1
|
Lin YJ, Hsieh PH, Mao CC, Shih YH, Chen SH, Lin CY. Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136976. [PMID: 39740553 DOI: 10.1016/j.jhazmat.2024.136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/01/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to identify critical genes involved in HBCD biodegradation through two approaches: functional annotation of metagenomes and the interpretation of machine learning-based prediction models. Our functional analysis revealed a rich metabolic potential in Chiang Chun soil (CCS) metagenomes, particularly in carbohydrate metabolism. Among the machine learning algorithms tested, random forest models outperformed others, especially when trained on datasets reflecting the degradation patterns of species like Dehalococcoides mccartyi and Pseudomonas aeruginosa. These models highlighted enzymes such as EC 1.8.3.2 (thiol oxidase) and EC 4.1.1.43 (phenylpyruvate decarboxylase) as inhibitors of degradation, while EC 2.7.1.83 (pseudouridine kinase) was linked to enhanced degradation. This dual-methodology approach not only deepens our understanding of microbial functions in HBCD degradation but also provides an unbiased view of the microbial and enzymatic interactions involved, offering a more targeted and effective bioremediation strategy.
Collapse
Affiliation(s)
- Yu-Jie Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Ping-Heng Hsieh
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chun-Chia Mao
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
3
|
Kandel SE, Tooker BC, Lampe JN. Drug metabolism of ciprofloxacin, ivacaftor, and raloxifene by Pseudomonas aeruginosa cytochrome P450 CYP107S1. J Biol Chem 2024; 300:107594. [PMID: 39032655 PMCID: PMC11382314 DOI: 10.1016/j.jbc.2024.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.
Collapse
Affiliation(s)
- Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Brian C Tooker
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Yu F, Zhang B, Liu Y, Luo W, Chen H, Gao J, Ye X, Li J, Xie Q, Peng T, Wang H, Huang T, Hu Z. Biotransformation of HBCDs by the microbial communities enriched from mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134036. [PMID: 38493623 DOI: 10.1016/j.jhazmat.2024.134036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are a sort of persistent organic pollutants (POPs). This research investigated 12 microbial communities enriched from sediments of four mangroves in China to transform HBCDs. Six microbial communities gained high transformation rates (27.5-97.7%) after 12 generations of serial transfer. Bacteria were the main contributors to transform HBCDs rather than fungi. Analyses on the bacterial compositions and binning genomes showed that Alcanivorax (55.246-84.942%) harboring haloalkane dehalogenase genes dadAH and dadBH dominated the microbial communities with high transformation rates. Moreover, expressions of dadAH and dadBH in the microbial communities and Alcanivorax isolate could be induced by HBCDs. Further, it was found that purified proteins DadAH and DadBH showed high conversion rates on HBCDs in 36 h (91.9 ± 7.4 and 101.0 ± 1.8%, respectively). The engineered Escherichia coli BL21 strains harbored two genes could convert 5.7 ± 0.4 and 35.1 ± 0.1% HBCDs, respectively, lower than their cell-free crude extracts (61.2 ± 5.2 and 56.5 ± 8.7%, respectively). The diastereoisomer-specific transforming trend by both microbial communities and enzymes were γ- > α- > β-HBCD, differed from α- > β- > γ-HBCD by the Alcanivorax isolate. The identified transformation products indicated that HBCDs were dehalogenated via HBr elimination (dehydrobromination), hydrolytic and reductive debromination pathways in the enriched cultures. Two enzymes converted HBCDs via hydrolytic debromination. The present research provided theoretical bases for the biotransformation of HBCDs by microbial community and the bioremediation of HBCDs contamination in the environment.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Bing Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Haonan Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Jun'na Gao
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Xueying Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, Guangdong Province, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, Guangdong Province, China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China.
| |
Collapse
|
5
|
He S, Wang W, Wang W, Hu H, Xu P, Tang H. Microbial production of cis,cis-muconic acid from aromatic compounds in engineered Pseudomonas. Synth Syst Biotechnol 2023; 8:536-545. [PMID: 37637202 PMCID: PMC10448021 DOI: 10.1016/j.synbio.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Industrial expansion has led to environmental pollution by xenobiotic compounds like polycyclic aromatic hydrocarbons and monoaromatic hydrocarbons. Pseudomonas spp. have broad metabolic potential for degrading aromatic compounds. The objective of this study was to develop a "biological funneling" strategy based on genetic modification to convert complex aromatic compounds into cis,cis-muconate (ccMA) using Pseudomonas putida B6-2 and P. brassicacearum MPDS as biocatalysts. The engineered strains B6-2 (B6-2ΔcatBΔsalC) and MPDS (MPDSΔsalC(pUCP18k-catA)) thrived with biphenyl or naphthalene as the sole carbon source and produced ccMA, attaining molar conversions of 95.3% (ccMA/biphenyl) and 100% (ccMA/naphthalene). Under mixed substrates, B6-2ΔcatBΔsalC grew on biphenyl as a carbon source and transformed ccMA from non-growth substrates benzoate or salicylate to obtain higher product concentration. Inserting exogenous clusters like bedDC1C2AB and xylCMAB allowed B6-2 recombinant strains to convert benzene and toluene to ccMA. In mixed substrates, constructed consortia of engineered strains B6-2 and MPDS specialized in catabolism of biphenyl and naphthalene; the highest molar conversion rate of ccMA from mixed substrates was 85.2% when B6-2ΔcatBΔsalC was added after 24 h of MPDSΔsalC(pUCP18k-catA) incubation with biphenyl and naphthalene. This study provides worthwhile insights into efficient production of ccMA from aromatic hydrocarbons by reusing complex pollutants.
Collapse
Affiliation(s)
- Siyang He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weidong Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
6
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Marques ML, Cairrao E. Occurrence and Health Effects of Hexabromocyclododecane: An Updated Review. TOXICS 2023; 11:toxics11050409. [PMID: 37235223 DOI: 10.3390/toxics11050409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, β-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.
Collapse
Affiliation(s)
- Maria Lopes Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
8
|
Wu X, Fan K, Wang Q, Cao Q, Chen C, Xun L, Liu H. Investigating the debrominations of a subset of brominated flame retardants by biogenic reactive sulfur species. ENVIRONMENT INTERNATIONAL 2023; 174:107873. [PMID: 36933304 DOI: 10.1016/j.envint.2023.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Brominated flame retardants (BFRs) are persistent organic pollutants. Many bacteria are able to debrominate BFRs, but the underlying mechanism is unclear. Herein, we discovered that reactive sulfur species (RSS), which have strong reductive activity and are commonly present in bacteria, might be one of the reasons leading to such ability. Experiments performed with RSS (H2S and HSSH) and BFRs indicated that RSS can debrominate BFRs via two different mechanisms simultaneously: the substitutive debromination that generates thiol-BFRs and the reductive debromination that generates hydrogenated BFRs. Debromination reactions rapidly happened under neutral pH and ambient temperature, and the debromination degree was around 30% - 55% in one hour. Two Pseudomonas strains, Pseudomonas sp. C27 and Pseudomonas putida B6-2 both produced extracellular RSS and showed debromination activity. C27 debrominated HBCD, TBECH, and TBP by 5.4%, 17.7%, and 15.9% in two days. Whereas, B6-2 debrominated the three BFRs by 0.4%, 0.6%, and 0.3% in two days. The two bacteria produced different amounts and species of RSS, which were likely responsible for the contrasted degrees of the debromination. Our finding unveiled a novel, non-enzymatic debromination mechanism that many bacteria may possess. RSS producing bacteria have potentials to contribute to bioremediation of BFRs-polluted environments.
Collapse
Affiliation(s)
- Xiaohua Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Qun Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China; School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China.
| |
Collapse
|
9
|
Peng X, Li T, Zheng Q, Lu Y, He Y, Tang Y, Qiu R. Citrobacter sp. Y3 harbouring novel gene HBCD-hd-1 mineralizes hexabromocyclododecane via new metabolic pathways according to multi-omics characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130071. [PMID: 36183513 DOI: 10.1016/j.jhazmat.2022.130071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Hexabromocyclododecane (HBCD) is a typical persistent organic pollutant that is widely detected in the environment. Despite the significant efforts put into its mineralisation, there is still a lack of microorganism resources that can completely mineralise HBCD. Stable isotope analysis revealed that the Citrobacter sp. Y3 can use [13C]HBCD as its sole carbon source and degrade or even mineralise it into 13CO2, with a maximum conversion rate of 100% in approximately 14 days. Strain Y3 could completely mineralise HBCD, which it used as its only carbon source, and six debromination enzymes related to HBCD degradation were found in Y3, including haloalkane dehalogenase (DhaA), haloacid dehalogenase (HAD), etc. A functional gene named HBCD-hd-1, encoding a HAD, was found to be upregulated during HBCD degradation and heterologously expressed in Escherichia coli. Recombinant E. coli with the HBCD-hd-1 gene transformed the typical intermediate 4-bromobutyric acid to 4-hydroxybutanoic acid and showed excellent degradation performance on HBCD, accompanied by nearly 100% bromine (Br) ion generation. The expression of HBCD-hd-1 in Y3 rapidly accelerated the biodegradation of HBCD. With HBCD as its sole carbon source, strain Y3 could potentially degrade HBCD, especially in a low-nutrient environment.
Collapse
Affiliation(s)
- Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qihang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingyuan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Establishment of a salt-induced bioremediation platform from marine Vibrio natriegens. Commun Biol 2022; 5:1352. [PMID: 36494435 PMCID: PMC9734156 DOI: 10.1038/s42003-022-04319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Industrial wastewater discharge, agricultural production, marine shipping, oil extraction, and other activities have caused serious marine pollution, including microplastics, petroleum and its products, heavy metals, pesticides, and other organics. Efficiency of bioremediation of marine pollutions may be limited by high salt concentrations (>1%, w/v), which can cause an apparent loss of microbial activities. In this study, functional promoters P1, P2-1, and P2-2 censoring salt stress were isolated and identified from a Vibrio natriegens strain Vmax. Three salt-induced degradation models were constructed to degrade polyethylene terephthalate (PET), chlorpyrifos (CP), and hexabromocyclododecanes (HBCDs) using the marine strain Vmax. The engineered strains are efficient for degradation of the corresponding substrates, with the degradation rates at 15 mg/L PET in 8 d, 50 mg/L CP in 24 h, and 1 mg/L HBCDs in 4 h, respectively. In addition, an immobilization strategy for recycling and reusing of engineered strains was realized by expressing the chitin-binding protein GbpA. This study may help answer the usage of rapidly growing marine bacteria such as V. natriegens Vmax to degrade marine pollution efficiently.
Collapse
|
11
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
12
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
13
|
Hu Y, Chen J, Wang C, Wang P, Gao H, Zhang J, Zhang B, Cui G, Zhao D. Insight into microbial degradation of hexabromocyclododecane (HBCD) in lake sediments under different hydrodynamic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154358. [PMID: 35259383 DOI: 10.1016/j.scitotenv.2022.154358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Hexabromocyclododecane (HBCD), an emerging persistent organic pollutant, has been widely detected in aquatic ecosystems with various hydrodynamic conditions, however, the effects of hydrodynamic changes on microbial degradation of HBCD in aquatic sediment remains unclear. Here, we conducted an annular flume experiment to characterize variation in HBCD removal from contaminated sediment under three hydrodynamic conditions with different flow velocities, as well as clarify the underlying microbial mechanisms. We detected significant HBCD removal and bromine ion generation in all contaminated sediments, and microbial reduction debromination was an important process for HBCD removal. At the end of the 49-day experiment, both HBCD removal percentage and the bromine ion concentration were significantly lower under dynamic water condition with higher sediment redox potential, compared with static water conditions. The dynamic water conditions resulted a relatively high sediment redox potential and decreased the iron reduction rate and the abundance of organohalide-respiring bacteria (OHRB) in the genera Geobatcer, Dehalogenimonas, Dehalobacter, and Dehalococcoide, which reduced the microbial degradation of HBCD in contaminated sediments. The community composition of both total bacteria and OHRB also differed significantly among hydrodynamic conditions. Some bacterial groups with HBCD degradation abilities such as Pseudomonas and Sulfuricurvum were less abundant under dynamic water conditions, and the HBCD degradation efficiencies were lower. These findings enhance our understanding of the bioremediation potential of HBCD-contaminated sediments in different hydrodynamic areas.
Collapse
Affiliation(s)
- Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Dan Zhao
- Kunming Engineering Corporation Limited, Power China, 115 People's East Road, Kunming 650216, PR China
| |
Collapse
|
14
|
Transformation of HBCDs by Rhodococcus sp. stu-38. Curr Microbiol 2022; 79:200. [PMID: 35596087 DOI: 10.1007/s00284-022-02872-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are brominated flame retardants causing serious environmental pollution. HBCDs in the environment could be transformed to various products. Identification of transformation products has been performed using various mass-spectrometric techniques. However, bacterial transformation of HBCDs yielding low-level products was not well studied. In this paper, a Rhodococcus strain stu-38 which could stereoselectively transform HBCDs in mineral salt medium, seawater, and growth medium was isolated. Seven potential biotransformation products of HBCDs were identified by using GC-MS. These products, including brominated alkenes, dibromocyclododecadiene and bromocyclododecatriene; brominated alkenols, bromocyclododecadienol and bromocyclododecatrienol; fully debrominated compounds, cyclododecadiendiol, 1,2-epoxy-5,9-cyclododecadiene, and cyclododecadienol, were presented in rather low level which could lead to false negative results. The low-level transformation products should not be ignored because their toxicity was less assessment. This research highlighted identification of the low-level transformation products to reveal the complicated stereoselective biotransformation of HBCDs.
Collapse
|
15
|
Li YJ, Chuang CH, Cheng WC, Chen SH, Chen WL, Lin YJ, Lin CY, Shih YH. A metagenomics study of hexabromocyclododecane degradation with a soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128465. [PMID: 35739659 DOI: 10.1016/j.jhazmat.2022.128465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/15/2023]
Abstract
Hexabromocyclododecanes (HBCDs) are globally prevalent and persistent organic pollutants (POPs) listed by the Stockholm Convention in 2013. They have been detected in many environmental media from waterbodies to Plantae and even in the human body. Due to their highly bioaccumulative characterization, they pose an urgent public health issue. Here, we demonstrate that the indigenous microbial community in the agricultural soil in Taiwan could decompose HBCDs with no additional carbon source incentive. The degradation kinetics reached 0.173 day-1 after the first treatment and 0.104 day-1 after second exposure. With additional C-sources, the rate constants decreased to 0.054-0.097 day-1. The hydroxylic debromination metabolites and ring cleavage long-chain alkane metabolites were identified to support the potential metabolic pathways utilized by the soil microbial communities. The metagenome established by Nanopore sequencing showed significant compositional alteration in the soil microbial community after the HBCD treatment. After ranking, comparing relative abundances, and performing network analyses, several novel bacterial taxa were identified to contribute to HBCD biotransformation, including Herbaspirillum, Sphingomonas, Brevundimonas, Azospirillum, Caulobacter, and Microvirga, through halogenated / aromatic compound degradation, glutathione-S-transferase, and hydrolase activity. We present a compelling and applicable approach combining metagenomics research, degradation kinetics, and metabolomics strategies, which allowed us to decipher the natural attenuation and remediation mechanisms of HBCDs.
Collapse
Affiliation(s)
- Yi-Jie Li
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Chia-Hsien Chuang
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Wen-Chih Cheng
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University (TMU), No. 250 Wu-Hsing St., Taipei, Taiwan
| | - Wen-Ling Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Yu-Jie Lin
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
16
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|