1
|
Qin S, Zhang Y, Tian Y, Xu F, Zhang P. Subcellular metabolomics: Isolation, measurement, and applications. J Pharm Biomed Anal 2021; 210:114557. [PMID: 34979492 DOI: 10.1016/j.jpba.2021.114557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/26/2022]
Abstract
Metabolomics, a technique that profiles global small molecules in biological samples, has been a pivotal tool for disease diagnosis and mechanism research. The sample type in metabolomics covers a wide range, including a variety of body fluids, tissues, and cells. However, little attention was paid to the smaller, relatively independent partition systems in cells, namely the organelles. The organelles are specific compartments/places where diverse metabolic activities are happening in an orderly manner. Metabolic disorders of organelles were found to occur in various pathological conditions such as inherited metabolic diseases, diabetes, cancer, and neurodegenerative diseases. However, at the cellular level, the metabolic outcomes of organelles and cytoplasm are superimposed interactively, making it difficult to describe the changes in subcellular compartments. Therefore, characterizing the metabolic pool in the compartmentalized system is of great significance for understanding the role of organelles in physiological functions and diseases. So far, there are very few research articles or reviews related to subcellular metabolomics. In this review, subcellular fractionation and metabolite analysis methods, as well as the application of subcellular metabolomics in the physiological and pathological studies are systematically reviewed, as a practical reference to promote the continued advancement in subcellular metabolomics.
Collapse
Affiliation(s)
- Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxin Zhang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: Advances, considerations, and strategies for optimal utility. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Microfluidic Single-Cell Analytics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:159-189. [PMID: 32737554 DOI: 10.1007/10_2020_134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
What is the impact of cellular heterogeneity on process performance? How do individual cells contribute to averaged process productivity? Single-cell analysis is a key technology for answering such key questions of biotechnology, beyond bulky measurements with populations. The analysis of cellular individuality, its origins, and the dependency of process performance on cellular heterogeneity has tremendous potential for optimizing biotechnological processes in terms of metabolic, reaction, and process engineering. Microfluidics offer unmatched environmental control of the cellular environment and allow massively parallelized cultivation of single cells. However, the analytical accessibility to a cell's physiology is of crucial importance for obtaining the desired information on the single-cell production phenotype. Highly sensitive analytics are required to detect and quantify the minute amounts of target analytes and small physiological changes in a single cell. For their application to biotechnological questions, single-cell analytics must evolve toward the measurement of kinetics and specific rates of the smallest catalytic unit, the single cell. In this chapter, we focus on an introduction to the latest single-cell analytics and their application for obtaining physiological parameters in a biotechnological context from single cells. We present and discuss recent advancements in single-cell analytics that enable the analysis of cell-specific growth, uptake, and production kinetics, as well as the gene expression and regulatory mechanisms at a single-cell level.
Collapse
|
4
|
Skruzny M, Pohl E, Abella M. FRET Microscopy in Yeast. BIOSENSORS 2019; 9:E122. [PMID: 31614546 PMCID: PMC6956097 DOI: 10.3390/bios9040122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is a powerful fluorescence microscopy method to study the nanoscale organization of multiprotein assemblies in vivo. Moreover, many biochemical and biophysical processes can be followed by employing sophisticated FRET biosensors directly in living cells. Here, we summarize existing FRET experiments and biosensors applied in yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, two important models of fundamental biomedical research and efficient platforms for analyses of bioactive molecules. We aim to provide a practical guide on suitable FRET techniques, fluorescent proteins, and experimental setups available for successful FRET experiments in yeasts.
Collapse
Affiliation(s)
- Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany.
| | - Emma Pohl
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
5
|
YUCA ESRA, TAMERLER CANDAN. Self Assembled Recombinant Proteins on Metallic Nanoparticles As Bimodal Imaging Probes. JOM (WARRENDALE, PA. : 1989) 2019; 71:1281-1290. [PMID: 34149269 PMCID: PMC8211090 DOI: 10.1007/s11837-018-03325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/28/2018] [Indexed: 05/12/2023]
Abstract
Combining multiple modalities is at the center of developing new methods for sensing and imaging that are required for comprehensive understanding of events at the molecular level. Various imaging modalities have been developed using metallic nanoparticles owning to their exceptional physical and chemical properties. Due to their localized surface plasmon resonance characteristics, gold and silver nanoparticles exhibit unique optoelectronic properties commonly used in biomedical sciences and engineering. Self assembled monolayers or physical adsorption have previously been adapted to functionalize the surfaces of nanoparticles with biomolecules for targeted imaging. However, depending on differences among the functional groups used on the nanoparticle surface, wide variation in the displayed biomolecular property to recognize its target may result. In the last decade, the properties of inorganic binding peptides have been proven advantageous to assemble selective functional nano-entities or proteins onto nanoparticles surfaces. Herein we explored formation of self-assembled hybrid metallic nano-architectures that are composed of gold and silver nanoparticles with fluorescent proteins, for use as bimodal imaging probes. We employed metal binding peptide-based assembly to self assemble green fluorescence protein onto metallic substrates of various geometries. Assembly of the green fluorescent proteins, genetically engineered to incorporate gold- or silver-binding peptides onto metallic nanoparticles, resulted in the generation of hybrid-, biomodal-imaging probes in a single step. Green fluorescent activity on gold and silver surfaces can be been monitored using both plasmonic and fluorescent signatures. Our results demonstrate a novel bimodal imaging system that can be finely tuned with respect to nanoparticle size and protein concentration. Resulting hybrid probes may mitigate the limitation of depth penetration into biological tissues as well as providing high signal-to-noise ratio and sensitivity.
Collapse
Affiliation(s)
- ESRA YUCA
- Institute for Bioengineering Research, University of Kansas, Lawrence-KS, 66045, USA
- Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34210, Turkey
| | - CANDAN TAMERLER
- Institute for Bioengineering Research, University of Kansas, Lawrence-KS, 66045, USA
- Bioengineering Program, University of Kansas, Lawrence-KS, 66045, USA
- Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Yeom SJ, Kim M, Kwon KK, Fu Y, Rha E, Park SH, Lee H, Kim H, Lee DH, Kim DM, Lee SG. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat Commun 2018; 9:5053. [PMID: 30498220 PMCID: PMC6265244 DOI: 10.1038/s41467-018-07488-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/01/2018] [Indexed: 11/09/2022] Open
Abstract
Biocatalytic cyclization is highly desirable for efficient synthesis of biologically derived chemical substances, such as the commodity chemicals ε-caprolactam and δ-valerolactam. To identify biocatalysts in lactam biosynthesis, we develop a caprolactam-detecting genetic enzyme screening system (CL-GESS). The Alcaligenes faecalis regulatory protein NitR is adopted for the highly specific detection of lactam compounds against lactam biosynthetic intermediates. We further systematically optimize the genetic components of the CL-GESS to enhance sensitivity, achieving 10-fold improvement. Using this highly sensitive GESS, we screen marine metagenomes and find an enzyme that cyclizes ω-amino fatty acids to lactam. Moreover, we determine the X-ray crystal structure and catalytic residues based on mutational analysis of the cyclase. The cyclase is also used as a helper enzyme to sense intracellular ω-amino fatty acids. We expect this simple and accurate biosensor to have wide-ranging applications in rapid screening of new lactam-synthesizing enzymes and metabolic engineering for lactam bio-production.
Collapse
Affiliation(s)
- Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Moonjeong Kim
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Yaoyao Fu
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Eugene Rha
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Sung-Hyun Park
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Younger AKD, Dalvie NC, Rottinghaus AG, Leonard JN. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription. ACS Synth Biol 2017; 6:311-325. [PMID: 27744683 DOI: 10.1021/acssynbio.6b00184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efforts to engineer microbial factories have benefitted from mining biological diversity and high throughput synthesis of novel enzymatic pathways, yet screening and optimizing metabolic pathways remain rate-limiting steps. Metabolite-responsive biosensors may help to address these persistent challenges by enabling the monitoring of metabolite levels in individual cells and metabolite-responsive feedback control. We are currently limited to naturally evolved biosensors, which are insufficient for monitoring many metabolites of interest. Thus, a method for engineering novel biosensors would be powerful, yet we lack a generalizable approach that enables the construction of a wide range of biosensors. As a step toward this goal, we here explore several strategies for converting a metabolite-binding protein into a metabolite-responsive transcriptional regulator. By pairing a modular protein design approach with a library of synthetic promoters and applying robust statistical analyses, we identified strategies for engineering biosensor-regulated bacterial promoters and for achieving design-driven improvements of biosensor performance. We demonstrated the feasibility of this strategy by fusing a programmable DNA binding motif (zinc finger module) with a model ligand binding protein (maltose binding protein), to generate a novel biosensor conferring maltose-regulated gene expression. This systematic investigation provides insights that may guide the development of additional novel biosensors for diverse synthetic biology applications.
Collapse
Affiliation(s)
- Andrew K. D. Younger
- Interdisciplinary
Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil C. Dalvie
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin G. Rottinghaus
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Joshua N. Leonard
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Member, Robert
H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
9
|
Kim H, Han GH, Fu Y, Gam J, Lee SG. Highly Sensitive and Rapid Fluorescence Detection with a Portable FRET Analyzer. J Vis Exp 2016:54144. [PMID: 27768067 PMCID: PMC5092083 DOI: 10.3791/54144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recent improvements in Förster resonance energy transfer (FRET) sensors have enabled their use to detect various small molecules including ions and amino acids. However, the innate weak signal intensity of FRET sensors is a major challenge that prevents their application in various fields and makes the use of expensive, high-end fluorometers necessary. Previously, we built a cost-effective, high-performance FRET analyzer that can specifically measure the ratio of two emission wavelength bands (530 and 480 nm) to achieve high detection sensitivity. More recently, it was discovered that FRET sensors with bacterial periplasmic binding proteins detect ligands with maximum sensitivity in the critical temperature range of 50 - 55 °C. This report describes a protocol for assessing sugar content in commercially-available beverage samples using our portable FRET analyzer with a temperature-specific FRET sensor. Our results showed that the additional preheating process of the FRET sensor significantly increases the FRET ratio signal, to enable more accurate measurement of sugar content. The custom-made FRET analyzer and sensor were successfully applied to quantify the sugar content in three types of commercial beverages. We anticipate that further size reduction and performance enhancement of the equipment will facilitate the use of hand-held analyzers in environments where high-end equipment is not available.
Collapse
Affiliation(s)
- Haseong Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology
| | - Gui Hwan Han
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology
| | - Yaoyao Fu
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology
| | - Jongsik Gam
- College of Interdisciplinary & Creative Studies, Konyang University
| | - Seung Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology; Biosystems and Bioengineering Program, University of Science and Technology;
| |
Collapse
|
10
|
Edwards KA, Seog WJ, Han L, Feder S, Kraft CE, Baeumner AJ. High-Throughput Detection of Thiamine Using Periplasmic Binding Protein-Based Biorecognition. Anal Chem 2016; 88:8248-56. [PMID: 27460839 DOI: 10.1021/acs.analchem.6b02092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although antibodies and aptamers are commonly used bioaffinity recognition elements, they are not available for many important analytes. As an alternative, we demonstrate use of a periplasmic binding protein (PBP) to provide high affinity recognition for thiamine (vitamin B1), an analyte of great importance to human and environmental health for which, like so many other small molecules, no suitable biorecognition element is available. We demonstrate that with an appropriate competitive strategy, a highly sensitive (limit of detection of 0.5 nM) and specific bioassay for thiamine and its phosphorylated derivatives can be designed. The high-throughput method relies upon the thiamine periplasmic binding protein (TBP) from Escherichia coli for thiamine biorecognition and dye-encapsulating liposomes for signal-enhancement. A thiamine monosuccinate-PEG-biotin derivative was synthesized to serve as an immobilized competitor that overcame constraints imposed by the deep binding cleft and structural recognition requirements of PBPs. The assay was applied to ambient environmental samples with high reproducibility. These findings demonstrate that PBPs can serve as highly specific and sensitive affinity recognition elements in bioanalytical assay formats, thereby opening up the field of affinity sensors to a new range of analytes.
Collapse
Affiliation(s)
- Katie A Edwards
- Departments of †Natural Resources, ‡Biological and Environmental Engineering, §Food Science, and ∥Chemical Engineering, Cornell University , Ithaca, New York, United States
| | - Woo Jin Seog
- Departments of †Natural Resources, ‡Biological and Environmental Engineering, §Food Science, and ∥Chemical Engineering, Cornell University , Ithaca, New York, United States
| | - Lu Han
- Departments of †Natural Resources, ‡Biological and Environmental Engineering, §Food Science, and ∥Chemical Engineering, Cornell University , Ithaca, New York, United States
| | - Seth Feder
- Departments of †Natural Resources, ‡Biological and Environmental Engineering, §Food Science, and ∥Chemical Engineering, Cornell University , Ithaca, New York, United States
| | - Clifford E Kraft
- Departments of †Natural Resources, ‡Biological and Environmental Engineering, §Food Science, and ∥Chemical Engineering, Cornell University , Ithaca, New York, United States
| | - Antje J Baeumner
- Departments of †Natural Resources, ‡Biological and Environmental Engineering, §Food Science, and ∥Chemical Engineering, Cornell University , Ithaca, New York, United States
| |
Collapse
|
11
|
Gam J, Ha JS, Kim H, Lee DH, Lee J, Lee SG. Ratiometric analyses at critical temperatures can magnify the signal intensity of FRET-based sugar sensors with periplasmic binding proteins. Biosens Bioelectron 2015; 72:37-43. [DOI: 10.1016/j.bios.2015.04.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 11/29/2022]
|
12
|
Peroza EA, Boumezbeur AH, Zamboni N. Rapid, randomized development of genetically encoded FRET sensors for small molecules. Analyst 2015; 140:4540-8. [DOI: 10.1039/c5an00707k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A generally applicable protocol for random and yet efficient construction of genetically encoded FRET sensors for small molecules was established.
Collapse
|
13
|
Kim H, Kim HS, Ha JS, Lee SG. A portable FRET analyzer for rapid detection of sugar content. Analyst 2015; 140:3384-9. [DOI: 10.1039/c4an02195a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed hand-held FRET analyzer measures sucrose and maltose contents with better performance than the conventional monochromator-type spectrofluorometer.
Collapse
Affiliation(s)
- Haseong Kim
- Synthetic Biology & Bioengineering Research Center
- Korea Research Institute of Bioscience and Biotechnology
- South Korea
| | | | - Jae-Seok Ha
- Humedix
- Co. Ltd
- Dongan-gu, Anyang-si
- South Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center
- Korea Research Institute of Bioscience and Biotechnology
- South Korea
- Biosystems and Bioengineering Program
- University of Science and Technology
| |
Collapse
|
14
|
Adeniran A, Sherer M, Tyo KE. Yeast-based biosensors: design and applications. FEMS Yeast Res 2014; 15:1-15. [DOI: 10.1111/1567-1364.12203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Adebola Adeniran
- Department of Chemical & Biological Engineering; Northwestern University; Evanston IL USA
| | - Michael Sherer
- Department of Chemical & Biological Engineering; Northwestern University; Evanston IL USA
| | - Keith E.J. Tyo
- Department of Chemical & Biological Engineering; Northwestern University; Evanston IL USA
| |
Collapse
|
15
|
Joel S, Turner KB, Daunert S. Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures. ACS Chem Biol 2014; 9:1595-602. [PMID: 24841549 PMCID: PMC4215909 DOI: 10.1021/cb500132g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 05/19/2014] [Indexed: 11/30/2022]
Abstract
Advancements in biotechnology have allowed for the preparation of designer proteins with a wide spectrum of unprecedented chemical and physical properties. A variety of chemical and genetic methods can be employed to tailor the protein's properties, including its stability and various functions. Herein, we demonstrate the production of semisynthetic glucose recognition proteins (GRPs) prepared by truncating galactose/glucose binding protein (GBP) of E. coli and expanding the genetic code via global incorporation of unnatural amino acids into the structure of GBP and its fragments. The unnatural amino acids 5,5,5-trifluoroleucine (FL) and 5-fluorotryptophan (FW) were chosen for incorporation into the proteins. The resulting semisynthetic GRPs exhibit enhanced thermal stability and increased detection range of glucose without compromising its binding ability. These modifications enabled the utilization of the protein for the detection of glucose within physiological concentrations (mM) and temperatures ranging from hypothermia to hyperthermia. This ability to endow proteins such as GBP with improved stability and properties is critical in designing the next generation of tailor-made biosensing proteins for continuous in vivo glucose monitoring.
Collapse
Affiliation(s)
- Smita Joel
- Department
of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| | - Kendrick B. Turner
- Department
of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| | - Sylvia Daunert
- Department
of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| |
Collapse
|
16
|
Ozyurt C, Evran S, Telefoncu A. Development of genetically encoded fluorescent protein constructs of hyperthermophilic maltose-binding protein. Prep Biochem Biotechnol 2014; 44:132-45. [PMID: 24152100 DOI: 10.1080/10826068.2013.797436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Circularly permuted green fluorescent protein (cGFP) was inserted into the hyperthermophilic maltose binding protein at two different locations. cGFP was inserted between amino acid residues 206 and 207, or fused to the N-terminal of maltose binding protein from Thermotoga maritima. The cloned DNA constructs were expressed in Escherichia coli cells, and purified by metal chelate affinity chromatography. Conformational change upon ligand binding was monitored by the increase in fluorescence intensity. Both of the fusion proteins developed significant fluorescence change at 0.5 mM maltose concentration, whereas their maltose binding affinities and optimum incubation times were different. Fluorescent biosensors based on mesophilic maltose binding proteins have been described in the literature, but there is a growing interest in biosensors based on thermostable proteins. Therefore, the developed protein constructs could be models for thermophilic protein-based fluorescent biosensors.
Collapse
Affiliation(s)
- Canan Ozyurt
- a Department of Biochemistry, Faculty of Science , Ege University , Izmir , Turkey
| | | | | |
Collapse
|
17
|
Choi SL, Rha E, Lee SJ, Kim H, Kwon K, Jeong YS, Rhee YH, Song JJ, Kim HS, Lee SG. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits. ACS Synth Biol 2014; 3:163-71. [PMID: 24295047 DOI: 10.1021/sb400112u] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.
Collapse
Affiliation(s)
- Su-Lim Choi
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
- Department
of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Eugene Rha
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Sang Jun Lee
- Infection
and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Haseong Kim
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Kilkoang Kwon
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Young-Su Jeong
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Young Ha Rhee
- Department
of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jae Jun Song
- Applied
Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 lpsin-gil, Jeongeup-si, South Korea
| | - Hak-Sung Kim
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Seung-Goo Lee
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
- Biosystems
and Bioengineering Program, University of Science and Technology, 217 Gajung-ro, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
18
|
Generating in vivo cloning vectors for parallel cloning of large gene clusters by homologous recombination. PLoS One 2013; 8:e79979. [PMID: 24244585 PMCID: PMC3823602 DOI: 10.1371/journal.pone.0079979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/07/2013] [Indexed: 11/30/2022] Open
Abstract
A robust method for the in vivo cloning of large gene clusters was developed based on homologous recombination (HR), requiring only the transformation of PCR products into Escherichia coli cells harboring a receiver plasmid. Positive clones were selected by an acquired antibiotic resistance, which was activated by the recruitment of a short ribosome-binding site plus start codon sequence from the PCR products to the upstream position of a silent antibiotic resistance gene in receiver plasmids. This selection was highly stringent and thus the cloning efficiency of the GFPuv gene (size: 0.7 kb) was comparable to that of the conventional restriction-ligation method, reaching up to 4.3 × 104 positive clones per μg of DNA. When we attempted parallel cloning of GFPuv fusion genes (size: 2.0 kb) and carotenoid biosynthesis pathway clusters (sizes: 4 kb, 6 kb, and 10 kb), the cloning efficiency was similarly high regardless of the DNA size, demonstrating that this would be useful for the cloning of large DNA sequences carrying multiple open reading frames. However, restriction analyses of the obtained plasmids showed that the selected cells may contain significant amounts of receiver plasmids without the inserts. To minimize the amount of empty plasmid in the positive selections, the sacB gene encoding a levansucrase was introduced as a counter selection marker in receiver plasmid as it converts sucrose to a toxic levan in the E. coli cells. Consequently, this method yielded completely homogeneous plasmids containing the inserts via the direct transformation of PCR products into E. coli cells.
Collapse
|
19
|
Zhang C, Wei ZH, Ye BC. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors. Biotechnol J 2013; 8:1280-91. [DOI: 10.1002/biot.201300001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 12/11/2022]
|
20
|
Abstract
Bioprocess monitoring is used to track the progress of a cell culture and ensure that the product quality is maintained. Current schemes for monitoring metabolism rely on offline measurements of samples of the extracellular medium. However, in the era of synthetic biology, it is now possible to design and implement biosensors that consist of biological macromolecules and are able to report on the intracellular environment of cells. The use of fluorescent reporter signals allows non-invasive, non-destructive and online monitoring of the culture, which reduces the delay between measurement and any necessary intervention. The present mini-review focuses on protein-based biosensors that utilize FRET as the signal transduction mechanism. The mechanism of FRET, which utilizes the ratio of emission intensity at two wavelengths, has an inherent advantage of being ratiometric, meaning that small differences in the experimental set-up or biosensor expression level can be normalized away. This allows for more reliable quantitative estimation of the concentration of the target molecule. Existing FRET biosensors that are of potential interest to bioprocess monitoring include those developed for primary metabolites, redox potential, pH and product formation. For target molecules where a biosensor has not yet been developed, some candidate binding domains can be identified from the existing biological databases. However, the remaining challenge is to make the process of developing a FRET biosensor faster and more efficient.
Collapse
|
21
|
Zhang C, Wei ZH, Ye BC. Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor. Appl Microbiol Biotechnol 2013; 97:8307-16. [PMID: 23893310 DOI: 10.1007/s00253-013-5121-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/07/2013] [Accepted: 07/10/2013] [Indexed: 11/25/2022]
Abstract
2-Oxoglutarate (2OG) is a metabolite from the highly conserved Krebs cycle and not only plays a critical role in metabolism but also acts as a signaling molecule in a variety of organisms. Environmental inorganic nitrogen is reduced to ammonium by microorganisms, whose metabolic pathways involve the conversion of 2OG to glutamate and glutamine. Tracking of 2OG in real time would be useful for studies on cell metabolism and signal transduction. Here, we developed a genetically encoded 2OG biosensor based on fluorescent resonance energy transfer by inserting the functional 2OG-binding domain GAF of the NifA protein between the fluorescence resonance energy transfer (FRET) pair YFP/CFP. The dynamic range of the sensors is 100 μM to 10 mM, which appeared identical to the physiological range observed in E. coli. We optimized the peptide lengths of the binding domain to obtain a sensor with a maximal ratio change of 0.95 upon 2OG binding and demonstrated the feasibility of this sensor for the visualization of metabolites both in vitro and in vivo.
Collapse
Affiliation(s)
- Chang Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | |
Collapse
|
22
|
Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. SENSORS 2013; 13:5777-95. [PMID: 23648649 PMCID: PMC3690029 DOI: 10.3390/s130505777] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 01/10/2023]
Abstract
Whole-cell biosensors are a good alternative to enzyme-based biosensors since they offer the benefits of low cost and improved stability. In recent years, live cells have been employed as biosensors for a wide range of targets. In this review, we will focus on the use of microorganisms that are genetically modified with the desirable outputs in order to improve the biosensor performance. Different methodologies based on genetic/protein engineering and synthetic biology to construct microorganisms with the required signal outputs, sensitivity, and selectivity will be discussed.
Collapse
Affiliation(s)
- Miso Park
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; E-Mail:
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-302-831-6327; Fax: +1-302-831-1048
| |
Collapse
|
23
|
Edwards KA, Baeumner AJ. Periplasmic Binding Protein-Based Detection of Maltose Using Liposomes: A New Class of Biorecognition Elements in Competitive Assays. Anal Chem 2013; 85:2770-8. [DOI: 10.1021/ac303258n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Katie A. Edwards
- Cornell University, Department
of Biological and Environmental Engineering, 140 Riley-Robb Hall,
Ithaca, New York 14853, United States
| | - Antje J. Baeumner
- Cornell University, Department
of Biological and Environmental Engineering, 140 Riley-Robb Hall,
Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection. SENSORS 2012; 12:16660-72. [PMID: 23211753 PMCID: PMC3571803 DOI: 10.3390/s121216660] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/23/2012] [Accepted: 11/30/2012] [Indexed: 11/17/2022]
Abstract
This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection.
Collapse
|
25
|
Bourdès A, Rudder S, East AK, Poole PS. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols. PLoS One 2012; 7:e43578. [PMID: 23028462 PMCID: PMC3454389 DOI: 10.1371/journal.pone.0043578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Förster resonance energy transfer (FRET) biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens). To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors. METHODOLOGY/PRINCIPAL FINDINGS Two new vectors were developed for cloning genes for solute-binding proteins (SBPs) between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2) and red fluorescent protein (mKate2) FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose), D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate). To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP) transport systems. CONCLUSIONS/SIGNIFICANCE FRET based on orange (mOrange2) and red fluorescent protein (mKate2) partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i) cyclic polyols, (ii) L-deoxy sugars, (iii) β-linked disaccharides and (iv) C4-dicarboxylates could be developed to study metabolism in vivo.
Collapse
Affiliation(s)
- Alexandre Bourdès
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Steven Rudder
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alison K. East
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Philip S. Poole
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Dacres H, Michie M, Anderson A, Trowell SC. Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor. Biosens Bioelectron 2012; 41:459-64. [PMID: 23083905 DOI: 10.1016/j.bios.2012.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 11/26/2022]
Abstract
A genetically encoded maltose biosensor was constructed, comprising maltose binding protein (MBP) flanked by a green fluorescent protein (GFP(2)) at the N-terminus and a Renilla luciferase variant (RLuc2) at the C-terminus. This Bioluminescence resonance energy transfer(2) (BRET(2)) system showed a 30% increase in the BRET ratio upon maltose binding, compared with a 10% increase with an equivalent fluorescence resonance energy transfer (FRET) biosensor. BRET(2) provides a better matched Förster distance to the known separation of the N and C termini of MBP than FRET. The sensor responded to maltose and maltotriose and the response was completely abolished by introduction of a single point mutation in the BRET(2) tagged MBP protein. The half maximal effective concentration (EC(50)) was 0.37 μM for maltose and the response was linear over almost three log units ranging from 10nM to 3.16 μM maltose for the BRET(2) system compared to an EC(50) of 2.3 μM and a linear response ranging from 0.3 μM to 21.1 μM for the equivalent FRET-based biosensor. The biosensor's estimate of maltose in beer matched that of a commercial enzyme-linked assay but was quicker and more precise, demonstrating its applicability to real-world samples. A similar BRET(2)-based transduction scheme approach would likely be applicable to other binding proteins that have a "venus-fly-trap" mechanism.
Collapse
Affiliation(s)
- Helen Dacres
- CSIRO Food Futures National Research Flagship & Ecosystem Sciences, Australia, Canberra ACT 2601, Australia.
| | | | | | | |
Collapse
|
27
|
Ha JS, Gam J, Choi SL, Oh KH, Ro HS, Song JJ, Shin CS, Lee SG. Quantitative analyses of individual sugars in mixture using FRET-based biosensors. Biotechnol Prog 2012; 28:1376-83. [PMID: 22753346 DOI: 10.1002/btpr.1592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/25/2012] [Indexed: 11/11/2022]
Abstract
Molecular biosensors were developed and applied to measure individual sugars in biological mixtures such as bacterial culture broths. As the sensing units, four sugar-binding proteins (SBPs for allose, arabinose, ribose, and glucose) were selected from the Escherichia coli genome and connected to a cyan fluorescent protein and yellow fluorescent protein via dipeptide linkers (CFP-L-SBP-YFP). The putative sensors were randomized in the linker region (L) and then investigated with regard to the intensity of fluorescence resonance energy transfer on the binding of the respective sugars. As a result, four representatives were selected from each library and examined for their specificity using 16 available sugars. The apparent dissociation constants of the allose, arabinose, ribose, and glucose sensors were estimated to be 0.35, 0.36, 0.17, and 0.18 μM. Finally, the sugar sensors were applied to monitor the consumption rate of individual sugars in an E. coli culture broth. The individual sugar profiles exhibited a good correlation with those obtained using an HPLC method, confirming that the biosensors offer a rapid and easy-to-use method for monitoring individual sugars in mixed compositions.
Collapse
Affiliation(s)
- Jae-Seok Ha
- Systems & Synthetic Biology Research Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors. BMC Biotechnol 2011; 11:105. [PMID: 22074568 PMCID: PMC3225322 DOI: 10.1186/1472-6750-11-105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/10/2011] [Indexed: 11/13/2022] Open
Abstract
Background Fluorescent protein (FP)-based biosensors based on the principle of intramolecular Förster resonance energy transfer (FRET) enable the visualization of a variety of biochemical events in living cells. The construction of these biosensors requires the genetic insertion of a judiciously chosen molecular recognition element between two distinct hues of FP. When the molecular recognition element interacts with the analyte of interest and undergoes a conformational change, the ratiometric emission of the construct is altered due to a change in the FRET efficiency. The sensitivity of such biosensors is proportional to the change in ratiometric emission, and so there is a pressing need for methods to maximize the ratiometric change of existing biosensor constructs in order to increase the breadth of their utility. Results To accelerate the development and optimization of improved FRET-based biosensors, we have developed a method for function-based high-throughput screening of biosensor variants in colonies of Escherichia coli. We have demonstrated this technology by undertaking the optimization of a biosensor for detection of methylation of lysine 27 of histone H3 (H3K27). This effort involved the construction and screening of 3 distinct libraries: a domain library that included several engineered binding domains isolated by phage-display; a lower-resolution linker library; and a higher-resolution linker library. Conclusion Application of this library screening methodology led to the identification of an optimized H3K27-trimethylation biosensor that exhibited an emission ratio change (66%) that was 2.3 × improved relative to that of the initially constructed biosensor (29%).
Collapse
|
29
|
Abstract
Optical sensors allow dynamic quantification of metabolite levels with subcellular resolution. Here we describe protocols for analyzing cytosolic glucose levels in yeast using genetically encoded Förster resonance energy transfer (FRET) sensors. FRET glucose sensors with different glucose affinities (K(d)) covering the low nano- to mid- millimolar range can be targeted genetically to the cytosol or to subcellular compartments. The sensors detect the glucose-induced conformational change in the bacterial periplasmic glucose/galactose binding protein MglB using FRET between two fluorescent protein variants. Measurements can be performed with a single sensor or multiple sensors in parallel. In one approach, cytosolic glucose accumulation is measured in yeast cultures in a 96-well plate using a fluorimeter. Upon excitation of the cyan fluorescent protein (CFP), emission intensities of CFP and YFP (yellow fluorescent protein) are captured before and after glucose addition. FRET sensors provide temporally resolved quantitative data of glucose for the compartment of interest. In a second approach, reversible changes of cytosolic free glucose are measured in individual yeast cells trapped in a microfluidic platform, allowing perfusion of different solutions while FRET changes are monitored in a microscope setup. By using the microplate fluorimeter protocol, 96 cultures can be measured in less than 1 h; analysis of single cells of a single genotype can be completed in <2 h. FRET-based analysis has been performed with glucose, maltose, ATP and zinc sensors, and it can easily be adapted for high-throughput screening using a wide spectrum of sensors.
Collapse
|
30
|
In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem J 2011; 438:1-10. [PMID: 21793803 DOI: 10.1042/bj20110428] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation.
Collapse
|
31
|
Dumbrepatil AB, Lee SG, Chung SJ, Lee MG, Park BC, Kim TJ, Woo EJ. Development of a nanoparticle-based FRET sensor for ultrasensitive detection of phytoestrogen compounds. Analyst 2010; 135:2879-86. [PMID: 20877819 DOI: 10.1039/c0an00385a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phytoestrogens are plant compounds that mimic the actions of endogenous estrogens. The abundance of these chemicals in nature and their potential effects on health require the development of a convenient method to detect phytoestrogens. We have developed a nanoparticle (NP)-conjugated FRET probe based on the human estrogen receptor α (ER) ligand-binding domain (LBD) to detect phytoestrogens. The NP-conjugated FRET probe showed fluorescence signals for genistein, resveratrol and daidzein compounds with Δ ratios of 1.65, 2.60 and 1.37 respectively, which are approximately six times greater compared to individual FRET probes. A significantly higher signal for resveratrol versus genistein and daidzein indicates that the probe can differentiate between antagonistic phytoalexin substances and agonistic isoflavone compounds. NP-conjugated probes demonstrated a wide dynamic range, ranging from 10(-18) to 10(-1) M with EC(50) values of 9.6 × 10(-10), 9.0 × 10(-10) and 9.2 × 10(-10) M for genistein, daidzein and resveratrol respectively, whereas individual probes detected concentrations of 10(-13) to 10(-4) M for phytoestrogens compounds. The time profile revealed that the NP-conjugated probe is stable over 30 h and there is not a significant deviation in the FRET signal at room temperature. These data demonstrate that conjugation of a FRET probe to nanoparticles is able to serve as an effective FRET sensor for monitoring bioactive compounds with significantly increased sensitivity, dynamic range and stability.
Collapse
Affiliation(s)
- Arti B Dumbrepatil
- Korea Research Institute of Biosciences and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Visualizing dynamic interaction between calmodulin and calmodulin-related kinases via a monitoring method in live mammalian cells. Proc Natl Acad Sci U S A 2010; 107:3412-7. [PMID: 20133723 DOI: 10.1073/pnas.0911262107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new visualizing method was developed for monitoring protein-protein (P-P) interactions in live mammalian cells. P-P interactions are visualized by directing localization of a bait protein to endosomes. This method is sufficiently robust to analyze signal-dependent P-P interactions such as calcium-dependent protein interactions. We visualized interactions between activated calmodulin and calmodulin-binding proteins, and observed oscillatory interactions via time-lapse imaging. In addition, this new method can simultaneously monitor multiple P-P interactions in a single live cell, which allows comparison of interactions between several prey proteins and a single bait protein. We observed that CaMKK1 and CaMKIIalpha bind calmodulin with distinct binding affinities in live cell, which indicates that calcium signaling is fine-tuned by distinct activation patterns of CaM kinases. This method will enable investigation of cellular processes based on dynamic P-P interactions.
Collapse
|
33
|
Ibraheem A, Campbell RE. Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol 2009; 14:30-6. [PMID: 19913453 DOI: 10.1016/j.cbpa.2009.09.033] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
Genetically encoded biosensors allow the noninvasive imaging of specific biochemical or biorecognition processes with the preservation of subcellular spatial and temporal information. Aequorea green fluorescent protein (FP) and its engineered variants are a critical component of genetically encoded biosensors, as they serve to provide a 'read-out' of the biorecognition event under investigation. The family of FP-based biosensors includes a diverse array of designs that utilize various photophysical characteristics of the FPs. In this review, we will discuss these designs and their read-outs through reviewing some of the recent works in this area.
Collapse
Affiliation(s)
- Andreas Ibraheem
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada T6G2G2
| | | |
Collapse
|
34
|
Tolerance of the Ralstonia eutropha class I polyhydroxyalkanoate synthase for translational fusions to its C terminus reveals a new mode of functional display. Appl Environ Microbiol 2009; 75:5461-6. [PMID: 19581473 DOI: 10.1128/aem.01072-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, the class I polyhydroxyalkanoate synthase (PhaC) from Ralstonia eutropha was investigated regarding the functionality of its conserved C-terminal region and its ability to tolerate translational fusions to its C terminus. MalE, the maltose binding protein, and green fluorescent protein (GFP) were considered reporter proteins to be translationally fused to the C terminus. Interestingly, PhaC remained active only when a linker was inserted between PhaC and MalE, whereas MalE was not functional. However, the extension of the PhaC N terminus by 458 amino acid residues was required to achieve a functionality of MalE. These data suggested a positive interaction of the extended N terminus with the C terminus. To assess whether a linker and/or N-terminal extension is generally required for a functional C-terminal fusion, GFP was fused to the C terminus of PhaC. Both fusion partners were active without the requirement of a linker and/or N-terminal extension. A further reporter protein, the immunoglobulin G binding ZZ domain of protein A, was translationally fused to the N terminus of the fusion protein PhaC-GFP and resulted in a tripartite fusion protein mediating the production of polyester granules displaying two functional protein domains.
Collapse
|
35
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008. [PMID: 19138219 DOI: 10.1111/nph.2008.180.issue-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|
37
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|