1
|
Li X, Ma Y, Zhang Y, Zhang X, Li H, Sun Y, Niu Z. Porphyrin metabolism and carbon fixation response of Skeletonema costatum at different growth phases to mixed emerging PFASs at environmental concentrations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1465-1475. [PMID: 38973378 DOI: 10.1039/d4em00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), especially as emerging compounds, have been widely detected in coastal seawater. However, the awareness of the interaction between PFASs at environmental concentrations and marine diatoms is still limited. In this study, Skeletonema costatum was exposed to three co-existing PFASs, namely hexafluoropropylene oxide dimer acid (HFPO-DA), 6 : 2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES), and perfluoroethylcyclohexane sulfonate (PFECHS) (15-300 ng L-1 in total), for 14 days. In the 300 ng L-1 test group, the significant down-regulation of chlorophyllide a in porphyrin metabolism, light-harvesting capacity and carbon fixation were the main inhibitory mechanisms of photosynthesis by emerging PFASs at the 14th day compared to the 8th day, which indicated that they may have a shading effect on S. costatum. Additionally, mixed PFASs could also activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by up-regulating gene gp91 and down-regulating genes CaM4 and NDPK2 to generate excessive ROS. This resulted in a decrease in the algal biomass, which would further weaken the primary productivity of S. costatum. Our findings illustrated that mixed emerging PFASs at environmental concentrations may interfere with the carbon balance of marine diatoms.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyu Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Wang M, Bian W, Qi X, He D, Lu H, Yang L. Cycles of solar ultraviolet radiation favor periodic expansions of cyanobacterial blooms in global lakes. WATER RESEARCH 2024; 255:121471. [PMID: 38503183 DOI: 10.1016/j.watres.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Global warming and eutrophication are known to increase the prevalence of cyanobacterial blooms, posing a severe threat to the ecological stability and sustainability of water bodies. The long-term (over an annual time frame) effect of UV radiation on cyanobacterial blooms in lakes are rarely discussed though the substantial effects of high-intensity UV radiation on the growth inhibition of marine phytoplankton were studied. Here, we employed the datasets on surface solar UV radiation, nitrogen and phosphorus concentrations, and the annual scales and frequencies of cyanobacterial blooms in lakes across long-term spatial scales to probe the relationship of UV radiation with cyanobacterial blooms. The results indicated that enhanced solar UV radiation may unintentionally stimulate cyanobacterial growth and favor the expansions of cyanobacterial blooms in lakes around the world. The fluctuating UV radiation significantly affects the annual scales of cyanobacterial blooms in both eutrophic and oligotrophic lakes. Solar UV radiation enhances the positive impact of rising phosphorus levels on cyanobacterial blooms because UV radiation prompts the synthesis of polyphosphate in cyanobacteria cells, which helps cyanobacteria to alleviate the stress of UV light. The scales of cyanobacterial blooms are significantly impacted by solar UV radiation intensities as opposed to the annual frequency of cyanobacterial blooms. Furthermore, solar UV radiation fluctuation with a 9-year period over a 14-year main cycles significantly affects the periodicities of cyanobacterial blooms in global lakes, which provides a basis for predicting the peak value of the scales of cyanobacterial blooms in lakes. These findings opened up new avenues of inquiry into the mechanism and management strategies of cyanobacterial blooms in lakes worldwide.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenbin Bian
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Di He
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hao Lu
- Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Wei N, Chen A, Guo X, Zhang S, Song L, Gan N, Zheng L, Jia Y, Li J. Changes in nitrogen metabolism of phosphorus-starved bloom-forming cyanobacterium Microcystis aeruginosa: Implications for nutrient management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166832. [PMID: 37673240 DOI: 10.1016/j.scitotenv.2023.166832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The surplus of nitrogen plays a key role in the maintenance of cyanobacterial bloom when phosphorus has already been limited. However, the interplay between high nitrogen and low phosphorus conditions is not fully understood. Nitrogen metabolism is critical for the metabolism of cyanobacteria. Transcriptomic analysis in the present study suggested that nitrogen metabolism and ribosome biogenesis were the two most significantly changed pathways in long-term phosphorus-starved bloom-forming cyanobacteria Microcystis aeruginosa FACHB-905. Notably, the primary glutamine synthetase/glutamate synthase cycle, crucial for nitrogen metabolism, was significantly downregulated. Concurrently, nitrogen uptake showed a marked decrease due to reduced expression of nitrogen source transporters. The content of intracellular nitrogen reservoir phycocyanin also showed a drastic decrease upon phosphorus starvation. Our study demonstrated that long-term phosphorus-starved cells also suffered from nitrogen deficiency because of the reduction in nitrogen assimilation, which might be limited by the reduced ribosome biogenesis and the shortage of adenosine triphosphate. External nitrogen supply will not change the transcriptions of nitrogen metabolism-related genes significantly like that under phosphorus-rich conditions, but still help to maintain the survival of phosphorus-starved cells. The study deepens our understanding about the survival strategies of Microcystis cells under phosphorus starvation and the mutual dependence between nitrogen and phosphorus, which would provide valuable information for nutrient management in the eutrophicated water body.
Collapse
Affiliation(s)
- Nian Wei
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Aifa Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiaohe Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jie Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
5
|
Brück P, Wasser D, Soppa J. One Advantage of Being Polyploid: Prokaryotes of Various Phylogenetic Groups Can Grow in the Absence of an Environmental Phosphate Source at the Expense of Their High Genome Copy Numbers. Microorganisms 2023; 11:2267. [PMID: 37764113 PMCID: PMC10536925 DOI: 10.3390/microorganisms11092267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Genomic DNA has high phosphate content; therefore, monoploid prokaryotes need an external phosphate source or an internal phosphate storage polymer for replication and cell division. For two polyploid prokaryotic species, the halophilic archaeon Haloferax volcanii and the cyanobacterium Synechocystis PCC 6803, it has been reported that they can grow in the absence of an external phosphate source by reducing the genome copy number per cell. To unravel whether this feature might be widespread in and typical for polyploid prokaryotes, three additional polyploid prokaryotic species were analyzed in the present study, i.e., the alphaproteobacterium Zymomonas mobilis, the gammaproteobacterium Azotobacter vinelandii, and the haloarchaeon Halobacterium salinarum. Polyploid cultures were incubated in the presence and in the absence of external phosphate, growth was recorded, and genome copy numbers per cell were quantified. Limited growth in the absence of phosphate was observed for all three species. Phosphate was added to phosphate-starved cultures to verify that the cells were still viable and growth-competent. Remarkably, stationary-phase cells grown in the absence or presence of phosphate did not become monoploid but stayed oligoploid with about five genome copies per cell. As a negative control, it was shown that monoploid Escherichia coli cultures did not exhibit any growth in the absence of phosphate. Taken together, all five polyploid prokaryotic species that have been characterized until now can grow in the absence of environmental phosphate by reducing their genome copy numbers, indicating that cell proliferation outperforms other evolutionary advantages of polyploidy.
Collapse
Affiliation(s)
| | | | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany (D.W.)
| |
Collapse
|
6
|
Song L, Liu Y, Song G, Wu J, Liu S. Response of microalgae size-class structure to nutrients differences in northern Yellow Sea, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85330-85343. [PMID: 37386216 DOI: 10.1007/s11356-023-28363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Marine phytoplankton size-class structure affects ecological functions and shellfish culture. We use high-throughput sequencing and size-fractioned grading techniques to identify and analyze responses of phytoplankton differences in environmental variables at Donggang, northern Yellow Sea (high inorganic nitrogen (DIN)) and Changhai (low DIN) for 2021. The main environmental variables that correlate with differences in the proportional contributions of pico-, nano-, and microphytoplankton to the total phytoplankton community are inorganic phosphorus (DIP), nitrite to inorganic nitrogen ratio (NO2/dissolved inorganic nitrogen (DIN)), and ammonia nitrogen to inorganic nitrogen ratio (NH4/DIN), respectively. DIN, which contributes most to environmental differences, mainly positively correlates with changes in picophytoplankton biomass in high DIN waters. Nitrite (NO2) correlates mostly with changes in the proportional contribution of microphytoplankton in high DIN waters and nanophytoplankton in low DIN waters, and negatively correlates with changes in the biomass and proportional representation of microphytoplankton in low DIN waters. For near-shore phosphorus-limited waters, an increase in DIN may increase total microalgal biomass, but proportions of microphytoplankton may not increase; for high DIN waters, an increase in DIP may increase proportions of microphytoplankton, while for low DIN waters, an increase in DIP may preferentially increase proportions of picophytoplankton and nanophytoplankton. Picophytoplankton contributed little to the growth of two commercially cultured filter-feeding shellfish, Ruditapes philippinarum and Mizuhopecten yessoensis.
Collapse
Affiliation(s)
- Lun Song
- Key Laboratory for the Conservation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Yin Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Guangjun Song
- Key Laboratory for the Conservation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Jinhao Wu
- Key Laboratory for the Conservation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Suxuan Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
7
|
Jacinavicius FR, Geraldes V, Fernandes K, Crnkovic CM, Gama WA, Pinto E. Toxicological effects of cyanobacterial metabolites on zebrafish larval development. HARMFUL ALGAE 2023; 125:102430. [PMID: 37220983 DOI: 10.1016/j.hal.2023.102430] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
Freshwater cyanobacteria are known worldwide for their potential to produce toxins. However, these organisms are also found in marine, terrestrial and extreme environments and produce unique compounds, other than toxins. Nevertheless, their effects on biological systems are still barely known. This work tested extracts of different cyanobacterial strains against zebrafish (Danio rerio) larvae and analyzed their metabolomic profiles using liquid chromatography combined with mass spectrometry. Strains Desertifilum tharense, Anagnostidinema amphibium, and Nostoc sp. promoted morphological abnormalities such as pericardial edema, edema in the digestive system region, curvature of the tail and spine in zebrafish larvae in vivo. In contrast, Microcystis aeruginosa and Chlorogloeopsis sp. did not promote such changes. Metabolomics revealed unique compounds belonging to the classes of terpenoids, peptides, and linear lipopeptides/microginins in the nontoxic strains. The toxic strains were shown to contain unique compounds belonging to the classes of cyclic peptides, amino acids and other peptides, anabaenopeptins, lipopeptides, terpenoids, and alkaloids and derivatives. Other unknown compounds were also detected, highlighting the rich structural diversity of secondary metabolites produced by cyanobacteria. The effects of cyanobacterial metabolites on living organisms, mainly those related to potential human and ecotoxicological risks, are still poorly known. This work highlights the diverse, complex, and unique metabolomic profiles of cyanobacteria and the biotechnological potential and associated risks of exposure to their metabolites.
Collapse
Affiliation(s)
- Fernanda R Jacinavicius
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil.
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| | - Kelly Fernandes
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil
| | - Watson A Gama
- Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, CEP 52171-900, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| |
Collapse
|
8
|
Srivastava R, Kanda T, Yadav S, Singh N, Yadav S, Prajapati R, Kesari V, Atri N. Salinity pretreatment synergies heat shock toxicity in cyanobacterium Anabaena PCC7120. Front Microbiol 2023; 14:1061927. [PMID: 36876104 PMCID: PMC9983364 DOI: 10.3389/fmicb.2023.1061927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
This study was undertaken to bridge the knowledge gap pertaining to cyanobacteria's response to pretreatment. The result elucidates the synergistic effect of pretreatment toxicity in cyanobacterium Anabaena PCC7120 on morphological and biochemical attributes. Chemical (salt) and physical (heat) stress-pretreated cells exhibited significant and reproducible changes in terms of growth pattern, morphology, pigments, lipid peroxidation, and antioxidant activity. Salinity pretreatment showed more than a five-fold decrease in the phycocyanin content but a six-fold and five-fold increase in carotenoid, lipid peroxidation (MDA content), and antioxidant activity (SOD and CAT) at 1 h and on 3rd day of treatment, respectively, giving the impression of stress-induced free radicals that are scavenged by antioxidants when compared to heat shock pretreatment. Furthermore, quantitative analysis of transcript (qRT-PCR) for FeSOD and MnSOD displayed a 3.6- and 1.8-fold increase in salt-pretreated (S-H) samples. The upregulation of transcript corresponding to salt pretreatment suggests a toxic role of salinity in synergizing heat shock. However, heat pretreatment suggests a protective role in mitigating salt toxicity. It could be inferred that pretreatment enhances the deleterious effect. However, it further showed that salinity (chemical stress) augments the damaging effect of heat shock (physical stress) more profoundly than physical stress on chemical stress possibly by modulating redox balance via activation of antioxidant responses. Our study reveals that upon pretreatment of heat, the negative effect of salt can be mitigated in filamentous cyanobacteria, thus providing a foundation for improved cyanobacterial tolerance to salt stress.
Collapse
Affiliation(s)
- Rupanshee Srivastava
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Tripti Kanda
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Sadhana Yadav
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Nidhi Singh
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Shivam Yadav
- Department of Botany, Thakur Prasad Singh (T.P.S.) College, Patna, Bihar, India
| | - Rajesh Prajapati
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Vigya Kesari
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Neelam Atri
- Department of Botany, Mahila Mahavidyalaya (M.M.V.), Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Mechanisms of Stress Tolerance in Cyanobacteria under Extreme Conditions. STRESSES 2022. [DOI: 10.3390/stresses2040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are oxygen-evolving photoautotrophs with worldwide distribution in every possible habitat, and they account for half of the global primary productivity. Because of their ability to thrive in a hostile environment, cyanobacteria are categorized as “extremophiles”. They have evolved a fascinating repository of distinct secondary metabolites and biomolecules to promote their development and survival in various habitats, including severe conditions. However, developing new proteins/enzymes and metabolites is mostly directed by an appropriate gene regulation system that results in stress adaptations. However, only few proteins have been characterized to date that have the potential to improve resistance against abiotic stresses. As a result, studying environmental stress responses to post-genomic analysis, such as proteome changes using latest structural proteomics and synthetic biology techniques, is critical. In this regard, scientists working on these topics will benefit greatly from the stress of proteomics research. Progress in these disciplines will aid in understanding cyanobacteria’s physiology, biochemical, and metabolic systems. This review summarizes the most recent key findings of cyanobacterial proteome study under various abiotic stresses and the application of secondary metabolites formed during different abiotic conditions.
Collapse
|
10
|
Kramer BJ, Jankowiak JG, Nanjappa D, Harke MJ, Gobler CJ. Nitrogen and phosphorus significantly alter growth, nitrogen fixation, anatoxin-a content, and the transcriptome of the bloom-forming cyanobacterium, Dolichospermum. Front Microbiol 2022; 13:955032. [PMID: 36160233 PMCID: PMC9490380 DOI: 10.3389/fmicb.2022.955032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
While freshwater cyanobacteria are traditionally thought to be limited by the availability of phosphorus (P), fixed nitrogen (N) supply can promote the growth and/or toxin production of some genera. This study characterizes how growth on N2 (control), nitrate (NO3 -), ammonium (NH4 +), and urea as well as P limitation altered the growth, toxin production, N2 fixation, and gene expression of an anatoxin-a (ATX-A) - producing strain of Dolichospermum sp. 54. The transcriptomes of fixed N and P-limited cultures differed significantly from those of fixed N-deplete, P-replete (control) cultures, while the transcriptomes of P-replete cultures amended with either NH4 + or NO3 - were not significantly different relative to those of the control. Growth rates of Dolichospermum (sp. 54) were significantly higher when grown on fixed N relative to without fixed N; growth on NH4 + was also significantly greater than growth on NO3 -. NH4 + and urea significantly lowered N2 fixation and nifD gene transcript abundance relative to the control while cultures amended with NO3 - exhibited N2 fixation and nifD gene transcript abundance that was not different from the control. Cultures grown on NH4 + exhibited the lowest ATX-A content per cell and lower transcript abundance of genes associated ATX-A synthesis (ana), while the abundance of transcripts of several ana genes were highest under fixed N and P - limited conditions. The significant negative correlation between growth rate and cellular anatoxin quota as well as the significantly higher number of transcripts of ana genes in cultures deprived of fixed N and P relative to P-replete cultures amended with NH4 + suggests ATX-A was being actively synthesized under P limitation. Collectively, these findings indicate that management strategies that do not regulate fixed N loading will leave eutrophic water bodies vulnerable to more intense and toxic (due to increased biomass) blooms of Dolichospermum.
Collapse
Affiliation(s)
- Benjamin J. Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | | | - Deepak Nanjappa
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Matthew J. Harke
- Gloucester Marine Genomics Institute, Gloucester, MA, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
11
|
Wagner ND, Simmons DBD, Prater C, Frost PC. Proteome changes in an aquatic invertebrate consumer in response to different nutritional stressors. Oecologia 2022; 199:329-341. [PMID: 35661252 DOI: 10.1007/s00442-022-05198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Nutrient imbalances in zooplankton are caused by the differences in elemental content of producers and the demand for elements in consumers, which alter the life-history traits in consumers. Changes in life-history traits are mediated through metabolic pathways that affect gene expression and the metabolome. However, less is known about proteomic changes to elemental-limitation in zooplankton. Here, we grew Daphnia pulex under high food quantity and quality (HF), low food quantity (LF), and phosphorus (P)-limited (PL) diets for six days and measured growth, elemental composition, and the proteome. Daphnids in both LF and PL diets grew less. Animals in LF diets had less carbon (C), while daphnids in PL diets had less P compared to HF fed animals. In total, we identified 1719 proteins that were used in a partial least squares regression discriminant analysis (PLS-DA). Focusing on a subset of the proteome, the PLS-DA resulted in a clear separation between animals fed HF diets and PL and LF diets. Many proteome changes in nutrient-limited diets are associated with growth, reproduction, lipid metabolism, and nutrient assimilation. Regardless of the limiting nutrient, there were less hemoglobin and small subunit processome component proteins compared to HF fed animals. Daphnids fed LF diets had less vitellogenin fused superoxide dismutase and more lipid-droplet hydrolase, whereas Daphnia fed PL diets had higher abundances of cytochrome P450 and serine protease. Our proteome results compliment other "omic" studies that could be used to study Daphnia physiology in lakes.
Collapse
Affiliation(s)
- Nicole D Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA.
| | | | - Clay Prater
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Paul C Frost
- Department of Biology, Tent University, Peterborough, ON, Canada
| |
Collapse
|
12
|
Wang M, Wu Y, Zhao J, Liu Y, Chen Z, Tang Z, Tian W, Xi Y, Zhang J. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153406. [PMID: 35092777 DOI: 10.1016/j.scitotenv.2022.153406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
PhoD-harboring bacteria and the secreted alkaline phosphatases (ALP) are crucial in the regulation of soil phosphorus (P) cycling. However, the influential factors of these crucial indicators and their internal interactions remain controversial. Here, a long-term field experiment containing different fertilization regimes was conducted (chemical, organic, and no fertilizer applied). The results indicated that the richness and diversity of phoD-harboring bacterial community were significantly decreased after long-term fertilization. The applied fertilizer promoted the growth of competitive species, while phoD-harboring bacteria lost the advantage to outcompete other microorganisms after long-term fertilization. The decreased ALP activity was caused by the declined phoD gene abundance, which is attributed to the comprehensive effects of soil organic C (SOC), total nitrogen (TN), and various forms of P. The random forest models identified SOC, TN, and available P (AP) to be the dominant environmental factors in shaping the phoD-harboring bacterial community. In addition, some other forms of P such as organic P (Po), inorganic P (Pi) or total P (TP) also exerted significant effects. Different fertilization regimes changed the keystone genera that contributed significantly to soil ALP activities, while Pseudolabrys and Pseudomonas were predicted to be the most important genera regardless of different fertilization regimes. This study extends the understanding of the main process and mechanisms of P mobilization in response to different fertilization regimes.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhe Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhaoyang Tang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Yunguan Xi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
13
|
Wang Z, Akbar S, Sun Y, Gu L, Zhang L, Lyu K, Huang Y, Yang Z. Cyanobacterial dominance and succession: Factors, mechanisms, predictions, and managements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113281. [PMID: 34274765 DOI: 10.1016/j.jenvman.2021.113281] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/02/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Eutrophication of natural water bodies worldwide has led to cyanobacteria becoming the dominant species in phytoplankton communities, causing serious harm environmentally and economically. Cyanobacterial succession makes effective treatment of cyanobacterial blooms a challenge. Although there are many studies about cyanobacterial dominance and succession, it is still lack of relevant review summarizing the advances on this topic. To control cyanobacterial blooms and manage water quality effectively, we conducted a critical review and drew the following conclusions: (1) cyanobacterial dominance and succession occur from spring to summer, with changes of multiple environmental factors dominated by temperature and nutrients conditions; (2) the cyanobacterial dominance and succession are inherently attributed to the distinctive traits of cyanobacteria including colony formation, gas vesicles, toxin release, and nitrogen fixation; (3) given the current meta-omics explorations on mechanisms of cyanobacterial succession, how to combine the extensive data to draw general conclusions is a challenge in the future; (4) the dominant niche of high temperature-adapted cyanobacteria genera will be further reinforced with global warming and elevated carbon dioxide in the future; (5) considering the causes and future developments of cyanobacterial blooms, the management strategies for controlling cyanobacterial blooms include reducing external nutrient input and removing internal nutrient in sediment, artificial mixing waters to decrease buoyancy of cyanobacteria, and biological control using allelopathy of aquatic plants and/or enhancing zooplankton feeding.
Collapse
Affiliation(s)
- Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
14
|
Liu W, Xu ZQ, Long YJ, Feng MQ. Replenishment of urban landscape ponds with reclaimed water: Spatiotemporal variations of water quality and mechanism of algal inhibition with alum sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148052. [PMID: 34090163 DOI: 10.1016/j.scitotenv.2021.148052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Algal blooms caused by high concentrations of nutrients (especially phosphorus) limit the use of recycled water (RW) for replenishing landscape ponds in the context of global water scarcity. Previous studies have demonstrated that alum sludge is a low cost phosphorus sorption medium, which could potentially be applied in constructed wetlands and sewage treatment plants. However, whether alum sludge can be used for algae inhibition in reclaimed water urban landscape ponds (RWULPs) should be explored. In this study, phosphorus removal and algae inhibition by alum sludge were investigated in a RWULP in China. The results highlight that there is a serious risk of algal blooms in RWULPs. The algal density was found to be 1.58 × 105 cell·mL-1, which is 6.84 times higher than that of the surface water ponds. The algal blooms presented a Cyanophyta-Chlorophyta-Bacillariophyta-type, and the dominant algae species were Microcystis flos-aquae (Wittr.) Kirchner, Chlorella vulgaris, and Scenedesmus quadricauda. Moreover, the removal rate of phosphorus by alum sludge was as high as 98% and eventually leads to phosphorus stress, which has an important effect on algae growth and algae inhibition rate of 80%. In addition, the proportion of phosphorus and nitrogen in the adsorbed alum sludge increased by 3.12% and 0.32%, respectively, and Al3+ was reduced by only 2.18%. Alum sludge is a potential inhibitor of algae in RWULPs that does not negatively impact the environment. These results are of great importance in algal bloom control of RWULPs and may help alleviate the problem of urban water resource scarcity.
Collapse
Affiliation(s)
- W Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, P.R. China
| | - Z Q Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, P.R. China.
| | - Y J Long
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, P.R. China; Su Qian Institute of Urban Planning and Design Institute Company Limited, P.R. China
| | - M Q Feng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, P.R. China
| |
Collapse
|
15
|
Zhao T, Yong X, Zhao Z, Dolce V, Li Y, Curcio R. Research status of Bacillus phytase. 3 Biotech 2021; 11:415. [PMID: 34485008 DOI: 10.1007/s13205-021-02964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
Phytic acid is abundant in seeds, roots and stems of plants, it acts as an anti-nutrient in food and feed industry, since it affects the absorption of nutrients by humans and monogastric animals. Furthermore, phosphorus produced through its decomposition by microorganisms can cause environmental pollution. Phytase degrades phytic acid generating precursors of inositol that can be used in clinical practice; in addition, phytase treatment can minimize the anti-nutritional effect of phytic acid. The use of phytase synthesized from Bacillus is more advantageous due to its high activity. Additionally, its good heat resistance under neutral conditions greatly fills the gap of commercial utilization of acid phytase. In this review, we summarize the latest research results on Bacillus phytase, including its physiological and biochemical characteristics, molecular structure information, calcium effects on its catalytic activity and stability, its catalytic mechanism and molecular modification.
Collapse
Affiliation(s)
- Ting Zhao
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Xihao Yong
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Faculty of Bioengineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Ziming Zhao
- Faculty of Bioengineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Yuan Li
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
16
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
17
|
Wei N, Song L, Gan N. Quantitative Proteomic and Microcystin Production Response of Microcystis aeruginosa to Phosphorus Depletion. Microorganisms 2021; 9:microorganisms9061183. [PMID: 34072711 PMCID: PMC8227402 DOI: 10.3390/microorganisms9061183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Microcystis blooms are the most widely distributed and frequently occurring cyanobacterial blooms in freshwater. Reducing phosphorus is suggested to be effective in mitigating cyanobacterial blooms, while the underlying molecular mechanisms are yet to be elucidated. In the present study, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics was employed to study the effects of phosphorus depletion on Microcystis aeruginosa FACHB-905. The production of microcystins (MCs), a severe hazard of Microcystis blooms, was also analyzed. In total, 230 proteins were found to be differentially abundant, with 136 downregulated proteins. The results revealed that, upon phosphorus limitation stress, Microcystis aeruginosa FACHB-905 raised the availability of phosphorus primarily by upregulating the expression of orthophosphate transport system proteins, with no alkaline phosphatase producing ability. Phosphorus depletion remarkably inhibited cell growth and the primary metabolic processes of Microcystis, including transcription, translation and photosynthesis, with structures of photosystems remaining intact. Moreover, expression of nitrogen assimilation proteins was downregulated, while proteins involved in carbon catabolism were significantly upregulated, which was considered beneficial for the intracellular balance among carbon, nitrogen and phosphorus. The expression of MC synthetase was not significantly different upon phosphorus depletion, while MC content was significantly suppressed. It is assumed that phosphorus depletion indirectly regulates the production of MC by the inhibition of metabolic processes and energy production. These results contribute to further understanding of the influence mechanisms of phosphorus depletion on both biological processes and MC production in Microcystis cells.
Collapse
Affiliation(s)
- Nian Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430072, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Correspondence: (L.S.); (N.G.)
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Correspondence: (L.S.); (N.G.)
| |
Collapse
|
18
|
Jiang Y, Liu Y, Zhang J. Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124722. [PMID: 33296757 DOI: 10.1016/j.jhazmat.2020.124722] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic contaminants could promote the formation of harmful cyanobacterial blooms through hormetic stimulation, but the mechanisms underlying these stimulatory effects remain unclear. This study investigated the biochemical, transcriptomic, and proteomic responses of a dominant bloom-forming cyanobacterium, Microcystis aeruginosa, to a five-component mixture of frequently detected antibiotics at current contamination levels. The growth rate of M. aeruginosa presented a U-shaped dose-response to 50-500 ng L-1 of mixed antibiotics. Alterations in the transcriptome of M. aeruginosa suggested the excitation of both photosynthesis and carbon metabolism, increasing energy generation in response to oxidative stress induced by low-dose antibiotics, and thus contributing to the significant (p < 0.05) increase in growth rate, Fv/Fm, and cell density. Comparison between transcriptomic and proteomic responses further confirmed the action mode of the mixed antibiotics. Proteins and their corresponding genes related to ROS scavenging, photosynthesis, carbon fixation, electron transport, oxidative phosphorylation, and biosynthesis, showed consistent expression tendencies in response to 200 ng L-1 of mixed antibiotics, which were credible action targets of mixed antibiotics in M. aeruginosa. Mixed antibiotics stimulated microcystin synthesis by upregulating a microcystin synthetase and its encoding gene (mcyC), which could increase the hazard of M. aeruginosa in aquatic environments.
Collapse
Affiliation(s)
- Yunhan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
19
|
Solovchenko A, Gorelova O, Karpova O, Selyakh I, Semenova L, Chivkunova O, Baulina O, Vinogradova E, Pugacheva T, Scherbakov P, Vasilieva S, Lukyanov A, Lobakova E. Phosphorus Feast and Famine in Cyanobacteria: Is Luxury Uptake of the Nutrient Just a Consequence of Acclimation to Its Shortage? Cells 2020; 9:E1933. [PMID: 32825634 PMCID: PMC7564538 DOI: 10.3390/cells9091933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 01/02/2023] Open
Abstract
To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)-taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium Nostoc sp. PCC 7118 with inorganic phosphate (Pi), including the kinetics of Pi uptake, turnover of polyphosphate, cell ultrastructure, and gene expression. The P-deprived cells deployed acclimations to P shortage (reduction of photosynthetic apparatus and mobilization of cell P reserves). The P-starved cells capable of LPU exhibited a biphasic kinetic of the Pi uptake and polyphosphate formation. The first (fast) phase (1-2 h after Pi refeeding) occurred independently of light and temperature. It was accompanied by a transient accumulation of polyphosphate, still upregulated genes encoding high-affinity Pi transporters, and an ATP-dependent polyphosphate kinase. During the second (slow) phase, recovery from P starvation was accompanied by the downregulation of these genes. Our study revealed no specific acclimation to ample P conditions in Nostoc sp. PCC 7118. We conclude that the observed LPU phenomenon does not likely result from the activation of a mechanism specific for ample P conditions. On the contrary, it stems from slow disengagement of the low-P responses after the abrupt transition from low-P to ample P conditions.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
- Ecology Research Laboratory, Pskov State University, 180000 Pskov, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Olga Gorelova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Olga Karpova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Irina Selyakh
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Larisa Semenova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Olga Chivkunova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Olga Baulina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Elizaveta Vinogradova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Tatiana Pugacheva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Pavel Scherbakov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Svetlana Vasilieva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Alexandr Lukyanov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| | - Elena Lobakova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.G.); (O.K.); (I.S.); (L.S.); (O.C.); (O.B.); (E.V.); (T.P.); (P.S.); (S.V.); (A.L.)
| |
Collapse
|
20
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional and Proteomic Choreography Under Phosphorus Deficiency and Re-supply in the N 2 Fixing Cyanobacterium Trichodesmium erythraeum. Front Microbiol 2019; 10:330. [PMID: 30891009 PMCID: PMC6411698 DOI: 10.3389/fmicb.2019.00330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/08/2019] [Indexed: 01/27/2023] Open
Abstract
The N2 fixing cyanobacterium Trichodesmium is a critically important organism in oligotrophic marine ecosystems, supplying “new” nitrogen (N) to the otherwise N-poor tropical and subtropical regions where it occurs. Low concentrations of phosphorus (P) in these regions can constrain Trichodesmium distribution and N2 fixation rates. Physiological characterization of a single species in a mixed community can be challenging, and ‘omic approaches are increasingly important tools for tracking nutritional physiology in a taxon-specific manner. As such, studies examining the dynamics of gene and protein markers of physiology (e.g., nutrient stress) are critical for the application and interpretation of such ‘omic data in situ. Here we leveraged combined transcriptomics, proteomics, and enzyme activity assays to track the physiological response of Trichodesmium erythraeum IMS101 to P deficiency and subsequent P re-supply over 72 h of sampling. P deficiency resulted in differential gene expression, protein abundance, and enzyme activity that highlighted a synchronous shift in P physiology with increases in the transcripts and corresponding proteins for hydrolyzing organic phosphorus, taking up phosphate with higher affinity, and modulating intracellular P demand. After P deficiency was alleviated, gene expression of these biomarkers was reduced to replete levels within 4 h of P amendment. A number of these gene biomarkers were adjacent to putative pho boxes and their expression patterns were similar to a sphR response regulator. Protein products of the P deficiency biomarkers were slow to decline, with 84% of the original P deficient protein set still significantly differentially expressed after 72 h. Alkaline phosphatase activity tracked with proteins for this enzyme. With the rapid turnover time of transcripts, they appear to be good biomarkers of a P stress phenotype, whereas proteins, with a slower turnover time, may better reflect cellular activities. These results highlight the importance of validating and pairing transcriptome and proteome data that can be applied to physiological studies of key species in situ.
Collapse
Affiliation(s)
- Kyle R Frischkorn
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.,Lamont-Doherty Earth Observatory, Palisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Palisades, NY, United States
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.,Lamont-Doherty Earth Observatory, Palisades, NY, United States
| |
Collapse
|
22
|
Lu J, Zhu B, Struewing I, Xu N, Duan S. Nitrogen-phosphorus-associated metabolic activities during the development of a cyanobacterial bloom revealed by metatranscriptomics. Sci Rep 2019; 9:2480. [PMID: 30792397 PMCID: PMC6385219 DOI: 10.1038/s41598-019-38481-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
The efforts towards reduction of nutrient contamination of surface waters have greatly gained attention to mitigate increasing incidences of harmful cyanobacterial blooms (CyanoHABs), but little attention has been paid on the roles and importance of cyanobacterial N2-fixation and phosphorus (P) scavenging pathways during cyanoHABs. Meta-transcriptomic analyses revealed that expressions of genes involved in N2-fixation (nifDKH) and P-scavenging were significantly upregulated during the bloom compared to pre-bloom in Harsha Lake. The activities of N2-fixation occurred during early summer after a late spring phytoplankton bloom, and were associated with high phosphorus and low nitrogen. The highly active cyanobacterial N2-fixers were dominated by Nostoc and Anabaena. Following the activities of N2-fixation and production of new nitrogen, an early summer Microcystis-dominated bloom, a shift of dominance from Nostoc and Anabaena to Microcystis and an increase of microcystin and saxitoxin occurred. By contrast, P-scavenging activities dominated also by Nostoc and Anabaena were associated with low P and the Microcystis bloom. This information can be used to aid in the understanding the impact that nitrogen and phosphorus have on the early summer CyanoHAB and the functional activities of Nostoc- and Anabaena-dominated or Microcystis-dominated communities, and aid in making management decisions related to harmful algal blooms.
Collapse
Affiliation(s)
- Jingrang Lu
- U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, OH, USA.
| | - Bo Zhu
- Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong, China
| | | | - Ning Xu
- Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong, China
| | - Shunshan Duan
- Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Singh H, Apte SK. Effect of 60Co-Gamma Ionizing Radiation and Desiccation Stress on Protein Profile of Anabaena 7120. Protein J 2018; 37:608-621. [DOI: 10.1007/s10930-018-9801-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Wang S, Xiao J, Wan L, Zhou Z, Wang Z, Song C, Zhou Y, Cao X. Mutual Dependence of Nitrogen and Phosphorus as Key Nutrient Elements: One Facilitates Dolichospermum flos-aquae to Overcome the Limitations of the Other. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5653-5661. [PMID: 29688011 DOI: 10.1021/acs.est.7b04992] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dolichospermum flos-aquae (formerly Anabaena flos-aquae) is a diazotrophic cyanobacterium causing harmful blooms worldwide, which is partly attributed to its capacity to compete for nitrogen (N) and phosphorus (P). Preventing the blooms by reducing P alone or both N and P has caused debate. To test the effects alone and together on the growth of cyanobacteria, we performed culture experiments in different eutrophication scenarios. N2 fixation in terms of heterocyst density, nitrogenase activity and nifH expression increased significantly in P-replete cultures, suggesting that P enrichment facilitates N2 fixation. Correspondingly, the expression of genes involved in P uptake, e.g., those involved in P-transport ( pstS) and the hydrolysis of phosphomonoesters ( phoD), was upregulated in P-deficient cultures. Interestingly, N addition enhanced not only the expression of these genes but also polyphosphate formation and alkaline phosphatase activity in P-deficient cultures relative to the P-replete cultures, as evidenced by qualitative (enzyme-labeled fluorescence) and quantitative (fluorogenic spectrophotometry) measurements. Furthermore, after N addition, cell activity and growth increased in the P-deficient cultures, underscoring the risk of N enrichment in P-limited systems. The eco-physiological responses shown here help further our understanding of the mechanism of N and P colimitation and underscore the importance of dual N and P reduction in controlling cyanobacterial blooms.
Collapse
Affiliation(s)
- Siyang Wang
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Jian Xiao
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Lingling Wan
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Zijun Zhou
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Chunlei Song
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Yiyong Zhou
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| | - Xiuyun Cao
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Science , Donghu South Road , Wuhan , 430072 China
| |
Collapse
|
25
|
Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. The future of genomics in polar and alpine cyanobacteria. FEMS Microbiol Ecol 2018; 94:4904125. [PMID: 29506259 PMCID: PMC5939894 DOI: 10.1093/femsec/fiy032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/23/2018] [Indexed: 01/01/2023] Open
Abstract
In recent years, genomic analyses have arisen as an exciting way of investigating the functional capacity and environmental adaptations of numerous micro-organisms of global relevance, including cyanobacteria. In the extreme cold of Arctic, Antarctic and alpine environments, cyanobacteria are of fundamental ecological importance as primary producers and ecosystem engineers. While their role in biogeochemical cycles is well appreciated, little is known about the genomic makeup of polar and alpine cyanobacteria. In this article, we present ways that genomic techniques might be used to further our understanding of cyanobacteria in cold environments in terms of their evolution and ecology. Existing examples from other environments (e.g. marine/hot springs) are used to discuss how methods developed there might be used to investigate specific questions in the cryosphere. Phylogenomics, comparative genomics and population genomics are identified as methods for understanding the evolution and biogeography of polar and alpine cyanobacteria. Transcriptomics will allow us to investigate gene expression under extreme environmental conditions, and metagenomics can be used to complement tradition amplicon-based methods of community profiling. Finally, new techniques such as single cell genomics and metagenome assembled genomes will also help to expand our understanding of polar and alpine cyanobacteria that cannot readily be cultured.
Collapse
Affiliation(s)
- Nathan A M Chrismas
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alexandre M Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
| | - Patricia Sánchez-Baracaldo
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
| |
Collapse
|
26
|
Crnkovic CM, May DS, Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:375-384. [PMID: 30294068 PMCID: PMC6171529 DOI: 10.1007/s10811-017-1275-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 05/20/2023]
Abstract
Cultured cyanobacteria produce secondary metabolites with a wide range of biological activities and are an important source of natural products. In the context of secondary metabolite discovery, microbial culture conditions are expected to support optimum growth, induce maximum chemical diversity, and be suitable for the majority of cyanobacterial strains. We investigated the effect of nitrate and phosphate on biomass production and metabolomic profiles of three filamentous freshwater cyanobacterial strains: cf. Oscillatoria sp. UIC 10045, Scytonema sp. UIC 10036, and Nostoc sp. UIC 10110. A standardized inoculation procedure allowed for the assessment of cell mass production. Dried cyanobacterial cell mass was extracted and analyzed by liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS), followed by comparative metabolomics analysis using XCMS Online. Results showed that low nitrate media significantly reduced cell mass production for all three strains. Low nitrate also induced production of primary metabolites (heterocyst glycolipids) in strains UIC 10036 and UIC 10110. Changes in phosphate levels affected each strain differently. Strain UIC 10110 showed a significant increase in production of merocyclophane C when cultivated in low phosphate, while strain UIC 10036 displayed higher production of tolytoxin under high phosphate. Additionally, these experiments led to the identification of a potentially new peptide produced by strain UIC 10036.
Collapse
Affiliation(s)
- Camila M. Crnkovic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Daniel S. May
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Sen S, Rai S, Yadav S, Agrawal C, Rai R, Chatterjee A, Rai L. Dehydration and rehydration - induced temporal changes in cytosolic and membrane proteome of the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Cheng X, Wang J, Chen B, Wang Y, Liu J, Liu L. Effectiveness of phosphate removal during anaerobic digestion of waste activated sludge by dosing iron(III). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:32-39. [PMID: 28188987 DOI: 10.1016/j.jenvman.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
Phosphate-Fe(II) precipitation induced by Fe(III) reduction during the anaerobic digestion of excess activated sludge was investigated for the removal of phosphorus and its possible recovery. The experiments were conducted with three Fe(III) sources at 35 °C and 55 °C. The results show that ferrihydrite-Fe(III) was effectively reduced during the anaerobic sludge digestion by 63% and 96% under mesophilic and thermophilic conditions, respectively. Whereas FeCl3-Fe(III) was only mesophilically reducible and the reduction of hematite-Fe(III) was unnoticeable at either temperature. Efficient precipitation of vivianite was not observed although high saturation index values, e.g., >14 (activity reduction not considered), had been reached. This reveals the complexity of vivianite precipitation in anaerobic digestion systems; for example, Fe(II) complexation and organic interference could not be ignored. With ferrihydrite amendments at a Fe/TP of 1.5, methane production from sludge digestion was reduced by 35.1% at 35 °C, and was unaffected when the digestion temperature went up to 55 °C. But, acidic FeCl3 severely inhibited the methane production and consequently the sludge biomass degradation.
Collapse
Affiliation(s)
- Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Jue Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Bing Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yu Wang
- Beijing China Sciences Guoyi Environment Protection Engineering Co., Ltd, No. 8 Caihefang Road, Beijing 100080, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Lubo Liu
- California State University, Fresno, CA 93740, USA
| |
Collapse
|
29
|
Unusual Versatility of the Filamentous, Diazotrophic Cyanobacterium Anabaena torulosa Revealed for Its Survival during Prolonged Uranium Exposure. Appl Environ Microbiol 2017; 83:AEM.03356-16. [PMID: 28258135 DOI: 10.1128/aem.03356-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/19/2017] [Indexed: 11/20/2022] Open
Abstract
Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions.IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium, Anabaena torulosa, to cope with prolonged exposure to uranyl carbonate at pH 7.8 under phosphate limitation. Our results highlight distinct adaptive mechanisms harbored by this cyanobacterium that enabled its natural regeneration following extensive cell lysis and uranium biomineralization under sustained uranium exposure. Such complex interactions between environmental microbes such as Anabaena torulosa and uranium over a broader time range advance our understanding on the impact of microbial processes on uranium biogeochemistry.
Collapse
|
30
|
Drzyzga D, Forlani G, Vermander J, Kafarski P, Lipok J. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environ Microbiol 2016; 19:1065-1076. [PMID: 27907245 DOI: 10.1111/1462-2920.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31 P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, I-44121, Italy
| | - Jochen Vermander
- Odisee Technologiecampus, Gebroeders de Smetstraat 1, Ghent, 9000, Belgium
| | - Paweł Kafarski
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland.,Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| |
Collapse
|
31
|
Al-Haj L, Lui YT, Abed RMM, Gomaa MA, Purton S. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects. Life (Basel) 2016; 6:life6040042. [PMID: 27916886 PMCID: PMC5198077 DOI: 10.3390/life6040042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future.
Collapse
Affiliation(s)
- Lamya Al-Haj
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Yuen Tin Lui
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Mohamed A Gomaa
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
32
|
Baumgartner D, Kopf M, Klähn S, Steglich C, Hess WR. Small proteins in cyanobacteria provide a paradigm for the functional analysis of the bacterial micro-proteome. BMC Microbiol 2016; 16:285. [PMID: 27894276 PMCID: PMC5126843 DOI: 10.1186/s12866-016-0896-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Despite their versatile functions in multimeric protein complexes, in the modification of enzymatic activities, intercellular communication or regulatory processes, proteins shorter than 80 amino acids (μ-proteins) are a systematically underestimated class of gene products in bacteria. Photosynthetic cyanobacteria provide a paradigm for small protein functions due to extensive work on the photosynthetic apparatus that led to the functional characterization of 19 small proteins of less than 50 amino acids. In analogy, previously unstudied small ORFs with similar degrees of conservation might encode small proteins of high relevance also in other functional contexts. Results Here we used comparative transcriptomic information available for two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechocystis sp. PCC 6714 for the prediction of small ORFs. We found 293 transcriptional units containing candidate small ORFs ≤80 codons in Synechocystis sp. PCC 6803, also including the known mRNAs encoding small proteins of the photosynthetic apparatus. From these transcriptional units, 146 are shared between the two strains, 42 are shared with the higher plant Arabidopsis thaliana and 25 with E. coli. To verify the existence of the respective μ-proteins in vivo, we selected five genes as examples to which a FLAG tag sequence was added and re-introduced them into Synechocystis sp. PCC 6803. These were the previously annotated gene ssr1169, two newly defined genes norf1 and norf4, as well as nsiR6(nitrogen stress-induced RNA 6) and hliR1(high light-inducible RNA 1) , which originally were considered non-coding. Upon activation of expression via the Cu2+.responsive petE promoter or from the native promoters, all five proteins were detected in Western blot experiments. Conclusions The distribution and conservation of these five genes as well as their regulation of expression and the physico-chemical properties of the encoded proteins underline the likely great bandwidth of small protein functions in bacteria and makes them attractive candidates for functional studies.
Collapse
Affiliation(s)
- Desiree Baumgartner
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Matthias Kopf
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.,Present Address: Molecular Health GmbH, Kurfürsten-Anlage 21, 69115, Heidelberg, Germany
| | - Stephan Klähn
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.
| |
Collapse
|
33
|
Russo DA, Couto N, Beckerman AP, Pandhal J. A Metaproteomic Analysis of the Response of a Freshwater Microbial Community under Nutrient Enrichment. Front Microbiol 2016; 7:1172. [PMID: 27536273 PMCID: PMC4971099 DOI: 10.3389/fmicb.2016.01172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Eutrophication can lead to an uncontrollable increase in algal biomass, which has repercussions for the entire microbial and pelagic community. Studies have shown how nutrient enrichment affects microbial species succession, however details regarding the impact on community functionality are rare. Here, we applied a metaproteomic approach to investigate the functional changes to algal and bacterial communities, over time, in oligotrophic and eutrophic conditions, in freshwater microcosms. Samples were taken early during algal and cyanobacterial dominance and later under bacterial dominance. 1048 proteins, from the two treatments and two timepoints, were identified and quantified by their exponentially modified protein abundance index. In oligotrophic conditions, Bacteroidetes express extracellular hydrolases and Ton-B dependent receptors to degrade and transport high molecular weight compounds captured while attached to the phycosphere. Alpha- and Beta-proteobacteria were found to capture different substrates from algal exudate (carbohydrates and amino acids, respectively) suggesting resource partitioning to avoid direct competition. In eutrophic conditions, environmental adaptation proteins from cyanobacteria suggested better resilience compared to algae in a low carbon nutrient enriched environment. This study provides insight into differences in functional microbial processes between oligo- and eutrophic conditions at different timepoints and highlights how primary producers control bacterial resources in freshwater environments. The data have been deposited to the ProteomeXchange with identifier PXD004592.
Collapse
Affiliation(s)
- David A Russo
- Department of Chemical and Biological Engineering, University of Sheffield Sheffield, UK
| | - Narciso Couto
- Department of Chemical and Biological Engineering, University of Sheffield Sheffield, UK
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield Sheffield, UK
| |
Collapse
|
34
|
Li X, Dreher TW, Li R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. HARMFUL ALGAE 2016; 54:54-68. [PMID: 28073482 DOI: 10.1016/j.hal.2015.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 05/12/2023]
Abstract
The new genus name Dolichospermum, for most of the planktonic former members of the genus Anabaena, is one of the most ubiquitous bloom-forming cyanobacterial genera. Its dominance and persistence have increased in recent years, due to eutrophication from anthropogenic activities and global climate change. Blooms of Dolichospermum species, with their production of secondary metabolites that commonly include toxins, present a worldwide threat to environmental and public health. In this review, recent advances of the genus Dolichospermum are summarized, including taxonomy, genetics, bloom occurrence, and production of toxin and taste-and-odor compounds. The recent and continuing acquisition of genome sequences is ushering in new methods for monitoring and understanding the factors regulating bloom dynamics.
Collapse
Affiliation(s)
- Xiaochuang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, OR, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
35
|
D'Agostino PM, Song X, Neilan BA, Moffitt MC. Proteogenomics of a saxitoxin-producing and non-toxic strain ofAnabaena circinalis(cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 2016; 18:461-76. [DOI: 10.1111/1462-2920.13131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Paul M. D'Agostino
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; NSW 2052 Australia
- School of Science and Health; Western Sydney University; Campbelltown NSW 2560 Australia
| | - Xiaomin Song
- Australian Proteomics Analysis Facility; Macquarie University; Macquarie Park NSW 2109 Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; NSW 2052 Australia
| | - Michelle C. Moffitt
- School of Science and Health; Western Sydney University; Campbelltown NSW 2560 Australia
| |
Collapse
|