV H3N2, and HRV-16.
Collapse
|
15
|
Lemaitre J, Naninck T, Delache B, Creppy J, Huber P, Holzapfel M, Bouillier C, Contreras V, Martinon F, Kahlaoui N, Pascal Q, Tricot S, Ducancel F, Vecellio L, Le Grand R, Maisonnasse P. Non-human primate models of human respiratory infections. Mol Immunol 2021; 135:147-164. [PMID: 33895579 PMCID: PMC8062575 DOI: 10.1016/j.molimm.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
Respiratory pathogens represent a great burden for humanity and a potential source of new pandemics, as illustrated by the recent emergence of coronavirus disease 2019 (COVID-19). In recent decades, biotechnological advances have led to the development of numerous innovative therapeutic molecules and vaccine immunogens. However, we still lack effective treatments and vaccines against many respiratory pathogens. More than ever, there is a need for a fast, predictive, preclinical pipeline, to keep pace with emerging diseases. Animal models are key for the preclinical development of disease management strategies. The predictive value of these models depends on their ability to reproduce the features of the human disease, the mode of transmission of the infectious agent and the availability of technologies for monitoring infection. This review focuses on the use of non-human primates as relevant preclinical models for the development of prevention and treatment for human respiratory infections.
Collapse
Affiliation(s)
- Julien Lemaitre
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Thibaut Naninck
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Benoît Delache
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Justina Creppy
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France; Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Philippe Huber
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Marion Holzapfel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Camille Bouillier
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Martinon
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Quentin Pascal
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sabine Tricot
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Ducancel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France; Plateforme Scientifique et Technique Animaleries (PST-A), Université de Tours, Tours, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
16
|
Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB, Reed DS, Crossland NA, Shi Y, Duprex WP. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. SCIENCE ADVANCES 2021; 7:eabh0319. [PMID: 34039613 PMCID: PMC8153718 DOI: 10.1126/sciadv.abh0319] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/05/2021] [Indexed: 05/18/2023]
Abstract
Globally, there is an urgency to develop effective, low-cost therapeutic interventions for coronavirus disease 2019 (COVID-19). We previously generated the stable and ultrapotent homotrimeric Pittsburgh inhalable Nanobody 21 (PiN-21). Using Syrian hamsters that model moderate to severe COVID-19 disease, we demonstrate the high efficacy of PiN-21 to prevent and treat SARS-CoV-2 infection. Intranasal delivery of PiN-21 at 0.6 mg/kg protects infected animals from weight loss and substantially reduces viral burdens in both lower and upper airways compared to control. Aerosol delivery of PiN-21 facilitates deposition throughout the respiratory tract and dose minimization to 0.2 mg/kg. Inhalation treatment quickly reverses animals' weight loss after infection, decreases lung viral titers by 6 logs leading to drastically mitigated lung pathology, and prevents viral pneumonia. Combined with the marked stability and low production cost, this innovative therapy may provide a convenient and cost-effective option to mitigate the ongoing pandemic.
Collapse
Affiliation(s)
- Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Natasha L Tilston-Lunel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda J Rennick
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Pourchez J, Peyron A, Montigaud Y, Laurent C, Audoux E, Leclerc L, Verhoeven PO. New insights into the standard method of assessing bacterial filtration efficiency of medical face masks. Sci Rep 2021; 11:5887. [PMID: 33723303 PMCID: PMC7960701 DOI: 10.1038/s41598-021-85327-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 01/26/2023] Open
Abstract
Based on the current knowledge of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission, wearing a mask has been recommended during the COVID-19 pandemic. Bacterial filtration efficiency (BFE) measurements enable designing and regulating medical masks to prevent bioaerosol dissemination; however, despite the simplicity of these measurements, several scientific questions remain unanswered regarding BFE tests. Here, we investigated (1) the impact of substituting 100-mm Petri dishes with 90-mm disposable Petri dishes, (2) the impact of colony-counting methods on the bioaerosol aerodynamic size, and (3) the impact of colony-counting methods on the total viable particle counts. We demonstrated that disposable 90-mm Petri dishes can be used to replace the 100-mm dishes. We also showed that an automatic high-resolution colony counter can be used to directly count viable particles on collection substrates and to measure the bioaerosol size parameters. Our results enable possible modernization of the outdated testing methods recommended in the US and European standards for BFE measurements. Specifically, use of a modernized colony counter should be clearly regulated and permitted to avoid the counting of positive holes. The median aerodynamic diameter appears to be the most relevant parameter for characterizing bioaerosol size.
Collapse
Affiliation(s)
- Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 42023, Saint-Etienne, France. .,École Nationale Supérieure Des Mines Saint Étienne, INSERM, U 1059 Sainbiose Centre CIS, 42023, Saint-Etienne, France.
| | - Aurélien Peyron
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 42023, Saint-Etienne, France
| | - Yoann Montigaud
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 42023, Saint-Etienne, France
| | - Coralie Laurent
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 42023, Saint-Etienne, France
| | - Estelle Audoux
- CIRI (Centre International de Recherche en Infectiologie), Equipe GIMAP (team 15), INSERM U1111, CNRS, ENS, UCBL1, Université Jean Monnet, Université de Lyon, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 42023, Saint-Etienne, France
| | - Paul O Verhoeven
- CIRI (Centre International de Recherche en Infectiologie), Equipe GIMAP (team 15), INSERM U1111, CNRS, ENS, UCBL1, Université Jean Monnet, Université de Lyon, Saint-Etienne, France.,Service des Agents Infectieux et d'Hygiène, CHU de St-Etienne, Saint-Etienne, France
| |
Collapse
|
18
|
Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB, Reed DS, Crossland NA, Shi Y, Duprex WP. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33655253 DOI: 10.1101/2021.02.23.432569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Globally there is an urgency to develop effective, low-cost therapeutic interventions for coronavirus disease 2019 (COVID-19). We previously generated the stable and ultrapotent homotrimeric Pittsburgh inhalable Nanobody 21 (PiN-21). Using Syrian hamsters that model moderate to severe COVID-19 disease, we demonstrate the high efficacy of PiN-21 to prevent and treat SARS-CoV-2 infection. Intranasal delivery of PiN-21 at 0.6 mg/kg protects infected animals from weight loss and substantially reduces viral burdens in both lower and upper airways compared to control. Aerosol delivery of PiN-21 facilitates deposition throughout the respiratory tract and dose minimization to 0.2 mg/kg. Inhalation treatment quickly reverses animals' weight loss post-infection and decreases lung viral titers by 6 logs leading to drastically mitigated lung pathology and prevents viral pneumonia. Combined with the marked stability and low production cost, this novel therapy may provide a convenient and cost-effective option to mitigate the ongoing pandemic.
Collapse
|
19
|
Albe JR, Ma H, Gilliland TH, McMillen CM, Gardner CL, Boyles DA, Cottle EL, Dunn MD, Lundy JD, O’Malley KJ, Salama N, Walters AW, Pandrea I, Teichert T, Klimstra WB, Reed DS, Hartman AL. Physiological and immunological changes in the brain associated with lethal eastern equine encephalitis virus in macaques. PLoS Pathog 2021; 17:e1009308. [PMID: 33534855 PMCID: PMC7886169 DOI: 10.1371/journal.ppat.1009308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/16/2021] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.
Collapse
Affiliation(s)
- Joseph R. Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Henry Ma
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron H. Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christina L. Gardner
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Devin A. Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve D. Lundy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Noah Salama
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron W. Walters
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tobias Teichert
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| | - Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| | - Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| |
Collapse
|
20
|
Bernard L, Desoubeaux G, Bodier-Montagutelli E, Pardessus J, Brea D, Allimonnier L, Eymieux S, Raynal PI, Vasseur V, Vecellio L, Mathé L, Guillon A, Lanotte P, Pourchez J, Verhoeven PO, Esnouf S, Ferry M, Eterradossi N, Blanchard Y, Brown P, Roingeard P, Alcaraz JP, Cinquin P, Si-Tahar M, Heuzé-Vourc'h N. Controlled Heat and Humidity-Based Treatment for the Reuse of Personal Protective Equipment: A Pragmatic Proof-of-Concept to Address the Mass Shortage of Surgical Masks and N95/FFP2 Respirators and to Prevent the SARS-CoV2 Transmission. Front Med (Lausanne) 2020; 7:584036. [PMID: 33195335 PMCID: PMC7607499 DOI: 10.3389/fmed.2020.584036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background: The coronavirus infectious disease-2019 (COVID-19) pandemic has led to an unprecedented shortage of healthcare resources, primarily personal protective equipment like surgical masks, and N95/filtering face piece type 2 (FFP2) respirators. Objective: Reuse of surgical masks and N95/FFP2 respirators may circumvent the supply chain constraints and thus overcome mass shortage. Methods, design, setting, and measurement: Herein, we tested the effects of dry- and moist-air controlled heating treatment on structure and chemical integrity, decontamination yield, and filtration performance of surgical masks and FFP2 respirators. Results: We found that treatment in a climate chamber at 70°C during 1 h with 75% humidity rate was adequate for enabling substantial decontamination of both respiratory viruses, oropharyngeal bacteria, and model animal coronaviuses, while maintaining a satisfying filtering capacity. Limitations: Further studies are now required to confirm the feasibility of the whole process during routine practice. Conclusion: Our findings provide compelling evidence for the recycling of pre-used surgical masks and N95/FFP2 respirators in case of imminent mass shortfall.
Collapse
Affiliation(s)
- Louis Bernard
- Médecine interne et maladies infectieuses, CHU de Tours, Tours, France.,Université de Tours, Tours, France
| | - Guillaume Desoubeaux
- Université de Tours, Tours, France.,Parasitologie-mycologie-médecine tropicale, CHU de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| | - Elsa Bodier-Montagutelli
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France.,Pharmacie à usage intérieure, CHU de Tours, Tours, France
| | - Jeoffrey Pardessus
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| | - Déborah Brea
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| | - Laurine Allimonnier
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| | - Sébastien Eymieux
- Université de Tours, Tours, France.,Biologie cellulaire-Microscopie électronique, CHU de Tours, Tours, France.,UMR Inserm U1259-Morphogénèse et antigénicité du VIH et des virus des hépatites, Tours, France
| | - Pierre-Ivan Raynal
- Université de Tours, Tours, France.,Biologie cellulaire-Microscopie électronique, CHU de Tours, Tours, France
| | - Virginie Vasseur
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| | - Laurent Vecellio
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| | - Ludovic Mathé
- Blanchisserie centrale GCS NOT, CHU de Tours, Tours, France
| | - Antoine Guillon
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France.,Médecine intensive-Réanimation, CHU de Tours et Université de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, Tours, France.,Bactériologie-Virologie-Hygiène hospitalière, CHU de Tours, Tours, France.,ISP Equipe 5-Bactéries et Risque Materno-fœtale, INRAE, Nouzilly, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Paul O Verhoeven
- GIMAP, EA 3064, Université Jean Monnet, Université de Lyon, Saint-Etienne, France.,Service des Agents Infectieux et d'Hygiène, CHU de St-Etienne, Saint-Etienne, France
| | - Stéphane Esnouf
- Service d'Étude du Comportement des Radionucléides (SECR), CEA, Université Paris Saclay, Gif-sur-Yvette, France
| | - Muriel Ferry
- Service d'Étude du Comportement des Radionucléides (SECR), CEA, Université Paris Saclay, Gif-sur-Yvette, France
| | - Nicolas Eterradossi
- French Agency for Food Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Yannick Blanchard
- French Agency for Food Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Paul Brown
- French Agency for Food Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Philippe Roingeard
- Université de Tours, Tours, France.,Biologie cellulaire-Microscopie électronique, CHU de Tours, Tours, France.,UMR Inserm U1259-Morphogénèse et antigénicité du VIH et des virus des hépatites, Tours, France
| | | | - Philippe Cinquin
- TIMC-IMAG, UMR5525 Univ. Grenoble Alpes-CNRS, La Tronche, France.,CIC-IT1406 INSERM/CHU Grenoble Alpes/Univ. Grenoble Alpes, La Tronche, France
| | - Mustapha Si-Tahar
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université de Tours, Tours, France.,Inserm U1100, Centre d'étude des pathologies respiratoires (CEPR), Tours, France
| |
Collapse
|
21
|
Yang T, Jiang L, Han Y, Liu J, Wang X, Yan X, Liu J. Linking aerosol characteristics of size distributions, core potential pathogens and toxic metal(loid)s to wastewater treatment process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114741. [PMID: 32402711 DOI: 10.1016/j.envpol.2020.114741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) play important roles in water purification but are also important source of aerosols. However, the relationship between aerosol characteristics and wastewater treatment process remains poorly understood. In this study, aerosols were collected over a 24-month period from a WWTP using a modified anaerobic-anoxic-oxic process. The aerated tank (AerT) was characterized by the highest respiratory fraction (RF) concentrations (861-1525 CFU/m3) and proportions (50.76%-65.96%) of aerosol particles. Fourteen core potential pathogens and 15 toxic metal(loid)s were identified in aerosols. Mycobacterium was the genus that aerosolized most easily in fine grid, pre-anoxic tank, and AerT. High wastewater treatment efficiency may increase the emission of RF and core potential pathogens. The median size of activated sludge, richness of core potential pathogens in wastewater, and total suspended particulates were the most influential factors directly related to the RF proportions, core community of potential pathogens, and composition of toxic metal(loid)s in WWTP aerosols, respectively. Relative humidity, temperature, input and removal of biochemical oxygen demand, dissolved oxygen, and mixed liquor suspended solids could also directly or indirectly affect the aerosol characteristics. This study enhances the mechanistic understanding of linking aerosol characteristics to treatment processes and has important implications for targeted manipulation.
Collapse
Affiliation(s)
- Tang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| | - Jianwei Liu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
22
|
Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel NL, Albe JR, Cottle E, Dunn MD, Frye LJ, Gilliland TH, Olsen EL, O’Malley KJ, Schwarz MM, Tomko JA, Walker RC, Xia M, Hartman MS, Klein E, Scanga CA, Flynn JL, Klimstra WB, McElroy AK, Reed DS, Duprex WP. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog 2020; 16:e1008903. [PMID: 32946524 PMCID: PMC7535860 DOI: 10.1371/journal.ppat.1008903] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/05/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023] Open
Abstract
Vaccines are urgently needed to combat the global coronavirus disease 2019 (COVID-19) pandemic, and testing of candidate vaccines in an appropriate non-human primate (NHP) model is a critical step in the process. Infection of African green monkeys (AGM) with a low passage human isolate of SARS-CoV-2 by aerosol or mucosal exposure resulted in mild clinical infection with a transient decrease in lung tidal volume. Imaging with human clinical-grade 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) co-registered with computed tomography (CT) revealed pulmonary lesions at 4 days post-infection (dpi) that resolved over time. Infectious virus was shed from both respiratory and gastrointestinal (GI) tracts in all animals in a biphasic manner, first between 2-7 dpi followed by a recrudescence at 14-21 dpi. Viral RNA (vRNA) was found throughout both respiratory and gastrointestinal systems at necropsy with higher levels of vRNA found within the GI tract tissues. All animals seroconverted simultaneously for IgM and IgG, which has also been documented in human COVID-19 cases. Young AGM represent an species to study mild/subclinical COVID-19 disease and with possible insights into live virus shedding. Future vaccine evaluation can be performed in AGM with correlates of efficacy being lung lesions by PET/CT, virus shedding, and tissue viral load.
Collapse
Affiliation(s)
- Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sham Nambulli
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Natasha Louise Tilston-Lunel
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph R. Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - L. James Frye
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron H. Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Olsen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Madeline M. Schwarz
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jaime A. Tomko
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Reagan C. Walker
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mengying Xia
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew S. Hartman
- Department of Radiology, Allegheny Health Network, Pittsburgh, Pennsylvania, United States of America
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Charles A. Scanga
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - JoAnne L. Flynn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita K. McElroy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W. Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
23
|
Ma H, Lundy JD, Cottle EL, O’Malley KJ, Trichel AM, Klimstra WB, Hartman AL, Reed DS, Teichert T. Applications of minimally invasive multimodal telemetry for continuous monitoring of brain function and intracranial pressure in macaques with acute viral encephalitis. PLoS One 2020; 15:e0232381. [PMID: 32584818 PMCID: PMC7316240 DOI: 10.1371/journal.pone.0232381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Alphaviruses such as Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) are arboviruses that can cause severe zoonotic disease in humans. Both VEEV and EEEV are highly infectious when aerosolized and can be used as biological weapons. Vaccines and therapeutics are urgently needed, but efficacy determination requires animal models. The cynomolgus macaque (Macaca fascicularis) provides a relevant model of human disease, but questions remain whether vaccines or therapeutics can mitigate CNS infection or disease in this model. The documentation of alphavirus encephalitis in animals relies on traditional physiological biomarkers and behavioral/neurological observations by veterinary staff; quantitative measurements such as electroencephalography (EEG) and intracranial pressure (ICP) can recapitulate underlying encephalitic processes. We detail a telemetry implantation method suitable for continuous monitoring of both EEG and ICP in awake macaques, as well as methods for collection and analysis of such data. We sought to evaluate whether changes in EEG/ICP suggestive of CNS penetration by virus would be seen after aerosol exposure of naïve macaques to VEEV IC INH9813 or EEEV V105 strains compared to mock-infection in a cohort of twelve adult cynomolgus macaques. Data collection ran continuously from at least four days preceding aerosol exposure and up to 50 days thereafter. EEG signals were processed into frequency spectrum bands (delta: [0.4 - 4Hz); theta: [4 - 8Hz); alpha: [8-12Hz); beta: [12-30] Hz) and assessed for viral encephalitis-associated changes against robust background circadian variation while ICP data was assessed for signal fidelity, circadian variability, and for meaningful differences during encephalitis. Results indicated differences in delta, alpha, and beta band magnitude in infected macaques, disrupted circadian rhythm, and proportional increases in ICP in response to alphavirus infection. This novel enhancement of the cynomolgus macaque model offers utility for timely determination of onset, severity, and resolution of encephalitic disease and for the evaluation of vaccine and therapeutic candidates.
Collapse
Affiliation(s)
- Henry Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve D. Lundy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Cottle
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita M. Trichel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tobias Teichert
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
24
|
Ma H, Lundy JD, O’Malley KJ, Klimstra WB, Hartman AL, Reed DS. Electrocardiography Abnormalities in Macaques after Infection with Encephalitic Alphaviruses. Pathogens 2019; 8:pathogens8040240. [PMID: 31744158 PMCID: PMC6969904 DOI: 10.3390/pathogens8040240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023] Open
Abstract
Eastern (EEEV) and Venezuelan (VEEV) equine encephalitis viruses (EEVs) are related, (+) ssRNA arboviruses that can cause severe, sometimes fatal, encephalitis in humans. EEVs are highly infectious when aerosolized, raising concerns for potential use as biological weapons. No licensed medical countermeasures exist; given the severity/rarity of natural EEV infections, efficacy studies require animal models. Cynomolgus macaques exposed to EEV aerosols develop fever, encephalitis, and other clinical signs similar to humans. Fever is nonspecific for encephalitis in macaques. Electrocardiography (ECG) metrics may predict onset, severity, or outcome of EEV-attributable disease. Macaques were implanted with thermometry/ECG radiotransmitters and exposed to aerosolized EEV. Data was collected continuously, and repeated-measures ANOVA and frequency-spectrum analyses identified differences between courses of illness and between pre-exposure and post-exposure states. EEEV-infected macaques manifested widened QRS-intervals in severely ill subjects post-exposure. Moreover, QT-intervals and RR-intervals decreased during the febrile period. VEEV-infected macaques suffered decreased QT-intervals and RR-intervals with fever onset. Frequency-spectrum analyses revealed differences in the fundamental frequencies of multiple metrics in the post-exposure and febrile periods compared to baseline and confirmed circadian dysfunction. Heart rate variability (HRV) analyses revealed diminished variability post-exposure. These analyses support using ECG data alongside fever and clinical laboratory findings for evaluating medical countermeasure efficacy.
Collapse
|