1
|
Krausfeldt LE, Samuel PS, Smith RP, Urakawa H, Rosen BH, Colwell RR, Lopez JV. Transcriptional profiles of Microcystis reveal gene expression shifts that promote bloom persistence in in situ mesocosms. Microbiol Spectr 2025; 13:e0136924. [PMID: 39555930 PMCID: PMC11705957 DOI: 10.1128/spectrum.01369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024] Open
Abstract
Harmful algal blooms caused by cyanobacteria threaten aquatic ecosystems, the economy, and human health. Previous work has tried to identify the mechanisms that allow blooms to form, focusing on the role of nutrients. However, little is known about how introduced nutrients influence gene expression in situ. To address this knowledge gap, we used in situ mesocosms initiated with water experiencing a Microcystis bloom. We added pulses of nutrients that are commonly associated with anthropogenic sources to the mesocosms for 72 hours and collected samples for metatranscriptomics to examine how the physiological function of Microcystis and bloom status changed. The addition of nitrogen (N) as urea, but not the addition of PO4, resulted in conspicuous bloom persistence for at least 9 days after the final introduction of nutrients. The addition of urea initially resulted in the upregulation of photosynthesis machinery, as well as phosphate, carbon, and N transport and metabolism. Once Microcystis presumably became N-replete, upregulation of amino acid metabolism, microcystin biosynthesis, and other processes associated with biomass generation occurred. These capacities coincided with the upregulation of toxin-antitoxin systems, CRISPR-cas genes, and transposases suggesting that phage defense and genome rearrangement are critical in bloom persistence. Overall, our results show the stepwise transcriptional response of a Microcystis bloom to the introduction of nutrients, specifically urea, as it is sustained in a natural setting. The transcriptomic shifts observed herein may serve as markers of the longevity of blooms while providing insight into why Microcystis blooms over other cyanobacteria.IMPORTANCEHarmful algal blooms represent a threat to human health and ecosystems. Understanding why blooms persist may help us develop warning indicators of bloom persistence and create novel mitigation strategies. Using mesocosm experiments initiated with water with an active bloom, we measured the stepwise transcription changes of the toxin-producing cyanobacterium Microcystis in response to the addition of nutrients that are important in causing blooms. We found that nitrogen (N), but not phosphorus, promoted bloom longevity. The initial introduction of N resulted in the upregulation of genes involved in photosynthesis and N import. At later times in the bloom, upregulation of genes involved in biomass generation, phage protection, genomic rearrangement, and toxin production was observed. Our results suggest that Microcystis first fulfills nutritional requirements before investing energy in pathways associated with growth and protection against competitors, which allowed bloom persistence more than a week after the final addition of nutrients.
Collapse
Affiliation(s)
- Lauren E. Krausfeldt
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Paisley S. Samuel
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Robert P. Smith
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Barry H. Rosen
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Rita R. Colwell
- Institute for Advanced Computer Studies, University of Maryland College Park, College Park, Maryland, USA
| | - Jose V. Lopez
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| |
Collapse
|
2
|
Martin RM, Denison ER, Pound HL, Barnes EA, Chaffin JD, Wilhelm SW. Mitomycin C eliminates cyanobacterial transcription without detectable lysogen induction in a Microcystis -dominated bloom in Lake Erie. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622312. [PMID: 39574682 PMCID: PMC11580894 DOI: 10.1101/2024.11.06.622312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Although evidence indicates that viruses are important in the ecology of Microcystis spp., many questions remain. For example, how does Microcystis exist at high, bloom-associated cell concentrations in the presence of viruses that infect it? The phenomenon of lysogeny and associated homoimmunity offer possible explanations to this question. Virtually nothing is known about lysogeny in Microcystis , but a metatranscriptomic study suggests that widespread, transient lysogeny is active during blooms. These observations lead us to posit that lysogeny is important in modulating Microcystis blooms. Using a classic mitomycin C-based induction study, we tested for lysogeny in a Microcystis -dominated community in Lake Erie in 2019. Treated communities were incubated with 1 mg L -1 mitomycin C for 48 h alongside unamended controls. We compared direct counts of virus-like-particles (VLPs) and examined community transcription for active infection by cyanophage. Mitomycin C treatment did not increase VLP count. Mitomycin C effectively eliminated transcription in the cyanobacterial community, while we detected no evidence of induction. Metatranscriptomic analysis demonstrated that the standard protocol of 1 mg L -1 was highly-toxic to the cyanobacterial population, which likely inhibited induction of any prophage present. Follow-up lab studies indicated that 0.1 mg L -1 may be more appropriate for use in freshwater cyanobacterial studies. These findings will guide future efforts to detect lysogeny in Microcystis blooms. Importance Harmful algal blooms dominated by Microcystis spp. occur throughout the world's freshwater ecosystems leading to detrimental effects on ecosystem services that are well documented. After decades of research, the scientific community continues to struggle to understand the ecology of Microcystis blooms. The phenomenon of lysogeny offers an attractive, potential explanation to several ecological questions surrounding blooms. However, almost nothing is known about lysogeny in Microcystis . We attempted to investigate lysogeny in a Microcystis bloom in Lake Erie and found that the standard protocols used to study lysogeny in aquatic communities are inappropriate for use in Microcystis studies, and perhaps freshwater cyanobacterial studies more broadly. This work can be used to design better methods to study the viral ecology of Microcystis blooms.
Collapse
Affiliation(s)
- Robbie M. Martin
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Elizabeth R. Denison
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Helena L. Pound
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Ellen A. Barnes
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Justin D. Chaffin
- F.T. Stone Laboratory, Ohio Sea Grant, and The Ohio State University, Put-In-Bay, OH, USA
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| |
Collapse
|
3
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Wang XQ, Du K, Chen C, Hou P, Li WF, Chen Y, Li Q, Zhou CZ. Profiling the interplay and coevolution of Microcystis aeruginosa and cyanosiphophage Mic1. Microbiol Spectr 2024; 12:e0029824. [PMID: 38695606 PMCID: PMC11237433 DOI: 10.1128/spectrum.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 06/06/2024] Open
Abstract
The cyanosiphophage Mic1 specifically infects the bloom-forming Microcystis aeruginosa FACHB 1339 from Lake Chaohu, China. Previous genomic analysis showed that its 92,627 bp double-stranded DNA genome consists of 98 putative open reading frames, 63% of which are of unknown function. Here, we investigated the transcriptome dynamics of Mic1 and its host using RNA sequencing. In the early, middle, and late phases of the 10 h lytic cycle, the Mic1 genes are sequentially expressed and could be further temporally grouped into two distinct clusters in each phase. Notably, six early genes, including gp49 that encodes a TnpB-like transposase, immediately reach the highest transcriptional level in half an hour, representing a pioneer cluster that rapidly regulates and redirects host metabolism toward the phage. An in-depth analysis of the host transcriptomic profile in response to Mic1 infection revealed significant upregulation of a polyketide synthase pathway and a type III-B CRISPR system, accompanied by moderate downregulation of the photosynthesis and key metabolism pathways. The constant increase of phage transcripts and relatively low replacement rate over the host transcripts indicated that Mic1 utilizes a unique strategy to gradually take over a small portion of host metabolism pathways after infection. In addition, genomic analysis of a less-infective Mic1 and a Mic1-resistant host strain further confirmed their dynamic interplay and coevolution via the frequent horizontal gene transfer. These findings provide insights into the mutual benefit and symbiosis of the highly polymorphic cyanobacteria M. aeruginosa and cyanophages. IMPORTANCE The highly polymorphic Microcystis aeruginosa is one of the predominant bloom-forming cyanobacteria in eutrophic freshwater bodies and is infected by diverse and abundant cyanophages. The presence of a large number of defense systems in M. aeruginosa genome suggests a dynamic interplay and coevolution with the cyanophages. In this study, we investigated the temporal gene expression pattern of Mic1 after infection and the corresponding transcriptional responses of its host. Moreover, the identification of a less-infective Mic1 and a Mic1-resistant host strain provided the evolved genes in the phage-host coevolution during the multiple-generation cultivation in the laboratory. Our findings enrich the knowledge on the interplay and coevolution of M. aeruginosa and its cyanophages and lay the foundation for the future application of cyanophage as a potential eco-friendly and bio-safe agent in controlling the succession of harmful cyanobacterial blooms.
Collapse
Affiliation(s)
- Xiao-Qian Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Kang Du
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Chaoyi Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Pu Hou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Qiong Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
McKindles KM, Manes M, Neudeck M, McKay RM, Bullerjahn GS. Multi-year molecular quantification and 'omics analysis of Planktothrix-specific cyanophage sequences from Sandusky Bay, Lake Erie. Front Microbiol 2023; 14:1199641. [PMID: 37455749 PMCID: PMC10343443 DOI: 10.3389/fmicb.2023.1199641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Planktothrix agardhii is a microcystin-producing cyanobacterium found in Sandusky Bay, a shallow and turbid embayment of Lake Erie. Previous work in other systems has indicated that cyanophages are an important natural control factor of harmful algal blooms. Currently, there are few cyanophages that are known to infect P. agardhii, with the best-known being PaV-LD, a tail-less cyanophage isolated from Lake Donghu, China. Presented here is a molecular characterization of Planktothrix specific cyanophages in Sandusky Bay. Methods and Results Putative Planktothrix-specific viral sequences from metagenomic data from the bay in 2013, 2018, and 2019 were identified by two approaches: homology to known phage PaV-LD, or through matching CRISPR spacer sequences with Planktothrix host genomes. Several contigs were identified as having viral signatures, either related to PaV-LD or potentially novel sequences. Transcriptomic data from 2015, 2018, and 2019 were also employed for the further identification of cyanophages, as well as gene expression of select viral sequences. Finally, viral quantification was tested using qPCR in 2015-2019 for PaV-LD like cyanophages to identify the relationship between presence and gene expression of these cyanophages. Notably, while PaV-LD like cyanophages were in high abundance over the course of multiple years (qPCR), transcriptomic analysis revealed only low levels of viral gene expression. Discussion This work aims to provide a broader understanding of Planktothrix cyanophage diversity with the goals of teasing apart the role of cyanophages in the control and regulation of harmful algal blooms and designing monitoring methodology for potential toxin-releasing lysis events.
Collapse
Affiliation(s)
- Katelyn M. McKindles
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - Makayla Manes
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Michelle Neudeck
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - George S. Bullerjahn
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| |
Collapse
|
6
|
Ecological Dynamics of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 2023; 89:e0211122. [PMID: 36688685 PMCID: PMC9972985 DOI: 10.1128/aem.02111-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Microcystis aeruginosa is predicted to interact and coexist with diverse broad- and narrow-host-range viruses within a bloom; however, little is known about their affects on Microcystis population dynamics. Here, we developed a real-time PCR assay for the quantification of these viruses that have different host ranges. During the sampling period, total Microcystis abundance showed two peaks in May and August with a temporary decrease in June. The Microcystis population is largely divided into three phylotypes based on internal transcribed sequences (ITS; ITS types I to III). ITS I was the dominant phylotype (66% to 88%) except in June. Although the ITS II and III phylotypes were mostly less abundant, these phylotypes temporarily increased to approximately equivalent abundances of the ITS I population in June. During the same sampling period, the abundances of the broad-host-range virus MVGF_NODE331 increased from April to May and from July to October with a temporary decrease in June, in which its dynamics were in proportion to the increase of total Microcystis abundances regardless of changes in host ITS population composition. In contrast, the narrow-host-range viruses MVG_NODE620 and Ma-LMM01 were considerably less abundant than the broad-host-range virus and generally did not fluctuate in the environment. Considering that M. aeruginosa could increase the abundance and sustain the bloom under the prevalence of the broad-host-range virus, host abundant and diverse antiviral mechanisms might contribute to coexistence with its viruses. IMPORTANCE The bloom-forming toxic cyanobacterium Microcystis aeruginosa interacts with diverse broad- and narrow-host-range viruses. However, the dynamics of the Microcystis population (at the intraspecies level) and viruses with different host ranges remain unknown. Our real-time PCR assays unveiled that the broad-host-range virus gradually increased in abundance over the sampling period, in proportion to the increase in total Microcystis abundance regardless of changes in genotypic composition. The narrow-host-range viruses were considerably less abundant than the broad-host-range virus and did not generally fluctuate in the environment. The expansion and maintenance of the Microcystis bloom even under the increased infection by the broad-host-range virus suggested that highly abundant and diverse antiviral mechanisms allowed them to coexist with viruses under selective pressure. This paper expands our knowledge about the ecological dynamics of Microcystis viruses and provides potential insights into their coexistence with their host.
Collapse
|
7
|
Zhu J, Yang F, Du K, Wei ZL, Wu QF, Chen Y, Li WF, Li Q, Zhou CZ. Phylogenomics of five Pseudanabaena cyanophages and evolutionary traces of horizontal gene transfer. ENVIRONMENTAL MICROBIOME 2023; 18:3. [PMID: 36639816 PMCID: PMC9837993 DOI: 10.1186/s40793-023-00461-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Along with the fast development and urbanization in developing countries, the waterbodies aside the growing cities become heavily polluted and highly eutrophic, thus leading to the seasonal outbreak of cyanobacterial bloom. Systematic isolation and characterization of freshwater cyanophages might provide a biological solution to control the awful blooms. However, genomic sequences and related investigations on the freshwater cyanophages remain very limited to date. RESULTS Following our recently reported five cyanophages Pam1~Pam5 from Lake Chaohu in China, here we isolated another five cyanophages, termed Pan1~Pan5, which infect the cyanobacterium Pseudanabaena sp. Chao 1811. Whole-genome sequencing showed that they all contain a double-stranded DNA genome of 37.2 to 72.0 kb in length, with less than half of the putative open reading frames annotated with known functions. Remarkably, the siphophage Pan1 encodes an auxiliary metabolic gene phoH and constitutes, together with the host, a complete queuosine modification pathway. Proteomic analyses revealed that although Pan1~Pan5 are distinct from each other in evolution, Pan1 and Pan3 are somewhat similar to our previously identified cyanophages Pam3 and Pam1 at the genomic level, respectively. Moreover, phylogenetic analyses suggested that Pan1 resembles the α-proteobacterial phage vB_DshS-R5C, revealing direct evidence for phage-mediated horizontal gene transfer between cyanobacteria and α-proteobacteria. CONCLUSION In addition to the previous reports of Pam1~Pam5, the present findings on Pan1~Pan5 largely enrich the library of reference freshwater cyanophages. The abundant genomic information provides a pool to identify novel genes and proteins of unknown function. Moreover, we found for the first time the evolutionary traces in the cyanophage that horizontal gene transfer might occur at the level of not only inter-species, but even inter-phylum. It indicates that the bacteriophage or cyanophage could be developed as a powerful tool for gene manipulation among various species or phyla.
Collapse
Affiliation(s)
- Jie Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Feng Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kang Du
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zi-Lu Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Qing-Fa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Wei-Fang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
8
|
McKindles KM, McKay RM, Bullerjahn GS. Genomic comparison of Planktothrix agardhii isolates from a Lake Erie embayment. PLoS One 2022; 17:e0273454. [PMID: 35998200 PMCID: PMC9398003 DOI: 10.1371/journal.pone.0273454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Planktothrix agardhii is a filamentous cyanobacterial species that dominates harmful algal blooms in Sandusky Bay, Lake Erie and other freshwater basins across the world. P. agardhii isolates were obtained from early (June) blooms via single filament isolation; eight have been characterized from 2016, and 12 additional isolates have been characterized from 2018 for a total of 20 new cultures. These novel isolates were processed for genomic sequencing, where reads were used to generate scaffolds and contigs which were annotated with DIAMOND BLAST hit, Pfam, and GO. Analyses include whole genome alignment to generate phylogenetic trees and comparison of genetic rearrangements between isolates. Nitrogen acquisition and metabolism was compared across isolates. Secondary metabolite production was genetically explored including microcystins, two types of aeruginosin clusters, anabaenopeptins, cyanopeptolins, microviridins, and prenylagaramides. Two common and 4 unique CRISPR-cas islands were analyzed for similar sequences across all isolates and against the known Planktothrix-specific cyanophage, PaV-LD. Overall, the uniqueness of each genome from Planktothrix blooms sampled from the same site and at similar times belies the unexplored diversity of this genus.
Collapse
Affiliation(s)
- Katelyn M. McKindles
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - R. Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States of America
| | - George S. Bullerjahn
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States of America
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States of America
| |
Collapse
|
9
|
Du K, Yang F, Zhang JT, Yu RC, Deng Z, Li WF, Chen Y, Li Q, Zhou CZ. Comparative genomic analysis of five freshwater cyanophages and reference-guided metagenomic data mining. MICROBIOME 2022; 10:128. [PMID: 35974417 PMCID: PMC9382816 DOI: 10.1186/s40168-022-01324-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As important producers using photosynthesis on Earth, cyanobacteria contribute to the oxygenation of atmosphere and the primary production of biosphere. However, due to the eutrophication of urban waterbodies and global warming, uncontrollable growth of cyanobacteria usually leads to the seasonal outbreak of cyanobacterial blooms. Cyanophages, a group of viruses that specifically infect and lyse cyanobacteria, are considered as potential environment-friendly agents to control the harmful blooms. Compared to the marine counterparts, only a few freshwater cyanophages have been isolated and genome sequenced to date, largely limiting their characterizations and applications. RESULTS Here, we isolated five freshwater cyanophages varying in tail morphology, termed Pam1~Pam5, all of which infect the cyanobacterium Pseudanabaena mucicola Chao 1806 that was isolated from the bloom-suffering Lake Chaohu in Anhui, China. The whole-genome sequencing showed that cyanophages Pam1~Pam5 all contain a dsDNA genome, varying in size from 36 to 142 Kb. Phylogenetic analyses suggested that Pam1~Pam5 possess different DNA packaging mechanisms and are evolutionarily distinct from each other. Notably, Pam1 and Pam5 have lysogeny-associated gene clusters, whereas Pam2 possesses 9 punctuated DNA segments identical to the CRISPR spacers in the host genome. Metagenomic data-based calculation of the relative abundance of Pam1~Pam5 at the Nanfei estuary towards the Lake Chaohu revealed that the short-tailed Pam1 and Pam5 account for the majority of the five cyanophages. Moreover, comparative analyses of the reference genomes of Pam1~Pam5 and previously reported cyanophages enabled us to identify three circular and seven linear contigs of virtual freshwater cyanophages from the metagenomic data of the Lake Chaohu. CONCLUSIONS We propose a high-throughput strategy to systematically identify cyanophages based on the currently available metagenomic data and the very limited reference genomes of experimentally isolated cyanophages. This strategy could be applied to mine the complete or partial genomes of unculturable bacteriophages and viruses. Transformation of the synthesized whole genomes of these virtual phages/viruses to proper hosts will enable the rescue of bona fide viral particles and eventually enrich the library of microorganisms that exist on Earth. Video abstract.
Collapse
Affiliation(s)
- Kang Du
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Feng Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Jun-Tao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Rong-Cheng Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Beijing, BGI-Shenzhen, Beijing, 100101, China
| | - Wei-Fang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
10
|
A Review of Cyanophage–Host Relationships: Highlighting Cyanophages as a Potential Cyanobacteria Control Strategy. Toxins (Basel) 2022; 14:toxins14060385. [PMID: 35737046 PMCID: PMC9229316 DOI: 10.3390/toxins14060385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms (HABs) are naturally occurring phenomena, and cyanobacteria are the most commonly occurring HABs in freshwater systems. Cyanobacteria HABs (cyanoHABs) negatively affect ecosystems and drinking water resources through the production of potent toxins. Furthermore, the frequency, duration, and distribution of cyanoHABs are increasing, and conditions that favor cyanobacteria growth are predicted to increase in the coming years. Current methods for mitigating cyanoHABs are generally short-lived and resource-intensive, and have negative impacts on non-target species. Cyanophages (viruses that specifically target cyanobacteria) have the potential to provide a highly specific control strategy with minimal impacts on non-target species and propagation in the environment. A detailed review (primarily up to 2020) of cyanophage lifecycle, diversity, and factors influencing infectivity is provided in this paper, along with a discussion of cyanophage and host cyanobacteria relationships for seven prominent cyanoHAB-forming genera in North America, including: Synechococcus, Microcystis, Dolichospermum, Aphanizomenon, Cylindrospermopsis, Planktothrix, and Lyngbya. Lastly, factors affecting the potential application of cyanophages as a cyanoHAB control strategy are discussed, including efficacy considerations, optimization, and scalability for large-scale applications.
Collapse
|
11
|
Pound HL, Gann ER, Wilhelm SW. A comparative study of metatranscriptomic assessment methods to characterize Microcystis blooms. LIMNOLOGY AND OCEANOGRAPHY, METHODS 2021; 19:846-854. [PMID: 35528780 PMCID: PMC9075346 DOI: 10.1002/lom3.10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms are increasing in duration and severity globally, resulting in increased research interest. The use of genetic sequencing technologies has provided a wealth of opportunity to advance knowledge, but also poses a risk to that knowledge if handled incorrectly. The vast numbers of sequence processing tools and protocols provide a method to test nearly every hypothesis, but each method has inherent strengths and weaknesses. Here, we tested six methods to classify and quantify metatranscriptomic activity from a harmful algal bloom dominated by Microcystis spp. Three online tools were evaluated (Kaiju, MG-RAST, and GhostKOALA) in addition to three local tools that included a command line BLASTx approach, recruitment of reads to individual Microcystis genomes, and recruitment to a combined Microcystis composite genome generated from sequenced isolates with complete, closed genomes. Based on the analysis of each tool presented in this study, two recommendations are made that are dependent on the hypothesis to be tested. For researchers only interested in the function and physiology of Microcystis spp., read recruitments to the composite genome, referred to as "Frankenstein's Microcystis", provided the highest total estimates of transcript expression. However, for researchers interested in the entire bloom microbiome, the online GhostKOALA annotation tool, followed by subsequent read recruitments, provided functional and taxonomic characterization, in addition to transcript expression estimates. This study highlights the critical need for careful evaluation of methods before data analysis.
Collapse
Affiliation(s)
- Helena L. Pound
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric R. Gann
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Steven W. Wilhelm
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
12
|
Pound HL, Wilhelm SW. Tracing the active genetic diversity of Microcystis and Microcystis phage through a temporal survey of Taihu. PLoS One 2020; 15:e0244482. [PMID: 33370358 PMCID: PMC7769430 DOI: 10.1371/journal.pone.0244482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
Harmful algal blooms are commonly thought to be dominated by a single genus, but they are not homogenous communities. Current approaches, both molecular and culture-based, often overlook fine-scale variations in community composition that can influence bloom dynamics. We combined homology-based searches (BLASTX) and phylogenetics to distinguish and quantify Microcystis host and phage members across a summer season during a 2014 Microcystis- dominated bloom that occurred in Lake Tai (Taihu), China. We found 47 different genotypes of the Microcystis-specific DNA-dependent RNA polymerase (rpoB), which included several morphospecies. Microcystis flos-aquae and Microcystis wesenbergii accounted for ~86% of total Microcystis transcripts, while the more commonly studied Microcystis aeruginosa only accounted for ~7%. Microcystis genotypes were classified into three temporal groups according to their expression patterns across the course of the bloom: early, constant and late. All Microcystis morphospecies were present in each group, indicating that expression patterns were likely dictated by competition driven by environmental factors, not phylogeny. We identified three primary Microcystis-infecting phages based on the viral terminase, including a novel Siphoviridae phage that may be capable of lysogeny. Within our dataset, Myoviridae phages consistent with those infecting Microcystis in a lytic manner were positively correlated to the early host genotypes, while the Siphoviridae phages were positively correlated to the late host genotypes, when the Myoviridae phages express putative genetic markers for lysogeny. The expression of genes in the microcystin-encoding mcy cassette was estimated using mcyA, which revealed 24 Microcystis-specific genotypes that were negatively correlated to the early host genotypes. Of all environmental factors measured, pH best described the temporal shift in the Microcystis community genotypic composition, promoting hypotheses regarding carbon concentration mechanisms and oxidative stress. Our work expounds on the complexity of HAB events, using a well-studied dataset to highlight the need for increased resolution of community dynamics.
Collapse
Affiliation(s)
- Helena L. Pound
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
13
|
McKindles KM, Manes MA, DeMarco JR, McClure A, McKay RM, Davis TW, Bullerjahn GS. Dissolved Microcystin Release Coincident with Lysis of a Bloom Dominated by Microcystis spp. in Western Lake Erie Attributed to a Novel Cyanophage. Appl Environ Microbiol 2020; 86:e01397-20. [PMID: 32859600 PMCID: PMC7642080 DOI: 10.1128/aem.01397-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
Western Lake Erie (Laurentian Great Lakes) is prone to annual cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis spp. that often yield microcystin toxin concentrations exceeding the federal EPA recreational contact advisory of 8 μg liter-1 In August 2014, microcystin levels were detected in finished drinking water above the World Health Organization 1.0 μg liter-1 threshold for consumption, leading to a 2-day disruption in the supply of drinking water for >400,000 residents of Toledo, Ohio (USA). Subsequent metatranscriptomic analysis of the 2014 bloom event provided evidence that release of toxin into the water supply was likely caused by cyanophage lysis that transformed a portion of the intracellular microcystin pool into the dissolved fraction, rendering it more difficult to eliminate during treatment. In August 2019, a similar increase in dissolved microcystins at the Toledo water intake was coincident with a viral lytic event caused by a phage consortium different in composition from what was detected following the 2014 Toledo water crisis. The most abundant viral sequence in metagenomic data sets was a scaffold from a putative member of the Siphoviridae, distinct from the Ma-LMM01-like Myoviridae that are typically documented to occur in western Lake Erie. This study provides further evidence that viral activity in western Lake Erie plays a significant role in transformation of microcystins from the particulate to the dissolved fraction and therefore requires monitoring efforts from local water treatment plants. Additionally, identification of multiple lytic cyanophages will enable the development of a quantitative PCR toolbox to assess viral activity during cHABs.IMPORTANCE Viral attack on cHABs may contribute to changes in community composition during blooms, as well as bloom decline, yet loss of bloom biomass does not eliminate the threat of cHAB toxicity. Rather, it may increase risks to the public by delivering a pool of dissolved toxin directly into water treatment utilities when the dominating Microcystis spp. are capable of producing microcystins. Detecting, characterizing, and quantifying the major cyanophages involved in lytic events will assist water treatment plant operators in making rapid decisions regarding the pool of microcystins entering the plant and the corresponding best practices to neutralize the toxin.
Collapse
Affiliation(s)
- Katelyn M McKindles
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Makayla A Manes
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jonathan R DeMarco
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Andrew McClure
- Division of Water Treatment for the City of Toledo, Toledo, Ohio, USA
| | - R Michael McKay
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Center for Great Lakes and Watershed Studies, Bowling Green State University, Bowling Green, Ohio, USA
| | - George S Bullerjahn
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Center for Great Lakes and Watershed Studies, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
14
|
Morimoto D, Šulčius S, Yoshida T. Viruses of freshwater bloom-forming cyanobacteria: genomic features, infection strategies and coexistence with the host. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:486-502. [PMID: 32754956 DOI: 10.1111/1758-2229.12872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Freshwater bloom-forming cyanobacteria densely grow in the aquatic environments, leading to an increase in the viral-contact rate. They possess numerous antiviral genes, as well as cell differentiation- and physiological performance-related genes, owing to genome expansion. Their genomic features and unique lifestyles suggest that they coexist with cyanoviruses in ways different from marine cyanobacteria. Furthermore, genome contents of isolated freshwater bloom-forming cyanobacterial viruses have little in common with those of marine cyanoviruses studied to date. They lack the marine cyanoviral hallmark genes that sustain photosynthetic activity and redirect host metabolism to viral reproduction; therefore, they are predicted to share metabolisms and precursor pools with host cyanobacteria to ensure efficient viral reproduction and avoid nutrient deficiencies and antiviral response. Additionally, cyanovirus-cyanobacteria coexistence strategies may change as bloom density increases. Diverse genotypic populations of cyanoviruses and hosts coexist and fluctuate under high viral-contact rate conditions, leading to their rapid coevolution through antiviral responses. The ancestral and newly evolved genotypes coexist, thereby expanding the diversity levels of host and viral populations. Bottleneck events occurring due to season-related decreases in bloom-forming species abundance provide each genotype within cyanobacterial population an equal chance to increase in prevalence during the next bloom and enhance further diversification.
Collapse
Affiliation(s)
- Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
15
|
Predetermined clockwork microbial worlds: Current understanding of aquatic microbial diel response from model systems to complex environments. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:163-191. [PMID: 32948266 DOI: 10.1016/bs.aambs.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the photic zone of aquatic ecosystems, microorganisms with different metabolisms and their viruses form complex interactions and food webs. Within these interactions, phototrophic microorganisms such as eukaryotic microalgae and cyanobacteria interact directly with sunlight, and thereby generate circadian rhythms. Diel cycling originally generated in microbial phototrophs is directly transmitted toward heterotrophic microorganisms utilizing the photosynthetic products as they are excreted or exuded. Such diel cycling seems to be indirectly propagated toward heterotrophs as a result of complex biotic interactions. For example, cell death of phototrophic microorganisms induced by viral lysis and protistan grazing provides additional resources of dissolved organic matter to the microbial community, and so generates diel cycling in other heterotrophs with different nutrient dependencies. Likewise, differences in the diel transmitting pathway via complex interactions among heterotrophs, and between heterotrophs and their viruses, may also generate higher variation and time lag diel rhythms in different heterotrophic taxa. Thus, sunlight and photosynthesis not only contribute energy and carbon supply, but also directly or indirectly control diel cycling of the microbial community through complex interactions in the photic zone of aquatic ecosystems.
Collapse
|
16
|
Yang F, Jin H, Wang XQ, Li Q, Zhang JT, Cui N, Jiang YL, Chen Y, Wu QF, Zhou CZ, Li WF. Genomic Analysis of Mic1 Reveals a Novel Freshwater Long-Tailed Cyanophage. Front Microbiol 2020; 11:484. [PMID: 32322241 PMCID: PMC7156551 DOI: 10.3389/fmicb.2020.00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Lake Chaohu, one of the five largest freshwater lakes in China, has been suffering from severe cyanobacterial blooms in the summer for many years. Cyanophages, the viruses that specifically infect cyanobacteria, play a key role in modulating cyanobacterial population, and thus regulate the emergence and decline of cyanobacterial blooms. Here we report a long-tailed cyanophage isolated from Lake Chaohu, termed Mic1, which specifically infects the cyanobacterium Microcystis aeruginosa. Mic1 has an icosahedral head of 88 nm in diameter and a long flexible tail of 400 nm. It possesses a circular genome of 92,627 bp, which contains 98 putative open reading frames. Genome sequence analysis enabled us to define a novel terminase large subunit that consists of two types of intein, indicating that the genome packaging of Mic1 is under fine control via posttranslational maturation of the terminase. Moreover, phylogenetic analysis suggested Mic1 and mitochondria share a common evolutionary origin of DNA polymerase γ gene. All together, these findings provided a start-point for investigating the co-evolution of cyanophages and its cyanobacterial hosts.
Collapse
Affiliation(s)
- Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Qian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|