1
|
Casabella-Font O, Riva M, Balcázar JL, Radjenovic J, Pijuan M. Distinctive effects of graphene oxide and reduced graphene oxide on methane production kinetics and pharmaceuticals removal in anaerobic reactors. BIORESOURCE TECHNOLOGY 2024; 403:130849. [PMID: 38759894 DOI: 10.1016/j.biortech.2024.130849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Graphene oxide (GO) addition to anaerobic digestion has been suggested to enhance direct electron transfer. The impact of GO (0.075 g GO g-1 VS) and biologically and hydrothermally reduced GO (bio-rGO and h-rGO, respectively) on the methane production kinetics and removal of 12 pharmaceuticals was assessed in Fed-batch reactors. A decrease of 15 % in methane production was observed in the tests with GO addition compared with the control and the h-rGO. However, bio-rGO and h-rGO substantially increased the methane production rate compared to the control tests (+40 %), in the third fed-batch test. Removal of pharmaceuticals was enhanced only during the bio-reduction of GO (1st fed-batch test), whereas once the GO was bio-reduced, it followed a similar trend in the control and h-rGO tests. The addition of GO can enhance the methane production rate and, therefore, reduce the anaerobic treatment time.
Collapse
Affiliation(s)
- Oriol Casabella-Font
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Massimiliano Riva
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Insubria, Como, Italy
| | - Jose Luis Balcázar
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
2
|
Jasińska A, Walaszczyk A, Paraszkiewicz K. Omics-Based Approaches in Research on Textile Dye Microbial Decolorization. Molecules 2024; 29:2771. [PMID: 38930836 PMCID: PMC11206425 DOI: 10.3390/molecules29122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The development of the textile industry has negative effects on the natural environment. Cotton cultivation, dyeing fabrics, washing, and finishing require a lot of water and energy and use many chemicals. One of the most dangerous pollutants generated by the textile industry is dyes. Most of them are characterized by a complex chemical structure and an unfavorable impact on the environment. Especially azo dyes, whose decomposition by bacteria may lead to the formation of carcinogenic aromatic amines and raise a lot of concern. Using the metabolic potential of microorganisms that biodegrade dyes seems to be a promising solution for their elimination from contaminated environments. The development of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has allowed for a comprehensive approach to the processes occurring in cells. Especially multi-omics, which combines data from different biomolecular levels, providing an integrative understanding of the whole biodegradation process. Thanks to this, it is possible to elucidate the molecular basis of the mechanisms of dye biodegradation and to develop effective methods of bioremediation of dye-contaminated environments.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland;
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
3
|
Yangyanqiu W, Jian C, Yuqing Y, Zhanbo Q, Shuwen H. Gut microbes involvement in gastrointestinal cancers through redox regulation. Gut Pathog 2023; 15:35. [PMID: 37443096 DOI: 10.1186/s13099-023-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common and lethal cancers worldwide. GI microbes play an important role in the occurrence and development of GI cancers. The common mechanisms by which GI microbes may lead to the occurrence and development of cancer include the instability of the microbial internal environment, secretion of cancer-related metabolites, and destabilization of the GI mucosal barrier. In recent years, many studies have found that the relationship between GI microbes and the development of cancer is closely associated with the GI redox level. Redox instability associated with GI microbes may induce oxidative stress, DNA damage, cumulative gene mutation, protein dysfunction and abnormal lipid metabolism in GI cells. Redox-related metabolites of GI microbes, such as short-chain fatty acids, hydrogen sulfide and nitric oxide, which are involved in cancer, may also influence GI redox levels. This paper reviews the redox reactions of GI cells regulated by microorganisms and their metabolites, as well as redox reactions in the cancer-related GI microbes themselves. This study provides a new perspective for the prevention and treatment of GI cancers.
Collapse
Affiliation(s)
- Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Graduate School of Medical College, Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Yang Yuqing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China.
| |
Collapse
|
4
|
Xu Z, Li X, Tian X, Yang S, Li Y, Li Z, Guo T, Kong J. Characterization of the antioxidant activities of the exopolysaccharides produced by Streptococcus thermophilus CGMCC 7.179. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Li H, Ming X, Xu D, Mo H, Liu Z, Hu L, Zhou X. Transcriptome Analysis and Weighted Gene Co-expression Network Reveal Multitarget-Directed Antibacterial Mechanisms of Benzyl Isothiocyanate against Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11733-11741. [PMID: 34558287 DOI: 10.1021/acs.jafc.1c03979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus can cause many diseases and has a strong tendency to develop resistance to multiple antibiotics. In this study, benzyl isothiocyanate (BITC) was shown to have an excellent inhibitory effect on S. aureus ATCC25923 and methicillin-resistant S. aureus strains, with a minimum inhibitory concentration of 10 μg/mL. Under a scanning electron microscope, shrinkage and lysis of the cellular envelope were observed when exposed to BITC, and a bactericidal mode of BITC against S. aureus was further confirmed through flow cytometry. Additionally, the RNA profiles of S. aureus cells exposed to BITC indicated a violent transcriptional response to BITC. Through Kyoto Encyclopedia of Genes and Genomes analysis, it was found that many pathways involving bacterial survival were significantly affected, such as RNA degradation, oxidative phosphorylation, arginine biosynthesis, and so forth. A gene co-expression network was constructed using weighted gene co-expression network analysis, and six biologically meaningful co-expression modules and 125 hub genes were identified from the network. Among them, EfeB, GroES, SmpB, and Lsp were possibly targeted by BITC, leading to the death of S. aureus. Our results indicated a great potential of BITC to be applied in food safety and pharmaceuticals, highlighting its multitarget-directed bactericidal effects on S. aureus.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Xujia Ming
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Dan Xu
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Haizhen Mo
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Zhenbin Liu
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Liangbin Hu
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Xiaohui Zhou
- Department of Pathobiology & Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
7
|
Nys K, Furtmüller PG, Obinger C, Van Doorslaer S, Pfanzagl V. On the Track of Long-Range Electron Transfer in B-Type Dye-Decolorizing Peroxidases: Identification of a Tyrosyl Radical by Computational Prediction and Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2021; 60:1226-1241. [PMID: 33784066 PMCID: PMC8154254 DOI: 10.1021/acs.biochem.1c00129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/24/2021] [Indexed: 11/29/2022]
Abstract
The catalytic activity of dye-decolorizing peroxidases (DyPs) toward bulky substrates, including anthraquinone dyes, phenolic lignin model compounds, or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), is in strong contrast to their sterically restrictive active site. In two of the three known subfamilies (A- and C/D-type DyPs), catalytic protein radicals at surface-exposed sites, which are connected to the heme cofactor by electron transfer path(s), have been identified. So far in B-type DyPs, there has been no evidence for protein radical formation after activation by hydrogen peroxide. Interestingly, B-type Klebsiella pneumoniae dye-decolorizing peroxidase (KpDyP) displays a persistent organic radical in the resting state composed of two species that can be distinguished by W-band electron spin echo electron paramagnetic resonance (EPR) spectroscopy. Here, on the basis of a comprehensive mutational and EPR study of computationally predicted tyrosine and tryptophan variants of KpDyP, we demonstrate the formation of tyrosyl radicals (Y247 and Y92) and a radical-stabilizing Y-W dyad between Y247 and W18 in KpDyP, which are unique to enterobacterial B-type DyPs. Y247 is connected to Y92 by a hydrogen bonding network, is solvent accessible in simulations, and is involved in ABTS oxidation. This suggests the existence of long-range electron path(s) in B-type DyPs. The mechanistic and physiological relevance of the reaction mechanism of B-type DyPs is discussed.
Collapse
Affiliation(s)
- Kevin Nys
- BIMEF
Laboratory, Department of Chemistry, University
of Antwerp, 2610 Antwerp, Belgium
| | - Paul Georg Furtmüller
- Department
of Chemistry, Institute of Biochemistry,
BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Christian Obinger
- Department
of Chemistry, Institute of Biochemistry,
BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Sabine Van Doorslaer
- BIMEF
Laboratory, Department of Chemistry, University
of Antwerp, 2610 Antwerp, Belgium
| | - Vera Pfanzagl
- Department
of Chemistry, Institute of Biochemistry,
BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
8
|
Zhang C, Gui Y, Chen X, Chen D, Guan C, Yin B, Pan Z, Gu R. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress. Appl Microbiol Biotechnol 2020; 104:2611-2621. [DOI: 10.1007/s00253-020-10407-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
|
9
|
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, Liu Y, Lin CSK. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. BIORESOURCE TECHNOLOGY 2019; 291:121898. [PMID: 31395402 DOI: 10.1016/j.biortech.2019.121898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.
Collapse
Affiliation(s)
- Chong Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Chao Chen
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Xiaofen Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, People's Republic of China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jianbin Yan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Yun Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Potential Application and Bactericidal Mechanism of Lactic Acid-Hydrogen Peroxide Consortium. Appl Biochem Biotechnol 2019; 189:822-833. [PMID: 31127450 DOI: 10.1007/s12010-019-03031-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
It has been found that lactic acid and hydrogen peroxide (H2O2) displayed co-operatively enhanced killing activity to pathogens. The synergistic effect was investigated with using several microbe species, suggesting that low concentration of lactic acid and H2O2 could kill both Gram-negative and Gram-positive bacteria or even fungal pathogens. To explore the mechanism of synergistic sterilization of lactic acid and H2O2, Escherichia coli DH5α was used as the indicator bacteria. Lactic acid and H2O2 could generate hydroxyl radicals depending on the intracellular iron ions. The genomic DNA of treated cells was fractured and dispersed, and the △recA strain was more susceptive to the treatment, indicating that DNA damage was a cause of cell death. Furthermore, serious leakage of cell contents occurred in the treated cell, suggesting that the treatment also resulted in cell membrane permeability changes. This research shows that lactic acid-H2O2 consortium is a hopeful safety bactericide in agriculture or food production processes and provides a greater understanding of the mechanism of synergistic sterilization of lactic acid-H2O2 consortium in vivo.
Collapse
|
11
|
Wang Y, Li H, Li T, Du X, Zhang X, Guo T, Kong J. Glutathione biosynthesis is essential for antioxidant and anti-inflammatory effects of Streptococcus thermophilus. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Giaretta S, Treu L, Vendramin V, da Silva Duarte V, Tarrah A, Campanaro S, Corich V, Giacomini A. Comparative Transcriptomic Analysis of Streptococcus thermophilus TH1436 and TH1477 Showing Different Capability in the Use of Galactose. Front Microbiol 2018; 9:1765. [PMID: 30131781 PMCID: PMC6090898 DOI: 10.3389/fmicb.2018.01765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/16/2018] [Indexed: 12/03/2022] Open
Abstract
Streptococcus thermophilus is a species widely used in the dairy industry for its capability to rapidly ferment lactose and lower the pH. The capability to use galactose produced from lactose hydrolysis is strain dependent and most of commercial S. thermophilus strains are galactose-negative (Gal−), although galactose-positive (Gal+) would be more technologically advantageous because this feature could provide additional metabolic products and prevent galactose accumulation in foods. In this study, a next generation sequencing transcriptome approach was used to compare for the first time a Gal+ and a Gal− strain to characterize their whole metabolism and shed light on their different properties, metabolic performance and gene regulation. Transcriptome analysis revealed that all genes of the gal operon were expressed very differently in Gal+ and in the Gal− strains. The expression of several genes involved in mixed acid fermentation, PTS sugars transporter and stress response were found enhanced in Gal+. Conversely, genes related to amino acids, proteins metabolism and CRISPR associated proteins were under-expressed. In addition, the strains showed a diverse series of predicted genes controlled by the transcriptional factor catabolite control protein A (CcpA). Overall, transcriptomic analysis suggests that the Gal+ strain underwent a metabolic remodeling to cope with the changed environmental conditions.
Collapse
Affiliation(s)
- Sabrina Giaretta
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | - Laura Treu
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy.,Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Veronica Vendramin
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | | | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | | | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Wang Y, Li H, Li T, He H, Du X, Zhang X, Kong J. Cytoprotective effect of Streptococcus thermophilus against oxidative stress mediated by a novel peroxidase (EfeB). J Dairy Sci 2018; 101:6955-6963. [PMID: 29803415 DOI: 10.3168/jds.2018-14601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022]
Abstract
Streptococcus thermophilus is one of the most important starter species used in the dairy industry and exhibits several beneficial properties for the hosts. However, knowledge of the mechanism of its beneficial effect is still limited. The objective of this study was to investigate the cytoprotective effect of S. thermophilus CGMCC 7.179 with a novel peroxidase (EfeB) against oxidative stress in human intestinal epithelial cells, HT-29. Previously, we identified EfeB in S. thermophilus CGMCC 7.179, which could provide protection when growing at aerobic conditions. Here, we found that, when exposed to 15 mM H2O2, the cell viability of the efeB mutant (ST1314) was much lower than that of strain CGMCC 7.179, and the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of strain ST1314 decreased by 15%. When co-incubated with HT-29 cells, strain CGMCC 7.179 stimulated the enhancement of the major antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and catalase) in HT-29 cells under 2 mM H2O2-induced oxidative stress, whereas the active decrease of those antioxidant enzymes was observed in strain ST1314. In addition, the intracellular reactive oxygen species content in HT-29 cells co-incubated with strain CGMCC 7.179 was lower than that with strain ST1314 under the same oxidative stress. Furthermore, the protein content of nuclear factor erythroid 2-related factor 2 (Nrf2) in HT-29 cells following strain CGMCC 7.179 treatment was 1.4-fold higher than that with strain ST1314 treatment, and the increased transcription levels of Nrf2-related antioxidant enzyme genes were also observed in strain CGMCC 7.179 cells. All of these results demonstrated that S. thermophilus CGMCC 7.179 enhanced cellular antioxidant responses and endowed host cells with protective effects against oxidative stress mediated by the peroxidase EfeB.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100
| | - Honghong Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100
| | - Tiejun Li
- Health Science Exchange and Service Center of Jinan, Jinan, P. R. China 250100
| | - Huiying He
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100
| | - Xue Du
- Health Science Exchange and Service Center of Jinan, Jinan, P. R. China 250100
| | - Xiaowei Zhang
- Health Science Exchange and Service Center of Jinan, Jinan, P. R. China 250100
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100.
| |
Collapse
|
14
|
Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367. Appl Environ Microbiol 2017; 83:AEM.01659-17. [PMID: 28842545 DOI: 10.1128/aem.01659-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively.IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB.
Collapse
|
15
|
Wang Y, He HY, Li HH, Lu WW, Guo TT, Kong J. The global regulator CodY responds to oxidative stress by the regulation of glutathione biosynthesis in Streptococcus thermophilus. J Dairy Sci 2017; 100:8768-8775. [PMID: 28843694 DOI: 10.3168/jds.2017-13007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/17/2017] [Indexed: 11/19/2022]
Abstract
CodYst is a global transcriptional regulator that modulates the metabolic network in Streptococcus thermophilus ST2017. In this study, experimental data showed that the cell survival of the codYst defective mutant obviously declined at the presence of 10 mM H2O2, suggesting CodYst was involved in response to the oxidative stress. To investigate this phenomenon, transcriptome analysis and real time-quantitative PCR were performed and the results indicated that the transcriptional level of a bifunctional glutathione synthetase gene (gshF) was downregulated by about 3-fold in the codYst defective mutant, along with a decrease by 20% of the glutathione yield compared with the wild-type in minimal chemical defined medium, whereas half of the viable cells remained after H2O2 challenge. In vitro gel shift assays showed that the purified CodYst could bind to the promoter region of gshF, with a conserved CodYst box, confirming the regulation of CodYst on the gshF gene. To our knowledge, this is first report of CodYst in response to oxidative stress mediated by the regulation of gshF in S. thermophilus.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P. R. China
| | - H Y He
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P. R. China
| | - H H Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P. R. China
| | - W W Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P. R. China
| | - T T Guo
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P. R. China
| | - J Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
16
|
Functional Analysis of the Minimal Twin-Arginine Translocation System Components from Streptococcus thermophilus CGMCC 7.179 in Escherichia coli DE3. Curr Microbiol 2017; 74:678-684. [DOI: 10.1007/s00284-017-1234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/14/2017] [Indexed: 11/26/2022]
|
17
|
Abstract
Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins. We provide overviews of our current understanding of Tat pathway composition and mechanistic aspects related to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility, requirements for the correct folding and incorporation of co-factors in cargo proteins and the functions of known cargo proteins. Tat pathways of several Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of Bacillus subtilis. We discuss both shared and unique features of the different Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future research on Tat, including the development of this protein transport pathway for the biotechnological secretion of high-value proteins and its potential applicability as an antimicrobial drug target in pathogens.
Collapse
Affiliation(s)
- Vivianne J Goosens
- MRC Centre for Molecular Bacteriology and Infection, Section of Microbiology, Imperial College London, London, SW7 2AZ, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|