1
|
You LX, Zhong HL, Chen SR, Sun YN, Wu GK, Zhao MX, Hu SS, Alwathnani H, Herzberg M, Qin SF, Rensing C. Biosynthesis of silver nanoparticles using Burkholderia contaminans ZCC and mechanistic analysis at the proteome level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116425. [PMID: 38723385 DOI: 10.1016/j.ecoenv.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.
Collapse
Affiliation(s)
- Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hong-Lin Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Si-Ru Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yi-Nan Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Gao-Kai Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Meng-Xin Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Shan-Shan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Su-Fang Qin
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, PR China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
2
|
Liu C, Guo D, Wen S, Dang Y, Sun D, Li P. Transcriptomic insights unveil the crucial roles of cytochromes, NADH, and pili in Ag(I) reduction by Geobacter sulfurreducens. CHEMOSPHERE 2024; 358:142174. [PMID: 38685325 DOI: 10.1016/j.chemosphere.2024.142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Silver (Ag) is a pivotal transition metal with applications in multiple industries, necessitating efficient recovery techniques. Despite various proposed methods for silver recovery from wastewaters, challenges persist especially for low concentrations. In this context, bioreduction by bacteria like Geobacter sulfurreducens, offers a promising approach by converting Ag(I) to Ag nanoparticles. To reveal the mechanisms driving microbial Ag(I) reduction, we conducted transcriptional profiling of G. sulfurreducens under Ag(I)-reducing condition. Integrated transcriptomic and protein-protein interaction network analyses identified significant transcriptional shifts, predominantly linked to c-type cytochromes, NADH, and pili. When compared to a pilus-deficient strain, the wild-type strain exhibited distinct cytochrome gene expressions, implying specialized functional roles. Additionally, despite a down-regulation in NADH dehydrogenase genes, we observed up-regulation of specific downstream cytochrome genes, highlighting NADH's potential role as an electron donor in the Ag(I) reduction process. Intriguingly, our findings also highlight the significant influence of pili on the morphology of the resulting Ag nanoparticles. The presence of pili led to the formation of smaller and more crystallized Ag nanoparticles. Overall, our findings underscore the intricate interplay of cytochromes, NADH, and pili in Ag(I) reduction. Such insights suggest potential strategies for further enhancing microbial Ag(I) reduction.
Collapse
Affiliation(s)
- Chunmao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongchao Guo
- School of Computer Science, Beijing Information Science and Technology University, Beijing, 100101, China
| | - Su Wen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Kashyap AS, Manzar N, Vishwakarma SK, Mahajan C, Dey U. Tiny but mighty: metal nanoparticles as effective antimicrobial agents for plant pathogen control. World J Microbiol Biotechnol 2024; 40:104. [PMID: 38372816 DOI: 10.1007/s11274-024-03911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Metal nanoparticles (MNPs) have gained significant attention in recent years for their potential use as effective antimicrobial agents for controlling plant pathogens. This review article summarizes the recent advances in the role of MNPs in the control of plant pathogens, focusing on their mechanisms of action, applications, and limitations. MNPs can act as a broad-spectrum antimicrobial agent against various plant pathogens, including bacteria, fungi, and viruses. Different types of MNPs, such as silver, copper, zinc, iron, and gold, have been studied for their antimicrobial properties. The unique physicochemical properties of MNPs, such as their small size, large surface area, and high reactivity, allow them to interact with plant pathogens at the molecular level, leading to disruption of the cell membrane, inhibition of cellular respiration, and generation of reactive oxygen species. The use of MNPs in plant pathogen control has several advantages, including their low toxicity, selectivity, and biodegradability. However, their effectiveness can be influenced by several factors, including the type of MNP, concentration, and mode of application. This review highlights the current state of knowledge on the use of MNPs in plant pathogen control and discusses the future prospects and challenges in the field. Overall, the review provides insight into the potential of MNPs as a promising alternative to conventional chemical agents for controlling plant pathogens.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Shailesh Kumar Vishwakarma
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Chetna Mahajan
- Department of Plant Pathology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, HP, 176062, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Sepahijala, Tripura, India
| |
Collapse
|
4
|
Zhang X, Joyce GH, Leu AO, Zhao J, Rabiee H, Virdis B, Tyson GW, Yuan Z, McIlroy SJ, Hu S. Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens'. Nat Commun 2023; 14:6118. [PMID: 37777538 PMCID: PMC10542353 DOI: 10.1038/s41467-023-41847-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Anaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by 'Candidatus Methanoperedens nitroreducens', an ANME acclimated to nitrate reduction. Ferrous iron-targeted fluorescent assays, metatranscriptomics, and single-cell imaging suggest that 'Ca. M. nitroreducens' uses surface-localized redox-active cytochromes for metal reduction. Electrochemical and Raman spectroscopic analyses also support the involvement of c-type cytochrome-mediated EET for electrode reduction. Furthermore, several genes encoding menaquinone cytochrome type-c oxidoreductases and extracellular MHCs are differentially expressed when different electron acceptors are used.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Georgina H Joyce
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Andy O Leu
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia.
| |
Collapse
|
5
|
Padmakumar A, Pavani C, Eswar K, Kong L, Yang W, Gopalakrishnan S, Cahill DM, Rengan AK. Bacteria-Premised Nanobiopesticides for the Management of Phytopathogens and Pests. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2023; 3:370-388. [DOI: 10.1021/acsagscitech.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia
| | - Chowdary Pavani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Lingxue Kong
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216 Australia
| | | | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216 Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| |
Collapse
|
6
|
Fu T, Fu S, Sun L, Gao H, Yao J. An Effective Sneak-Path Solution Based on a Transient-Relaxation Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207133. [PMID: 36222395 DOI: 10.1002/adma.202207133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
An efficient strategy for addressing individual devices is required to unveil the full potential of memristors for high-density memory and computing applications. Existing strategies using two-terminal selectors that are preferable for compact integration have trade-offs in reduced generality or functional window. A strategy that applies to broad memristors and maintains their full-range functional window is proposed. This strategy uses a type of unipolar switch featuring a transient relaxation or retention as the selector. The unidirectional current flow in the switch suppresses the sneak-path current, whereas the transient-relaxation window is exploited for bidirectional programming. A unipolar volatile memristor with ultralow switching voltage (e.g., <100 mV), constructed from a protein nanowire dielectric harvested from Geobacter sulfurreducens, is specifically employed as the example switch to highlight the advantages and scalability in the strategy for array integration.
Collapse
Affiliation(s)
- Tianda Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Shuai Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lu Sun
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hongyan Gao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jun Yao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
7
|
A Novel Ag@AgCl Nanoparticle Synthesized by Arctic Marine Bacterium: Characterization, Activity and Mechanism. Int J Mol Sci 2022; 23:ijms232415558. [PMID: 36555211 PMCID: PMC9779459 DOI: 10.3390/ijms232415558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
An additive- and pollution-free method for the preparation of biogenic silver and silver chloride nanoparticles (Ag@AgCl NPs) was developed from the bacteria Shewanella sp. Arc9-LZ, which was isolated from the deep sea of the Arctic Ocean. The optimal synthesizing conditions were explored, including light, pH, Ag+ concentration and time. The nanoparticles were studied by means of ultraviolet-visible (UV-Vis) spectrophotometry, energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometers (ICP-OES). The transmission electron microscope (TEM) showed that the nanoparticles were spherical and well dispersed, with particle sizes less than 20.00 nm. With Ag@AgCl nanoparticles, the kinetic rate constants for congo red (CR) and rhodamine B (RhB) dye degradation were 2.74 × 10-1 min-1 and 7.78 × 10-1 min-1, respectively. The maximum decolourization efficiencies of CR and RhB were 93.36% and 99.52%, respectively. Ag@AgCl nanoparticles also showed high antibacterial activities against the Gram-positive and Gram-negative bacteria. The Fourier transform infrared spectroscopy (FTIR) spectrum indicated that the O-H, N-H and -COO- groups in the supernatant of Arc9-LZ might participate in the reduction, stabilization and capping of nanoparticles. We mapped the schematic diagram on possible mechanisms for synthesizing Ag@AgCl NPs.
Collapse
|
8
|
Xu J, Zhao X, Zhao X, Wang Z, Tang Q, Xu H, Liu Y. Memristors with Biomaterials for Biorealistic Neuromorphic Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jiaqi Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoning Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoli Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhongqiang Wang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Qingxin Tang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Haiyang Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yichun Liu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
9
|
Dou X, Su H, Xu D, Liu C, Meng H, Li H, Zhang J, Dang Y, Feng L, Zhang L, Du Z, Holmes DE. Enhancement effects of dissolved organic matter leached from sewage sludge on microbial reduction and immobilization of Cr(VI) by Geobacter sulfurreducens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155301. [PMID: 35429569 DOI: 10.1016/j.scitotenv.2022.155301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Sewage sludge has a high concentration of dissolved organic matter (DOM) which contains compounds that can serve as electron donors or shuttles for metal reduction by dissimilatory metal reducing bacteria (DMRB). In this study, Cr(VI) removal by G. sulfurreducens, a common DMRB present in anaerobic soils, was examined in the presence or absence of sludge DOM. Two different types of sludge DOM were tested; composted sludge DOM (C-DOM) and anaerobically digested sludge DOM (A-DOM). Both sludge DOMs enhanced Cr(VI) reduction by G. sulfurreducens, but C-DOM was more effective likely because it had higher concentrations of humic substances that served as electron shuttles. Transcriptomic studies indicated that G. sulfurreducens utilizes several different mechanisms to tolerate chromium including extracellular Cr(VI) reduction and immobilization by outer membrane c-type cytochromes and electrically conductive pili, intracellular Cr(VI) reduction by triheme cytochromes and NAD(P)H FMN reductase proteins, and chromium efflux by several P-type ATPase and RND transporter proteins. Microscopy experiments also showed that Cr(III) crystals formed on the surface of the cells, indicating that extracellular Cr(VI) reduction and adsorption was involved in the chromium removal process. These results help provide insight into the potential use of sewage sludge as an additive to enhance the bioremediation of chromium contaminated soils.
Collapse
Affiliation(s)
- Xudan Dou
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Hui Su
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dandan Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Chuanqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Huan Meng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, USA
| |
Collapse
|
10
|
Shen S, Sun W, Yang K, Gao H, Lin D. Biotransformation of 2D Nanomaterials through Stimulated Bacterial Respiration-Produced Extracellular Reactive Oxygen Species: A Common but Overlooked Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5508-5519. [PMID: 35420416 DOI: 10.1021/acs.est.1c08481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biotransformation of 2D nanomaterials is still poorly understood, although their environmental fates are becoming an increasing concern with their broad applications. Here, we found that Ti3C2Tx nanosheets, a typical 2D nanomaterial, could be oxidized by reactive oxygen species (ROS) produced by both Gram-negative (Escherichia coli and Shewanella oneidensis) and Gram-positive (Bacillus subtilis) bacteria, with the formation of titanium dioxide (TiO2) on the nanosheet surfaces and impairment of structural integrity. Specifically, Ti3C2Tx nanosheets stimulated bacterial respiration Complex I, leading to increased generation of extracellular O2•- and the formation of H2O2 and •OH via Fenton-like reactions, which intensified the oxidation of the nanosheets. Surface modifications with KOH and hydrazine (HMH), especially HMH, could limit bacterial oxidation of the nanosheets. These findings reveal a common but overlooked process in which oxygen-respiring bacteria are capable of oxidizing 2D nanosheets, providing new knowledge for environmental fate evaluation and future design of functional 2D nanomaterials.
Collapse
Affiliation(s)
- Shuyi Shen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Weining Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
11
|
Ge C, Huang D, Wang D, Zhang E, Li M, Zhu F, Zhu C, Chen N, Wu S, Zhou D. Biotic Process Dominated the Uptake and Transformation of Ag + by Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2366-2377. [PMID: 35107264 DOI: 10.1021/acs.est.1c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver ions (Ag+) directly emitted from industrial sources or released from manufactured Ag nanoparticles (AgNPs) in biosolid-amended soils have raised concern about the risk to ecosystems. However, our knowledge of Ag+ toxicity, internalization, and transformation mechanisms to bacteria is still insufficient. Here, we combine the advanced technologies of hyperspectral imaging (HSI) and single-particle inductively coupled plasma mass spectrometry to visualize the potential formed AgNPs inside the bacteria and evaluate the contributions of biological and non-biological processes in the uptake and transformation of Ag+ by Shewanella oneidensis MR-1. The results showed a dose-dependent toxicity of Ag+ to S. oneidensis MR-1 in the ferrihydrite bioreduction process, which was primarily induced by the actively internalized Ag. Moreover, both HSI and cross-section high-resolution transmission electron microscopy results confirmed that Ag inside the bacteria existed in the form of particulate. The Ag mass distribution in and around live and inactivated cells demonstrated that the uptake and transformation of Ag+ by S. oneidensis MR-1 were mainly via biological process. The bioaccumulation of Ag+ may be lethal to bacteria. A better understanding of the uptake and transformation of Ag+ in bacteria is central to predict and monitor the key factors that control Ag partitioning dynamics at the biointerface, which is critical to develop practical risk assessment and mitigation strategies.
Collapse
Affiliation(s)
- Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Dixiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Enze Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
12
|
Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. NANOSCALE ADVANCES 2022; 4:654-679. [PMID: 35224444 PMCID: PMC8805459 DOI: 10.1039/d1na00686j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan-Morriss
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| | - Richard L Kimber
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna 1090 Vienna Austria
| | | | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| |
Collapse
|
13
|
Liu Y, Zhu X, Zhao Q, Yan X, Du Q, Li N, Liao C, Wang X. Synthesis of silver nanoparticles using living electroactive biofilm protected by polydopamine. iScience 2021; 24:102933. [PMID: 34409277 PMCID: PMC8361215 DOI: 10.1016/j.isci.2021.102933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022] Open
Abstract
The biosynthesis of metal nanoparticles from precious metals has been of wide concern. Their antibacterial activity is a main bottleneck restricting the bacterial activity and reduction performance. Here, bio-electrochemical systems were used to harvest electroactive biofilms (EABs), where bacteria were naturally protected by extracellular polymeric substances to keep activity. The biofilm was further encapsulated with polydopamine (PDA) as additional shield. Silver nanoparticles (AgNPs) were biosynthesized on EABs, whose electroactivity could be fully recovered after Ag+ reduction. The PDA increased bacterial viability by 90%–105%, confirmed as an effective protection against antibacterial activity of Ag+/AgNPs. The biosynthetic process changed the component and function of the microbial community, shifting from bacterial Fe reduction to archaeal methanogenesis. These results demonstrated that the electrochemical acclimation of EABs and encapsulation with PDA were effective protective measures during the biosynthesis of AgNPs. These approaches have a bright future in the green synthesis of nanomaterials, biotoxic wastewater treatment, and sustainable bio-catalysis. The EABs formed using BESs had an efficient ability to recover Ag+ to AgNPs The bio-reduction efficiencies of AgNPs reached more than 94% The PDA increased by 90%–105% of the bacterial viability The biosynthesis process changed the microbial community
Collapse
Affiliation(s)
- Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
14
|
Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis. Mini Rev Med Chem 2021; 21:245-265. [PMID: 33198616 DOI: 10.2174/1389557520999201116163012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Metal nanoparticles are nanosized entities with dimensions of 1-100 nm that are increasingly in demand due to applications in diverse fields like electronics, sensing, environmental remediation, oil recovery and drug delivery. Metal nanoparticles possess large surface energy and properties different from bulk materials due to their small size, large surface area with free dangling bonds and higher reactivity. High cost and pernicious effects associated with the chemical and physical methods of nanoparticle synthesis are gradually paving the way for biological methods due to their eco-friendly nature. Considering the vast potentiality of microbes and plants as sources, biological synthesis can serve as a green technique for the synthesis of nanoparticles as an alternative to conventional methods. A number of reviews are available on green synthesis of nanoparticles but few have focused on covering the entire biological agents in this process. Therefore present paper describes the use of various living organisms like bacteria, fungi, algae, bryophytes and tracheophytes in the biological synthesis of metal nanoparticles, the mechanisms involved and the advantages associated therein.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | | | - Ahmed M Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia, Egypt
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Govind Gupta
- Sage School of Agriculture, Sage University, Bhopal, India
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
15
|
Abstract
Incorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration. For bio-inspired neuromorphic interfaces to emulate biological signal processing and self-sustainability, the mismatch between sensing and computing signals must be addressed. Here, the authors report sensor-driven, integrated neuromorphic systems with signal matching at the biological level.
Collapse
|
16
|
Biomineralization of Cu 2S Nanoparticles by Geobacter sulfurreducens. Appl Environ Microbiol 2020; 86:AEM.00967-20. [PMID: 32680873 PMCID: PMC7480366 DOI: 10.1128/aem.00967-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms. Biomineralization of Cu has been shown to control contaminant dynamics and transport in soils. However, very little is known about the role that subsurface microorganisms may play in the biogeochemical cycling of Cu. In this study, we investigate the bioreduction of Cu(II) by the subsurface metal-reducing bacterium Geobacter sulfurreducens. Rapid removal of Cu from solution was observed in cell suspensions of G. sulfurreducens when Cu(II) was supplied, while transmission electron microscopy (TEM) analyses showed the formation of electron-dense nanoparticles associated with the cell surface. Energy-dispersive X-ray spectroscopy (EDX) point analysis and EDX spectrum image maps revealed that the nanoparticles are rich in both Cu and S. This finding was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses, which identified the nanoparticles as Cu2S. Biomineralization of CuxS nanoparticles in soils has been reported to enhance the colloidal transport of a number of contaminants, including Pb, Cd, and Hg. However, formation of these CuxS nanoparticles has only been observed under sulfate-reducing conditions and could not be repeated using isolates of implicated organisms. As G. sulfurreducens is unable to respire sulfate, and no reducible sulfur was supplied to the cells, these data suggest a novel mechanism for the biomineralization of Cu2S under anoxic conditions. The implications of these findings for the biogeochemical cycling of Cu and other metals as well as the green production of Cu catalysts are discussed. IMPORTANCE Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms.
Collapse
|
17
|
Reinforcement learning in synthetic gene circuits. Biochem Soc Trans 2020; 48:1637-1643. [PMID: 32756895 DOI: 10.1042/bst20200008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023]
Abstract
Synthetic gene circuits allow programming in DNA the expression of a phenotype at a given environmental condition. The recent integration of memory systems with gene circuits opens the door to their adaptation to new conditions and their re-programming. This lays the foundation to emulate neuromorphic behaviour and solve complex problems similarly to artificial neural networks. Cellular products such as DNA or proteins can be used to store memory in both digital and analog formats, allowing cells to be turned into living computing devices able to record information regarding their previous states. In particular, synthetic gene circuits with memory can be engineered into living systems to allow their adaptation through reinforcement learning. The development of gene circuits able to adapt through reinforcement learning moves Sciences towards the ambitious goal: the bottom-up creation of a fully fledged living artificial intelligence.
Collapse
|
18
|
Abram S, Fromm KM. Handling (Nano)Silver as Antimicrobial Agent: Therapeutic Window, Dissolution Dynamics, Detection Methods and Molecular Interactions. Chemistry 2020; 26:10948-10971. [DOI: 10.1002/chem.202002143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah‐Luise Abram
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
19
|
Li S, Niu Y, Chen H, He P. Complete genome sequence of an Arctic Ocean bacterium Shewanella sp. Arc9-LZ with capacity of synthesizing silver nanoparticles in darkness. Mar Genomics 2020; 56:100808. [PMID: 32778401 DOI: 10.1016/j.margen.2020.100808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
Shewanella sp. Arc9-LZ is a bacterium capable of synthesizing silver nanoparticles in darkness. It was isolated from the marine sediment from the Arctic Ocean (158°01'12"W; 84°28'38"N) collected during the 9th Chinese National Arctic Expedition in 2018. Here, we describe the complete genome of Shewanella sp. Arc9-LZ. The complete genome of Shewanella sp. Arc9-LZ is composed of a circular chromosome of 4,911,031 bp with G + C content of 41.61 mol%. The genome encodes 4040 protein-coding genes (CDSs), 104 tRNAs, and 35 rRNAs. The rRNAs contain 14 copies of 5S rRNA gene, 11 copies of 16S rRNA gene, and 10 copies of 23S rRNA gene. Based on the KEGG, COG, NR, Swiss-Prot, TCDB, and CAZy analysis, a total of 64 genes belonging to 9 kinds are related to the AgNPs synthesis. These genes are involeved in the synthesis of riboflavin, b-type cytochrome, c-type cytochrome, coenzyme Q, NADPH dehydrogenase, cytochrome c reductase, cytochrome c oxidase, nitroreductase, and nitrate reductase.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China
| | - Yuanyuan Niu
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China
| | - Hao Chen
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China
| | - Peiqing He
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China.
| |
Collapse
|
20
|
Fu T, Liu X, Gao H, Ward JE, Liu X, Yin B, Wang Z, Zhuo Y, Walker DJF, Joshua Yang J, Chen J, Lovley DR, Yao J. Bioinspired bio-voltage memristors. Nat Commun 2020; 11:1861. [PMID: 32313096 PMCID: PMC7171104 DOI: 10.1038/s41467-020-15759-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
Memristive devices are promising candidates to emulate biological computing. However, the typical switching voltages (0.2-2 V) in previously described devices are much higher than the amplitude in biological counterparts. Here we demonstrate a type of diffusive memristor, fabricated from the protein nanowires harvested from the bacterium Geobacter sulfurreducens, that functions at the biological voltages of 40-100 mV. Memristive function at biological voltages is possible because the protein nanowires catalyze metallization. Artificial neurons built from these memristors not only function at biological action potentials (e.g., 100 mV, 1 ms) but also exhibit temporal integration close to that in biological neurons. The potential of using the memristor to directly process biosensing signals is also demonstrated.
Collapse
Affiliation(s)
- Tianda Fu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiaomeng Liu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hongyan Gao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Joy E Ward
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Bing Yin
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zhongrui Wang
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ye Zhuo
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - David J F Walker
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - J Joshua Yang
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA
| | - Jun Yao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
21
|
Li S, Zhang Z, Gu X, Lin X. Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments. Mar Genomics 2020. [DOI: 10.1016/j.margen.2019.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved. Appl Microbiol Biotechnol 2020; 104:4059-4069. [DOI: 10.1007/s00253-020-10502-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/15/2023]
|
23
|
Chabert V, Babel L, Füeg MP, Karamash M, Madivoli ES, Herault N, Dantas JM, Salgueiro CA, Giese B, Fromm KM. Kinetics and Mechanism of Mineral Respiration: How Iron Hemes Synchronize Electron Transfer Rates. Angew Chem Int Ed Engl 2020; 59:12331-12336. [DOI: 10.1002/anie.201914873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Valentin Chabert
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Lucille Babel
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Michael P. Füeg
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Maksym Karamash
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Edwin S. Madivoli
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Nelly Herault
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Joana M. Dantas
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Carlos A. Salgueiro
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Bernd Giese
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry University of Fribourg Chemin du Musée 7 1700 Fribourg Switzerland
| |
Collapse
|
24
|
Chabert V, Babel L, Füeg MP, Karamash M, Madivoli ES, Herault N, Dantas JM, Salgueiro CA, Giese B, Fromm KM. Kinetik und Mechanismus der mineralischen Atmung: Eisen‐Häme synchronisieren die Geschwindigkeit des Elektronentransfers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valentin Chabert
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Lucille Babel
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Michael P. Füeg
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3 3012 Bern Schweiz
| | - Maksym Karamash
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Edwin S. Madivoli
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Nelly Herault
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Joana M. Dantas
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Carlos A. Salgueiro
- UCIBIO-Requimte Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Bernd Giese
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| | - Katharina M. Fromm
- Departement Chemie Universität Freiburg Chemin du Musée 7 1700 Freiburg Schweiz
| |
Collapse
|
25
|
Verho O, Bäckvall JE. Nanocatalysis Meets Biology. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Huang QS, Wu W, Wei W, Ni BJ. Polyethylenimine modified potassium tungsten oxide adsorbent for highly efficient Ag + removal and valuable Ag 0 recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1048-1056. [PMID: 31539937 DOI: 10.1016/j.scitotenv.2019.07.328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Elemental Ag0 is well known for its remarkable catalytic and antibacterial properties, thus the regeneration of valuable Ag0 metal from Ag+ wastewater is of great significance. In this study, a novel polyethylenimine (PEI) modified potassium tungsten oxide (N-K2W4O13) adsorbent was prepared for Ag+ removal and reduction to Ag0 using glutaraldehyde as crosslinking agent. XPS and FT-IR spectra verified PEI successfully anchored on the surface O and W atoms of K2W4O13 through aldehyde bridges. The content of PEI in N-K2W4O13 was calculated as 8.74wt% by TG curve. A heterogeneous PEI coating was observed in the SEM and TEM images. The N-K2W4O13 exhibited larger Ag+ uptake (48.25mg/g) than the raw K2W4O13 (42.50mg/g) though required a longer equilibrium time. This was due to the combined results of strong chelation and weak electrostatic repulsion that meanwhile occurring on the positive-charged surface of N-K2W4O13. The maximum Ag+ uptake on N-K2W4O13 was 72.5mg/g, which was larger than many of the reported adsorbents. Furthermore, the prepared N-K2W4O13 displayed good anti-interference toward background ions (Na+, K+) and hold a stable Ag+ removal (>95%) after five runs of recycling tests. The mechanism studies elucidated that NH/N groups from the PEI modified N-K2W4O13 mainly accounted for the Ag+ adsorption and Ag0 recovery in the adsorption-reduction process. Ion-exchange between Ag+ and K+ from the N-K2W4O13 lattice also occurred. This work provided a facile method to synthesize a promising adsorbent for Ag+ wastewater remediation and valuable Ag0 recovery.
Collapse
Affiliation(s)
- Qi-Su Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
27
|
Abstract
The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.
Collapse
|
28
|
Ali J, Ali N, Wang L, Waseem H, Pan G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J Microbiol Methods 2019; 159:18-25. [PMID: 30797020 DOI: 10.1016/j.mimet.2019.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Synthesis and application of reliable nanoscale materials is a progressive domain and the limelight of modern nanotechnology. Conventional physicochemical approaches for the synthesis of metal nanoparticles have become obsolete owing to costly and hazardous materials. There is a need to explore alternative, cost-effective and eco-friendly strategies for fabrication of nanoparticle (NPs). Green synthesis of noble metal nanoparticles has emerged as a promising approach in the last decade. Elucidation of the molecular mechanism is highly essential in the biological synthesis of noble metal nanoparticles (NPs) for the controlled size, shape, and monodispersity. Moreover, mechanistic insights will help to scale up the facile synthesis protocols and will enable biotransformation of toxic heavy metals hence also providing the detoxification effects. Therefore, the current review article has primarily targeted the mechanisms involved in the green synthesis of metal NPs, which have been reported during the last few years. Detailed mechanistic pathways have highlighted nitrate reductase as a principle reducing agent in the bacterial mediated synthesis and stabilization of NPs. Furthermore, we have highlighted the potential implications of these mechanisms in bioremediation and biomineralization processes, which can play a critical role in biogeochemical cycling and environmental impacts of heavy metals. We anticipate that this review article will help researchers to address the challenges of bioremediation and modern nanotechnology.
Collapse
Affiliation(s)
- Jafar Ali
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Naeem Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Pakistan.
| | - Lei Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China
| | - Hassan Waseem
- Department of Microbiology, Quaid-i-Azam University Islamabad, Pakistan
| | - Gang Pan
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
29
|
Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Mabey T, Andrea Cristaldi D, Oyston P, Lymer KP, Stulz E, Wilks S, William Keevil C, Zhang X. Bacteria and nanosilver: the quest for optimal production. Crit Rev Biotechnol 2019; 39:272-287. [DOI: 10.1080/07388551.2018.1555130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas Mabey
- School of Engineering & Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Domenico Andrea Cristaldi
- School of Engineering & Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Petra Oyston
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury, UK
| | - Karl P. Lymer
- Platform Systems Division, Dstl Porton Down, Salisbury, UK
| | - Eugen Stulz
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Sandra Wilks
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Charles William Keevil
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Xunli Zhang
- School of Engineering & Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
31
|
Zhang F, Allen AJ, Johnston-Peck AC, Liu J, Pettibone JM. Transformation of engineered nanomaterials through the prism of silver sulfidation. NANOSCALE ADVANCES 2019; 1:241-253. [PMID: 31276100 PMCID: PMC6605090 DOI: 10.1039/c8na00103k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 05/27/2023]
Abstract
Understanding the structure transformation of engineered nanomaterials (ENMs) is a grand measurement challenge, which impacts many aspects of ENMs applications, such as their efficacy, safety, and environmental consequence. To address the significant knowledge gap regarding the fundamental kinetic rate and extent of ENM transformation in the environment, we present a comprehensive and mechanistic structural investigation of the transformation, aggregation, and dissolution behavior of a polyvinylpyrrolidone-coated silver nanoparticle (AgNP) suspension upon sulfidation in moderately reduced hard water with fulvic acid and dissolved Na2S. This reaction is among the most prevalent and industrially and environmentally relevant ENMs transformation. Using ex situ transmission electron microscopy (TEM) and both in situ and ex situ synchrotron-based small angle X-ray scattering (SAXS) and X-ray diffraction (XRD), we find that sulfidation of faceted AgNPs strongly depends on the crystallographic orientation of the facets, with nanometer-scale passivation layers developed on {111} and {100} facets and continuous nucleation and growth on {110} facets. Nanobeam electron diffraction and atomic resolution imaging show Ag and Ag2S domains both possess a high degree of crystalline order, contradicting amorphous structures as previously reported. In situ SAXS/XRD allowed simultaneous determination of the morphological changes and extent of sulfidation of AgNPs. SAXS/XRD results strongly indicate sulfidation follows first-order reaction kinetics without any aggregation. Aided by their size monodispersity, for the first time, using direct, in situ morphology and atomic-structure probes whose results mutually corroborate, we unequivocally determined the sulfidation rate constant of AgNPs under an environmentally relevant condition (~0.013 min-1 for 68 nm diameter AgNPs). A rigorous analysis of the long-term sulfidation product of the AgNPs under different S/Ag ratios using ex situ SAXS/XRD clearly demonstrates that the silver mass in the original AgNP and transformed Ag/Ag2S NP is preserved. This result has important environmental implications, strongly suggesting that Ag+ ions, a known highly effective antimicrobial agent, are not leached into the solution during sulfidation of AgNPs. The combined nondestructive methodology can be extended to unfold the structure transformation pathway and kinetics in a broad range of ENM systems.
Collapse
Affiliation(s)
- Fan Zhang
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - Andrew J. Allen
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - Aaron C. Johnston-Peck
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - Jingyu Liu
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - John M. Pettibone
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| |
Collapse
|
32
|
El-Baghdady KZ, El-Shatoury EH, Abdullah OM, Khalil MMH. Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turk J Biol 2018; 42:319-321. [PMID: 30814895 DOI: 10.3906/biy-1801-53] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A bacterial isolate capable of tolerating 30 mM silver nitrate (AgNO3) was recovered from soil contaminated with industrial waste. The isolate was identified by 16S rRNA as Enterobacter cloacae Ism26 (KP988024) and its capability to synthesize silver nanoparticles (AgNPs) was investigated. AgNPs were produced by mixing 1 mM AgNO3 solution with bacterial cell lysate under light conditions. The UV-Vis spectrum of the aqueous medium containing AgNPs exhibited a peak at 440 nm corresponding to the surface plasmon resonance of the AgNPs. The crystalline nature of the particles was confirmed by X-ray difractometer. High-resolution transmission electron microscopy revealed that the AgNPs were spherical and well dispersed and ranged in size from 7 to 25 nm. The average size range of the produced AgNPs was confirmed by dynamic light scattering. Fourier transform infrared spectroscopy revealed possible involvement of reductive groups on the surface of the nanoparticles. The biosynthesized AgNPs were stable for 6 months and inhibited both gram-positive and gram-negative bacteria. This work describes the exploitation of a low-cost biomaterial and an easy method for the synthesis of AgNPs with desirable and advantageous characteristics.
Collapse
Affiliation(s)
- Khaled Z El-Baghdady
- Department of Microbiology, Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Einas H El-Shatoury
- Department of Microbiology, Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Omnia M Abdullah
- Department of Microbiology, Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University , Cairo , Egypt
| |
Collapse
|
33
|
Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles Using Cassia occidentalis. Int J Biomater 2018; 2018:6735426. [PMID: 29853898 PMCID: PMC5954926 DOI: 10.1155/2018/6735426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 12/02/2022] Open
Abstract
An ecofriendly and green method for the synthesis of silver and copper nanoparticles has developed using aqueous leaves extract of Cassia occidentalis. The formation of AgNPs and CuNPs was monitored by measuring the UV-Vis spectra. The morphology and crystalline phase of the metal nanoparticles were determined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with X-ray energy dispersive spectrophotometer (EDX) and X-ray diffraction (XRD). The synthesized metal nanoparticles were generally found to be spherical and oval in shape. The AgNPs and CuNPs showed highly potent antibacterial activity against Escherichia coli and Salmonella typhi bacteria, respectively. The CuNPs showed higher radical scavenging activity than AgNPs. The AgNPs showed lower haemolysis (1.7%) exhibiting lesser toxicity as compared to CuNPs. The CuNPs have better catalytic ability for the reduction of 4-nitrophenol and 2-nitrophenol as compared to AgNPs.
Collapse
|
34
|
Shevlin D, O'Brien N, Cummins E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1033-1046. [PMID: 29079093 DOI: 10.1016/j.scitotenv.2017.10.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Growth in the nanotechnology sector is likely introducing unnatural formations of materials on the nanoscale (10-9m) to the environment. Disposal and degradation of products incorporating engineered nanomaterials (ENMs) are likely being released into natural aquatic systems un-intentionally primarily via waste water effluents. The fate and behaviour of metallic based nanoparticles (NPs) such as silver (Ag) in aquatic waters is complex with high levels of variability and uncertainty. In-situ physical, biological and chemical (natural attenuation) processes are likely to influence ENM fate and behaviour in freshwater systems. Surfaced functionalized particles may inhibit or limit environmental transformations which influence particle aggregation, mobility, dissolution and eco-toxic potential. This paper focuses on ENM characteristics and the influence of physical, chemical and biological processes occurring in aquatic systems that are likely to impact metallic ENMs fate. A focus on silver NPs (while for comparison, reporting about other metallic ENMs as appropriate) released to aquatic systems is discussed relating to their likely fate and behaviour in this dynamic and complex environment. This paper further highlights the need for specific risk assessment approaches for metallic ENMs and puts this into context with regard to informing environmental policy and potential NP influence on environmental/human health.
Collapse
Affiliation(s)
- David Shevlin
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Niall O'Brien
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
35
|
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 2018; 16:14. [PMID: 29452593 PMCID: PMC5815253 DOI: 10.1186/s12951-018-0334-5] [Citation(s) in RCA: 497] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Use of silver and silver salts is as old as human civilization but the fabrication of silver nanoparticles (Ag NPs) has only recently been recognized. They have been specifically used in agriculture and medicine as antibacterial, antifungal and antioxidants. It has been demonstrated that Ag NPs arrest the growth and multiplication of many bacteria such as Bacillus cereus, Staphylococcus aureus, Citrobacter koseri, Salmonella typhii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, Vibrio parahaemolyticus and fungus Candida albicans by binding Ag/Ag+ with the biomolecules present in the microbial cells. It has been suggested that Ag NPs produce reactive oxygen species and free radicals which cause apoptosis leading to cell death preventing their replication. Since Ag NPs are smaller than the microorganisms, they diffuse into cell and rupture the cell wall which has been shown from SEM and TEM images of the suspension containing nanoparticles and pathogens. It has also been shown that smaller nanoparticles are more toxic than the bigger ones. Ag NPs are also used in packaging to prevent damage of food products by pathogens. The toxicity of Ag NPs is dependent on the size, concentration, pH of the medium and exposure time to pathogens.
Collapse
Affiliation(s)
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box # 196, Gondar, Ethiopia
| | - Rifaqat A. K. Rao
- Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
36
|
Nayantara, Kaur P. Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biori.2018.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Javaid A, Oloketuyi SF, Khan MM, Khan F. Diversity of Bacterial Synthesis of Silver Nanoparticles. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0496-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Vasylevskyi SI, Kracht S, Corcosa P, Fromm KM, Giese B, Füeg M. Bildung von Nanopartikeln durch Elektronentransfer in Peptiden und c-Cytochromen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sonja Kracht
- Departement Chemie; Université de Fribourg; Chemin du Musée 9 1700 Fribourg Schweiz
| | - Paula Corcosa
- Departement Chemie; Université de Fribourg; Chemin du Musée 9 1700 Fribourg Schweiz
| | - Katharina M. Fromm
- Departement Chemie; Université de Fribourg; Chemin du Musée 9 1700 Fribourg Schweiz
| | - Bernd Giese
- Departement Chemie; Université de Fribourg; Chemin du Musée 9 1700 Fribourg Schweiz
| | - Michael Füeg
- Departement für Chemie und Biochemie; Universität Bern; Freiestrasse 3 3012 Bern Schweiz
| |
Collapse
|
39
|
Vasylevskyi SI, Kracht S, Corcosa P, Fromm KM, Giese B, Füeg M. Formation of Silver Nanoparticles by Electron Transfer in Peptides and c-Cytochromes. Angew Chem Int Ed Engl 2017; 56:5926-5930. [DOI: 10.1002/anie.201702621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Serhii I. Vasylevskyi
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Sonja Kracht
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Paula Corcosa
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Bernd Giese
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Michael Füeg
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
40
|
Mitrano DM, Nowack B. The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. NANOTECHNOLOGY 2017; 28:072001. [PMID: 28074782 DOI: 10.1088/1361-6528/28/7/072001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Assessing the risks of manufactured nanomaterials (MNM) has been almost exclusively focused on the pristine, as-produced materials with far fewer studies delving into more complex, real world scenarios. However, when considering a life-cycle perspective, it is clear that MNM released from commercial products during manufacturing, use and disposal are far more relevant both in terms of more realistic environmental fate and transport as well as environmental risk. The quantity in which the particles are released and their (altered) physical and chemical form should be identified and it is these metrics that should be used to assess the exposure and hazard the materials pose. The goal of this review is to (1) provide a rationale for using a life-cycle based approach when dealing with MNM transformations, (2) to elucidate the different chemical and physical forces which age and transform MNM and (3) assess the pros and cons of current analytical techniques as they pertain to the measurement of aged and transformed MNM in these complex release scenarios. Specifically, we will describe the possible transformations common MNM may undergo during the use or disposal of nano-products based on how these products will be used by the consumer by taking stock of the current nano-enabled products on the market. Understanding the impact of these transformations may help forecast the benefits and/or risks associated with the use of products containing MNM.
Collapse
Affiliation(s)
- Denise M Mitrano
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | |
Collapse
|
41
|
Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chen J, Ramakrishna S. Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 2017; 46:6946-7020. [DOI: 10.1039/c6cs00921b] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials (NMs) for adsorption, catalysis, separation, and disinfection are scrutinized. NMs-based sensor technologies and environmental transformations of NMs are highlighted.
Collapse
Affiliation(s)
- Rasel Das
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Chad D. Vecitis
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Agnes Schulze
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Bin Cao
- School of Civil and Environmental Engineering
- Nanyang Technological University
- Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre
- Universiti Teknologi Malaysia
- 81310 Johor
- Malaysia
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
42
|
Song X, Shi X. Bioreductive deposition of highly dispersed Ag nanoparticles on carbon nanotubes with enhanced catalytic degradation for 4-nitrophenol assisted by Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3038-3044. [PMID: 27854056 DOI: 10.1007/s11356-016-8076-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Biogenetic nanomaterials research provides insights and valuable implications for the green synthesis of nanomaterials and auxiliary biodegradation behaviors. Ag nanoparticles (Ag NPs) fabricated on multiwalled carbon nanotubes (MWNTs) (Ag/MWNTs nanocomposites) are prepared in situ assisted by Shewanella oneidensis MR-1 (S. oneidensis MR-1) that provide respiratory pathway to transmit electrons. The Ag/MWNTs nanocomposites are characterized by a scanning electron microscopy (SEM), an energy dispersive X-ray (EDX), a transmission electron microscopy (TEM), an X-ray diffraction (XRD), and an X-ray photoelectron spectroscopy (XPS), respectively. The results indicate that Ag NPs (less than 20 nm in diameter) are successfully formed on the MWNTs without an aggregation. In application studies, the catalytic activities of the Ag/MWNTs nanocomposites towards the reduction of 4-nitrophenol (4-NP) by sodium borohydride (NaBH4) are tracked by a UV-visible spectroscopy. It is suggested that the Ag/MWNTs nanocomposites exhibit a satisfactory catalytic efficiency, which might be ascribed to the high dispersion of Ag NPs on MWNT surfaces. Moreover, the final results indicate that only after 10 min of reaction, the catalytic degradation ratio of 4-NP reaches 94.0% in the presence of Ag/MWNTs nanocomposites assisted by S. oneidensis MR-1.
Collapse
Affiliation(s)
- Xiaojie Song
- School of Resource and Environmental Engineering, Anhui University, Hefei, 230601, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Xianyang Shi
- School of Resource and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
43
|
Zhang X, Yang CW, Yu HQ, Sheng GP. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). WATER RESEARCH 2016; 106:242-248. [PMID: 27728818 DOI: 10.1016/j.watres.2016.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Microbial extracellular polymeric substances (EPS) widely exist in natural environments and affect the migration and transformation of pollutants in aquatic environments. Previous works report that EPS have some reducing functional groups and can reduce heavy metals. However, because of the weak reducing capability of EPS, the reduction of heavy metals by EPS without cells is extremely slow, and its effect on heavy metals species is insignificant. In this work, the accelerated reduction of silver ions (Ag+) by EPS from Shewanella oneidensis MR-1 under illumination was investigated. UV-visible spectroscopy, transmission electron microscopy (TEM) coupled with an energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were used to confirm the formation of silver nanoparticles (AgNPs) via the reduction of Ag+ by EPS under light illumination. The Ag+ reduction by EPS follows pseudo-first-order kinetics under both visible and UV light, and the light irradiation can significantly accelerate AgNPs formation. On the one hand, visible light can excite AgNPs for their surface plasma resonance (SPR) and accelerate the electrons from the EPS to adjacent Ag+. On the other hand, EPS molecules may be excited by UV light to produce strong reducing species, which enhance Ag+ reduction. Moreover, pH, dissolved oxygen were found to affect the formation of AgNPs by EPS. This work proves the reducing capability of EPS on the reduction of Ag+, and this process can be accelerated under light illumination, which may affect the speciation and transformation of heavy metals in natural waters.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
44
|
Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.044] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Pradhan A, Bepari M, Maity P, Roy SS, Roy S, Choudhury SM. Gold nanoparticles from indole-3-carbinol exhibit cytotoxic, genotoxic and antineoplastic effects through the induction of apoptosis. RSC Adv 2016. [DOI: 10.1039/c6ra05591e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesized gold nanoparticles using indole-3-carbinol (AuNPI3Cs) has been characterized and its antineoplastic activities has been studied here.
Collapse
Affiliation(s)
- Ananya Pradhan
- Department of Human Physiology with Community Health
- Vidyasagar University
- Midnapore 721 102
- India
| | - Madhubanti Bepari
- Department of Human Physiology with Community Health
- Vidyasagar University
- Midnapore 721 102
- India
| | - Pralay Maity
- Department of Human Physiology with Community Health
- Vidyasagar University
- Midnapore 721 102
- India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata-700 032
- India
| | - Sumita Roy
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721 102
- India
| | - Sujata Maiti Choudhury
- Department of Human Physiology with Community Health
- Vidyasagar University
- Midnapore 721 102
- India
| |
Collapse
|
46
|
Abdollahi H, Shiri I. Radiation protection and secondary cancer prevention using biological radioprotectors in radiotherapy. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.33.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
47
|
Omajali JB, Mikheenko IP, Merroun ML, Wood J, Macaskie LE. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:264. [PMID: 27004043 PMCID: PMC4779138 DOI: 10.1007/s11051-015-3067-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 05/24/2023]
Abstract
Early studies have focused on the synthesis of palladium nanoparticles within the periplasmic layer or on the outer membrane of Desulfovibrio desulfuricans and on the S-layer protein of Bacillus sphaericus. However, it has remained unclear whether the synthesis of palladium nanoparticles also takes place in the bacterial cell cytoplasm. This study reports the use of high-resolution scanning transmission electron microscopy with a high-angle annular dark field detector and energy dispersive X-ray spectrometry attachment to investigate the intracellular synthesis of palladium nanoparticles (Pd NPs). We show the intracellular synthesis of Pd NPs within cells of two anaerobic strains of D. desulfuricans and an aerobic strain of B. benzeovorans using hydrogen and formate as electron donors. The Pd nanoparticles were small and largely monodispersed, between 0.2 and 8 nm, occasionally from 9 to 12 nm with occasional larger nanoparticles. With D. desulfuricans NCIMB 8307 (but not D. desulfuricans NCIMB 8326) and with B. benzeovorans NCIMB 12555, the NPs were larger when made at the expense of formate, co-localizing with phosphate in the latter, and were crystalline, but were amorphous when made with H2, with no phosphorus association. The intracellular Pd nanoparticles were mainly icosahedrons with surfaces comprising {111} facets and about 5 % distortion when compared with that of bulk palladium. The particles were more concentrated in the cell cytoplasm than the cell wall, outer membrane, or periplasm. We provide new evidence for synthesis of palladium nanoparticles within the cytoplasm of bacteria, which were confirmed to maintain cellular integrity during this synthesis.
Collapse
Affiliation(s)
- Jacob B. Omajali
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Iryna P. Mikheenko
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Mohamed L. Merroun
- />Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Joseph Wood
- />School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Lynne E. Macaskie
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
48
|
Unprecedented Silver Resistance in Clinically Isolated Enterobacteriaceae: Major Implications for Burn and Wound Management. Antimicrob Agents Chemother 2015; 59:4734-41. [PMID: 26014954 DOI: 10.1128/aac.00026-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/22/2015] [Indexed: 11/20/2022] Open
Abstract
Increased utilization of inorganic silver as an adjunctive to many medical devices has raised concerns of emergent silver resistance in clinical bacteria. Although the molecular basis for silver resistance has been previously characterized, to date, significant phenotypic expression of these genes in clinical settings is yet to be observed. Here, we identified the first strains of clinical bacteria expressing silver resistance at a level that could significantly impact wound care and the use of silver-based dressings. Screening of 859 clinical isolates confirmed 31 harbored at least 1 silver resistance gene. Despite the presence of these genes, MIC testing revealed most of the bacteria displayed little or no increase in resistance to ionic silver (200 to 300 μM Ag(+)). However, 2 isolates (Klebsiella pneumonia and Enterobacter cloacae) were capable of robust growth at exceedingly high silver concentrations, with MIC values reaching 5,500 μM Ag(+). DNA sequencing of these two strains revealed the presence of genes homologous to known genetic determinants of heavy metal resistance. Darkening of the bacteria's pigment was observed after exposure to high silver concentrations. Scanning electron microscopy images showed the presence of silver nanoparticles embedded in the extracellular polymeric substance of both isolates. This finding suggested that the isolates may neutralize ionic silver via reduction to elemental silver. Antimicrobial testing revealed both organisms to be completely resistant to many commercially available silver-impregnated burn and wound dressings. Taken together, these findings provide the first evidence of clinical bacteria capable of expressing silver resistance at levels that could significantly impact wound management.
Collapse
|
49
|
Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 2015; 99:4579-93. [PMID: 25952110 DOI: 10.1007/s00253-015-6622-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.
Collapse
|
50
|
Morsy FM. Toward revealing the controversy of bacterial biosynthesis versus bactericidal properties of silver nanoparticles (AgNPs): bacteria and other microorganisms do not per se viably synthesize AgNPs. Arch Microbiol 2015; 197:645-55. [PMID: 25724923 DOI: 10.1007/s00203-015-1098-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/06/2015] [Accepted: 02/20/2015] [Indexed: 11/28/2022]
Abstract
In the last two decades, a large number of literature had focused on the biosynthesis of silver nanoparticles (AgNPs) from silver ions by bacteria and other microorganisms. This study infers that bacteria and other microorganisms do not per se synthesize AgNPs. All tested auto- and heterotrophic microorganisms in this study were killed by silver ions and could not as viable cells produce AgNPs. Microbial cell viability represented in colony-forming units and metabolic viability represented in aerobic respiration in all investigated microorganisms as well as photosynthesis in photoautotrophic microorganisms ceased by silver ions too early before AgNPs formation. The time required for AgNPs synthesis inversely related to the incubation temperature of the investigated microorganisms with silver ions where it requires only few minutes for nanoparticles formation at high temperature or autoclaving. The minimum inhibitory and minimum bactericidal and fungicidal concentrations of silver ions were significantly lower than AgNPs, indicating that silver ions are more efficient antimicrobial. The results presented in this study indicate that formation of AgNPs by eubacteria, cyanobacteria and fungi is not a vitally regulated cellular metabolic process and the mechanism occurs via bioreduction of silver ions to nanoparticles by organics released from the dead cells.
Collapse
Affiliation(s)
- Fatthy Mohamed Morsy
- Biology Department, Faculty of Science, Taibah University, Medina, Saudi Arabia,
| |
Collapse
|