1
|
Zhou J, Hu M, Zhang L. Dickeya Diversity and Pathogenic Mechanisms. Annu Rev Microbiol 2024; 78:621-642. [PMID: 39565948 DOI: 10.1146/annurev-micro-041222-012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The Dickeya genus comprises numerous pathogenic species that cause diseases in various crops, vegetables, and ornamental plants across the globe. The pathogens have become very widespread in recent years, and numerous newly identified Dickeya-associated plant diseases have been reported, which poses an immense threat to agricultural production and is a serious concern internationally. Evidence is accumulating that a diversity of hosts, environmental habitats, and climates seems to shape the abundance of Dickeya species in nature and the differentiation of pathogenic mechanisms. This review summarizes the latest findings on the genome diversity and pathogenic mechanisms of Dickeya spp., with a focus on the intricate virulence regulatory mechanisms mediated by quorum sensing and pathogen-host interkingdom communication systems.
Collapse
Affiliation(s)
- Jianuan Zhou
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Ming Hu
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lianhui Zhang
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
2
|
Zhang J, Sun D, Shen H, Pu X, Liu P, Lin B, Yang Q. Dickeya fangzhongdai was prevalent and caused taro soft rot when coexisting with the Pectobacterium complex, with a preference for Araceae plants. Front Microbiol 2024; 15:1431047. [PMID: 38983626 PMCID: PMC11231085 DOI: 10.3389/fmicb.2024.1431047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Bacterial soft rot caused by coinfection with Dickeya spp. and Pectobacterium spp. in hosts can cause successive changes in fields, and it is difficult to prevent the spread of and control the infection. Pectobacterium spp. are prevalent in the growing areas of tuberous crops, including taro and potato. Recently, Dickeya fangzhongdai has emerged as a virulent pathogen in taro. To determine the prevalence status of the causal agents and evaluate the potential spreading risks of D. fangzhongdai, screening and taxonomic classification were performed on phytopathogenic bacteria collected from different taro-growing areas in Guangdong Province, China, and biological and genomic characteristics were further compared among typical strains from all defined species. The causative agents were verified to be phytobacterial strains of D. fangzhongdai, Pectobacterium aroidearum and Pectobacterium colocasium. P. aroidearum and P. colocasium were found to form a complex preferring Araceae plants and show intensive genomic differentiation, indicating their ancestor had adapted to taro a long time prior. Compared with Pectobacterium spp., D. fangzhongdai was more virulent to taro corms under conditions of exogenous infection and more adaptable at elevated temperatures. D. fangzhongdai strains isolated from taro possessed genomic components of additional T4SSs, which were accompanied by additional copies of the hcp-vgrG genes of the T6SS, and these contributed to the expansion of their genomes. More gene clusters encoding secondary metabolites were found within the D. fangzhongdai strains than within the Pectobacterium complex; interestingly, distinct gene clusters encoding zeamine and arylpolyene were both most similar to those in D. solani that caused potato soft rot. These comparisons provided genomic evidences for that the newly emerging pathogen was potentially equipped to compete with other pathogens. Diagnostic qPCR verified that D. fangzhongdai was prevalent in most of the taro-growing areas and coexisted with the Pectobacterium complex, while the plants enriching D. fangzhongdai were frequently symptomatic at developing corms and adjacent pseudostems and caused severe symptoms. Thus, the emerging need for intensive monitoring on D. fangzhongdai to prevent it from spreading to other taro-growing areas and to other tuberous crops like potato; the adjustment of control strategies based on different pathopoiesis characteristics is recommended.
Collapse
Affiliation(s)
- Jingxin Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dayuan Sun
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Huifang Shen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiaoming Pu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Pingping Liu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Birun Lin
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiyun Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
3
|
Sun Y, Utpal H, Wu Y, Sun Q, Feng Z, Shen Y, Zhang R, Zhou X, Wu J. Comparative genomic and transcriptome analyses of two Pectobacterium brasiliense strains revealed distinct virulence determinants and phenotypic features. Front Microbiol 2024; 15:1362283. [PMID: 38800750 PMCID: PMC11116658 DOI: 10.3389/fmicb.2024.1362283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.
Collapse
Affiliation(s)
- Yue Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Handique Utpal
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yajuan Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qinghua Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiwen Feng
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | | | - Ruofang Zhang
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiaofeng Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jian Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Ben Moussa H, Pédron J, Hugouvieux-Cotte-Pattat N, Barny MA. Two species with a peculiar evolution within the genus Pectobacterium suggest adaptation to a new environmental niche. Environ Microbiol 2023; 25:2465-2480. [PMID: 37550252 DOI: 10.1111/1462-2920.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Historically, research on Soft Rot Pectobacteriacea (SRP) has focused on economically important crops and ornamentals and knowledge of these bacteria outside the plant context remains poorly investigated. Recently, two closely related species Pectobacterium aquaticum and Pectobacterium quasiaquaticum were isolated from water and have not been isolated from any plant yet. To identify the distinctive characteristics of these two species, we performed a comparative genomic analysis of 80 genomes representing 19 Pectobacterium species and performed an evolutionary reconstruction. Both water species underwent a reduction in genome size associated with a high pseudogene content. A high gene loss was predicted at the emergence of both species. Among the 199 gene families missing from both P. aquaticum and P. quasiaquaticum genomes but present in at least 80% of other Pectobacterium genomes, COG analysis identified many genes involved in nutrient transport systems. In addition, many type II secreted proteins were also missing in both species. Phenotypic analysis revealed that both species had reduced pectinolytic activity, a biofilm formation defect, were highly motile and had reduced virulence on several plants. These genomic and phenotypic data suggest that the ecological niche of P. aquaticum and P. quasiaquaticum may differ from that of other Pectobacterium species.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | - Jacques Pédron
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | | | - Marie-Anne Barny
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| |
Collapse
|
6
|
Su Y, Li X, Li L, Lukianova A, Tokmakova A, Chen C, Fu L, Tian Y, Shi Y, Xie J, Miroshnikov KA, Yang J, Xie H. Occurrence, Characteristics, and qPCR-Based Identification of Pectobacterium versatile Causing Soft Rot of Chinese Cabbage in China. PLANT DISEASE 2023; 107:2751-2762. [PMID: 36973901 DOI: 10.1094/pdis-12-22-2770-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pectobacterium is one of the most important genera of phytopathogenic bacteria. It can cause soft-rot diseases on a wide range of plant species across the world. In this study, three Pectobacterium strains (KC01, KC02, and KC03) were isolated from soft-rotted Chinese cabbage in Beijing, China. These three strains were identified as Pectobacterium versatile based on phylogenetic analysis of Pectobacterium 16S ribosomal RNA, pmrA, and 504 Pectobacterium core genes, as well as a genomic average nucleotide identity analysis. Their biochemical characteristics were found to be similar to the P. versatile type strain ICMP9168T but differed in response to citric acid, stachyose, D-glucuronic acid, dextrin, and N-acetyl-β-D-mannosamine. All of the tested P. versatile strains showed different carbohydrate utilization abilities compared with P. carotovorum and P. odoriferum, particularly in their ability to utilize D-arabitol, L-rhamnose, and L-serine. Under laboratory conditions, the maceration ability of P. versatile on Chinese cabbage was the highest at 28°C, compared with those at 13, 28, 23, and 33°C. Additionally, P. versatile could infect all of the 17 known Pectobacterium host plants, except for Welsh onion (Allium fistulosum). A SYBR Green quantitative PCR (qPCR) detection system was developed to distinguish P. versatile from other soft-rot bacteria based on the combined performance of melting curve (with a single melting peak at around 85°C) and fluorescence curve (with cycle threshold <30) when the bacterial genomic DNA concentration was in the range of 10 pg/µl to 10 ng/µl. This study is the first to report the presence of P. versatile on Chinese cabbage in China, as well as a specific and sensitive qPCR assay that can be used to quickly identify P. versatile. The work contributes to a better understanding of P. versatile and will facilitate the effective diagnosis of soft-rot disease, ultimately benefitting commercial crop production.
Collapse
Affiliation(s)
- Yanyan Su
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoying Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Changlong Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lu Fu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Tian
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Jungang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
7
|
Wein P, Dornblut K, Herkersdorf S, Krüger T, Molloy EM, Brakhage AA, Hoffmeister D, Hertweck C. Bacterial secretion systems contribute to rapid tissue decay in button mushroom soft rot disease. mBio 2023; 14:e0078723. [PMID: 37486262 PMCID: PMC10470514 DOI: 10.1128/mbio.00787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SSs). We targeted the T2SS and T3SS for gene inactivation studies, and subsequent bioassays implicated both in soft rot disease. Furthermore, through a combination of comparative secretome analysis and activity-guided fractionation, we identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride toward identifying targets for their disarmament with secretion system inhibitors. IMPORTANCE The button mushroom (Agaricus bisporus) is the most popular edible mushroom in the Western world. However, mushroom crops can fall victim to serious bacterial diseases that are a major threat to the mushroom industry, among them being soft rot disease caused by Janthinobacterium agaricidamnosum. Here, we show that the rapid dissolution of mushroom fruiting bodies after bacterial invasion is due to degradative enzymes and putative effector proteins secreted via the type II secretion system (T2SS) and the type III secretion system (T3SS), respectively. The ability to degrade mushroom tissue is significantly attenuated in secretion-deficient mutants, which establishes that secretion systems are key factors in mushroom soft rot disease. This insight is of both ecological and agricultural relevance by shedding light on the disease processes behind a pathogenic bacterial-fungal interaction which, in turn, serves as a starting point for the development of secretion system inhibitors to control disease progression.
Collapse
Affiliation(s)
- Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sebastian Herkersdorf
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A. Brakhage
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Fekete FJ, Marotta NJ, Liu X, Weinert EE. An O 2-sensing diguanylate cyclase broadly affects the aerobic transcriptome in the phytopathogen Pectobacterium carotovorum. Front Microbiol 2023; 14:1134742. [PMID: 37485529 PMCID: PMC10360401 DOI: 10.3389/fmicb.2023.1134742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Pectobacterium carotovorum is an important plant pathogen responsible for the destruction of crops through bacterial soft rot, which is modulated by oxygen (O2) concentration. A soluble globin coupled sensor protein, Pcc DgcO (also referred to as PccGCS) is one way through which P. carotovorum senses oxygen. DgcO contains a diguanylate cyclase output domain producing c-di-GMP. Synthesis of the bacterial second messenger c-di-GMP is increased upon oxygen binding to the sensory globin domain. This work seeks to understand regulation of function by DgcO at the transcript level. RNA sequencing and differential expression analysis revealed that the deletion of DgcO only affects transcript levels in cells grown under aerobic conditions. Differential expression analysis showed that DgcO deletion alters transcript levels for metal transporters. These results, followed by inductively coupled plasma-mass spectrometry showing decreased concentrations of six biologically relevant metals upon DgcO deletion, provide evidence that a globin coupled sensor can affect cellular metal content. These findings improve the understanding of the transcript level control of O2-dependent phenotypes in an important phytopathogen and establish a basis for further studies on c-di-GMP-dependent functions in P. carotovorum.
Collapse
Affiliation(s)
- Florian J. Fekete
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
| | - Nick J. Marotta
- Graduate Program in Molecular, Cellular, and Integrative Biosciences, Penn State University, University Park, PA, United States
| | - Xuanyu Liu
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
- Department of Chemistry, Penn State University, University Park, PA, United States
| |
Collapse
|
9
|
Han W, Wang J, Pirhonen M, Pan Y, Qin J, Zhang S, Zhu J, Yang Z. Identification and characterization of opportunistic pathogen Pectobacterium polonicum causing potato blackleg in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1097741. [PMID: 36938006 PMCID: PMC10020715 DOI: 10.3389/fpls.2023.1097741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Blackleg and aerial stem rot of potato (Solanum tuberosum L.), caused by soft rot enterobacteria of the genera Pectobacterium and Dickeya, has recently increased years in Hebei Province, China. Field surveys were performed during the 2021 potato growing season in Hebei to identify and characterize bacterial pathogens. Sixteen potato plants showing blackleg or aerial stem rot were collected from three potato-producing areas, and ten representative pectinolytic bacteria were isolated from symptomatic plants. 16S rDNA sequencing and multilocus sequence analysis were performed to determine the taxonomic position of the bacterial isolates. The isolates belonged to the genus Pectobacterium, including Pectobacterium atrosepticum, Pectobacterium carotovorum, Pectobacterium brasiliense, and Pectobacterium parmentieri. The exceptions were isolates BY21311 and BY21312, which belonged to a new species of Pectobacterium polonicum previously found in groundwater. The taxonomy of isolate BY21311 was confirmed using whole genome-based analysis. P. polonicum has only been identified in potato plants on one farm in Baoding region in China. Isolates BY21311 and BY21312 displayed similar physiological and biochemical traits to the type strain DPMP315T. Artificial inoculation assays revealed that isolate BY21311 fulfilled Koch's postulates for potato blackleg. These findings represent the first time P. polonicum, a water-associated Pectobacterium species may be the cause of blackleg in the field. Interestingly, P. polonicum BY21311 has reduced ability to macerate potato tubers when compared to P. atrosepticum, P. brasiliense, P. versatile, and P. parvum, which is more virulent in tubers than the type strain DPMP315T. The host range of isolate BY21311 was determined by injection method, which can impregnate five plants. Although the genome of isolate BY21311 harbors gene clusters encoding a type III secretion system, it did not elicit a hypersensitive response (HR) in Nicotiana benthamiana or N. tabacum leaves. T3SS effector AvrE and T4SS effector PilN were obtained by predicting isolate BY21311 genome. P. polonicum appears to show significant variations in gene content between two genomes, and gene content varies between isolates BY21311 and DPMP315T, with strain specific-genes involved in many aspects, including lipopolysaccharide biosynthesis, substrate translocation, T4SS and T6SS among others, suggesting that isolates BY21311 and DPMP315T might represent distinct clades within the species.
Collapse
Affiliation(s)
- Wanxin Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingxin Qin
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shangqing Zhang
- Institute of Plant Protection, Tangshan Academy of Agricultural Sciences, Tangshan, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Bogdanović S, Stanković S, Berić T, Tomasevic I, Heinz V, Terjung N, Dimkić I. Bacteriobiota and Chemical Changes during the Ripening of Traditional Fermented "Pirot 'Ironed' Sausage". Foods 2023; 12:foods12030664. [PMID: 36766190 PMCID: PMC9913956 DOI: 10.3390/foods12030664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
"Pirot 'ironed' sausage" (Pis) is a traditional, fermented sausage, made from different types of meat (beef and chevon), without additives or starter cultures. The physical-chemical properties (pH, water activity, fats, moisture, and protein contents) were examined in the initial meat batter stuffing and during ripening. Total bacterial diversity was examined at different time points using both culturable (traditional) and non-culturable (NGS sequencing) approaches. During the ripening, a decrease in pH value, aw, and moisture content was observed, as well as an increase in protein and fat content. At least a two-fold significant decrease was noted for colorimetric values during the ripening period. The dominance of Proteobacteria and Firmicutes was observed in the non-culturable approach in all studied samples. During the ripening process, an increase in Firmicutes (from 33.5% to 63.5%) with a decrease in Proteobacteria (from 65.4% to 22.3%) was observed. The bacterial genera that were dominant throughout the ripening process were Lactobacillus, Photobacterium, Leuconostoc, Weissella, and Lactococcus, while Carnobacterium, Brochothrix, and Acinetobacter were found also, but in negligible abundance. Among the culturable bacteria, Latilactobacillus sakei (Lactobacillus sakei) and Leuconostoc mesenteoides were present in all stages of ripening.
Collapse
Affiliation(s)
- Svetlana Bogdanović
- Agriculture and Food College of Applied Studies, Ćirila i Metodija 1, 18400 Prokuplje, Serbia
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Tanja Berić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
- Correspondence: (I.T.); (I.D.)
| | - Volker Heinz
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Nino Terjung
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Correspondence: (I.T.); (I.D.)
| |
Collapse
|
11
|
Bacteriophages as a Strategy to Protect Potato Tubers against Dickeya dianthicola and Pectobacterium carotovorum Soft Rot. Microorganisms 2022; 10:microorganisms10122369. [PMID: 36557622 PMCID: PMC9785987 DOI: 10.3390/microorganisms10122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The protective effect of bacteriophage suspensions (Ds3CZ + Ds20CZ and PcCB7V + PcCB251) on phytopathogenic bacteria causing soft rot of potato tubers, namely Dickeya dianthicola (D50, D200) and Pectobacterium carotovorum (P87, P224), was observed in ex vivo and in vitro experiments. Ex vivo tests were performed (with air access) on potato slices, on cylindrical cuts from the center of the tubers, and directly in whole potato tubers. In vitro experiments were carried out in a liquid medium using RTS-8 bioreactors, where bacterial growth was monitored as optical density. In particular, the inhibitory effects of phages were confirmed in experiments on potato slices, where suppression of rot development was evident at first glance. Phage treatment against selected bacteria positively affected potato hardness. Hardness of samples treated with bacteria only was statistically significantly reduced (p < 0.05 for D50 and p < 0.001 for D200 and P87). Ex vivo experiments confirmed significant inhibition of P87 symptom development, partial inhibition of D200 and D50 in phage-treated tubers, and no effect was observed for P224. The inhibitory effect of phages against bacteria was not observed in the in vitro experiment.
Collapse
|
12
|
Wasendorf C, Schmitz-Esser S, Eischeid CJ, Leyhe MJ, Nelson EN, Rahic-Seggerman FM, Sullivan KE, Peters NT. Genome analysis of Erwinia persicina reveals implications for soft rot pathogenicity in plants. Front Microbiol 2022; 13:1001139. [DOI: 10.3389/fmicb.2022.1001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Soft rot disease causes devastating losses to crop plants all over the world, with up to 90% loss in tropical climates. To better understand this economically important disease, we isolated four soft rot-causing Erwinia persicina strains from rotted vegetables. Notably, E. persicina has only recently been identified as a soft rot pathogen and a comprehensive genomic analysis and comparison has yet to be conducted. Here, we provide the first genomic analysis of E. persicina, compared to Pectobacterium carotovorum, P. carotovorum, and associated Erwinia plant pathogens. We found that E. persicina shares common genomic features with other Erwinia species and P. carotovorum, while having its own unique characteristics as well. The E. persicina strains examined here lack Type II and Type III secretion systems, commonly used to secrete pectolytic enzymes and evade the host immune response, respectively. E. persicina contains fewer putative pectolytic enzymes than P. carotovorum and lacks the Out cluster of the Type II secretion system while harboring a siderophore that causes a unique pink pigmentation during soft rot infections. Interestingly, a putative phenolic acid decarboxylase is present in the E. persicina strains and some soft rot pathogens, but absent in other Erwinia species, thus potentially providing an important factor for soft rot. All four E. persicina isolates obtained here and many other E. persicina genomes contain plasmids larger than 100 kbp that encode proteins likely important for adaptation to plant hosts. This research provides new insights into the possible mechanisms of soft rot disease by E. persicina and potential targets for diagnostic tools and control measures.
Collapse
|
13
|
Fitriana Y, Tampubolon DAT, Suharjo R, Lestari P, Swibawa IG. Lysinabacillus fusiformis and Paenibacillus alvei Obtained from the Internal of Nasutitermes Termites Revealed Their Ability as Antagonist of Plant Pathogenic Fungi. THE PLANT PATHOLOGY JOURNAL 2022; 38:449-460. [PMID: 36221917 PMCID: PMC9561155 DOI: 10.5423/ppj.oa.03.2022.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/13/2023]
Abstract
This study was performed to reveal phenotypic characters and identity of symbiont bacteria of Nasutitermes as well as investigate their potential as antagonist of plant pathogenic fungi. Isolation of the symbiont bacteria was carried out from inside the heads and the bodies of soldier and worker termite which were collected from 3 locations of nests. Identification was performed using phenotypic test and sequence of 16S ribosomal DNA (16S rDNA). Antagonistic capability was investigated in the laboratory against 3 phytopathogenic fungi i.e., Phytophthora capsici, Ganoderma boninense, and Rigidoporus microporus. Totally, 39 bacterial isolates were obtained from inside the heads and the bodies of Nasutitermes. All the isolates showed capability to inhibit growth of P. capsici, however, 34 isolates showed capability to inhibit growth of G. boninense and 32 isolates showed capability to inhibit growth of R. microporus. Two bacterial strains (IK3.1P and 1B1.2P) which showed the highest percentage of inhibition were further identified based on their sequence of 16S rDNA. The result showed that 1K3.1P strain was placed in the group of type strain and reference strains of Lysinibacillus fusiformis meanwhile 1B1.2P strain was grouped within type strain and reference strains Paenibacillus alvei. The result of this study supply valuable information on the role of symbiont bacteria of Nasutitermes, which may support the development of the control method of the three above-mentioned phytopathogenic fungi.
Collapse
Affiliation(s)
- Yuyun Fitriana
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - Desi Apriani Teresa Tampubolon
- Department of Agrotechnology, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - Radix Suharjo
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - Puji Lestari
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - I Gede Swibawa
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| |
Collapse
|
14
|
Effects of Combined Application of Salicylic Acid and Proline on the Defense Response of Potato Tubers to Newly Emerging Soft Rot Bacteria (Lelliottia amnigena) Infection. SUSTAINABILITY 2022. [DOI: 10.3390/su14148870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potato soft rot, caused by the pathogenic bacterium Lelliottia amnigena (Enterobacter amnigenus), is a serious and widespread disease affecting global potato production. Both salicylic acid (SA) and proline (Pro) play important roles in enhancing potato tuber resistance to soft rot. However, the combined effects of SA and Pro on defense responses of potato tubers to L. amnigena infection remain unknown. Hence, the combined effects of SA and Pro in controlling newly emerging potato soft rot bacteria were investigated. Sterilized healthy potato tubers were pretreated with 1.5 mM SA and 2.0 mM Pro 24 h before an inoculation of 0.3 mL of L. amnigena suspension (3.69 × 107 CFU mL−1). Rotting was noticed on the surfaces of the hole where the L. amnigena suspension was inoculated. Application of SA and Pro with L. amnigena lowered the activity of pectinase, protease, pectin lyase, and cellulase by 64.3, 77.8, 66.4 and 84.1%, and decreased malondialdehyde and hydrogen peroxide contents by 77.2% and 83.8%, respectively, compared to the control. The activities of NADPH oxidase, superoxide dismutase, peroxide, catalase, polyphenol oxidase, phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-coumaryl-CoA ligase and cinnamate-4-hydroxylase were increased in the potato tubers with combined treatments by 91.4, 92.4, 91.8, 93.5, 94.9, 91.3, 96.2, 94.7 and 97.7%, respectively, compared to untreated stressed tubers. Six defense-related genes, pathogenesis-related protein, tyrosine-protein kinase, Chitinase-like protein, phenylalanine ammonia-lyase, pathogenesis-related homeodomain protein, and serine protease inhibitor, were induced in SA + Pro treatment when compared with individual application of SA or Pro. This study indicates that the combined treatment of 1.5 mM SA and 2.0 mM Pro had a synergistic effect in controlling potato soft rot caused by a newly emerging bacterium.
Collapse
|
15
|
Mallick T, Mishra R, Mohanty S, Joshi RK. Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features. THE PLANT PATHOLOGY JOURNAL 2022; 38:102-114. [PMID: 35385916 PMCID: PMC9343900 DOI: 10.5423/ppj.oa.12.2021.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.
Collapse
Affiliation(s)
- Tista Mallick
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 751022, Odisha, India
| | - Sasmita Mohanty
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| |
Collapse
|
16
|
Liu Z, Zhao Y, Sossah FL, Okorley BA, Amoako DG, Liu P, Sheng H, Li D, Li Y. Characterization, Pathogenicity, Phylogeny, and Comparative Genomic Analysis of Pseudomonas tolaasii Strains Isolated from Various Mushrooms in China. PHYTOPATHOLOGY 2022; 112:521-534. [PMID: 34293910 DOI: 10.1094/phyto-12-20-0550-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since 2016, devastating bacterial blotch affecting the fruiting bodies of Agaricus bisporus, Cordyceps militaris, Flammulina filiformis, and Pleurotus ostreatus in China has caused severe economic losses. We isolated 102 bacterial strains and characterized them polyphasically. We identified the causal agent as Pseudomonas tolaasii and confirmed the pathogenicity of the strains. A host range test further confirmed the pathogen's ability to infect multiple hosts. This is the first report in China of bacterial blotch in C. militaris caused by P. tolaasii. Whole-genome sequences were generated for three strains: Pt11 (6.48 Mb), Pt51 (6.63 Mb), and Pt53 (6.80 Mb), and pangenome analysis was performed with 13 other publicly accessible P. tolaasii genomes to determine their genetic diversity, virulence, antibiotic resistance, and mobile genetic elements. The pangenome of P. tolaasii is open, and many more gene families are likely to emerge with further genome sequencing. Multilocus sequence analysis using the sequences of four common housekeeping genes (glns, gyrB, rpoB, and rpoD) showed high genetic variability among the P. tolaasii strains, with 115 strains clustered into a monophyletic group. The P. tolaasii strains possess various genes for secretion systems, virulence factors, carbohydrate-active enzymes, toxins, secondary metabolites, and antimicrobial resistance genes that are associated with pathogenesis and adapted to different environments. The myriad of insertion sequences, integrons, prophages, and genome islands encoded in the strains may contribute to genome plasticity, virulence, and antibiotic resistance. These findings advance understanding of the determinants of virulence, which can be targeted for the effective control of bacterial blotch disease.
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yitong Zhao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Frederick L Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Benjamin A Okorley
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Crop Science Department, University of Ghana, Legon, Accra, Ghana
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Peibin Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Sheng
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
17
|
Genomic and Functional Dissections of Dickeya zeae Shed Light on the Role of Type III Secretion System and Cell Wall-Degrading Enzymes to Host Range and Virulence. Microbiol Spectr 2022; 10:e0159021. [PMID: 35107329 PMCID: PMC8809351 DOI: 10.1128/spectrum.01590-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dickeya zeae is a worldwide destructive pathogen that causes soft rot diseases on various hosts such as rice, maize, banana, and potato. The strain JZL7 we recently isolated from clivia represents the first monocot-specific D. zeae and also has reduced pathogenicity compared to that of other D. zeae strains (e.g., EC1 and MS2). To elucidate the molecular mechanisms underlying its more restricted host range and weakened pathogenicity, we sequenced the complete genome of JZL7 and performed comparative genomic and functional analyses of JZL7 and other D. zeae strains. We found that, while having the largest genome among D. zeae strains, JZL7 lost almost the entire type III secretion system (T3SS), which is a key component of the virulence suite of many bacterial pathogens. Importantly, the deletion of T3SS in MS2 substantially diminished the expression of most type III secreted effectors (T3SEs) and MS2's pathogenicity on both dicots and monocots. Moreover, although JZL7 and MS2 share almost the same repertoire of cell wall-degrading enzymes (CWDEs), we found broad reduction in the production of CWDEs and expression levels of CWDE genes in JZL7. The lower expression of CWDEs, pectin lyases in particular, would probably make it difficult for JZL7 to break down the cell wall of dicots, which is rich in pectin. Together, our results suggest that the loss of T3SS and reduced CWDE activity together might have contributed to the host specificity and virulence of JZL7. Our findings also shed light on the pathogenic mechanism of Dickeya and other soft rot Pectobacteriaceae species in general. IMPORTANCE Dickeya zeae is an important, aggressive bacterial phytopathogen that can cause severe diseases in many crops and ornamental plants, thus leading to substantial economic losses. Strains from different sources showed significant diversity in their natural hosts, suggesting complicated evolution history and pathogenic mechanisms. However, molecular mechanisms that cause the differences in the host range of D. zeae strains remain poorly understood. This study carried out genomic and functional dissections of JZL7, a D. zeae strain with restricted host range, and revealed type III secretion system (T3SS) and cell wall-degrading enzymes (CWDEs) as two major factors contributing to the host range and virulence of D. zeae, which will provide a valuable reference for the exploration of pathogenic mechanisms in other bacteria and present new insights for the control of bacterial soft rot diseases on crops.
Collapse
|
18
|
Chen C, Li X, Bo Z, Du W, Fu L, Tian Y, Cui S, Shi Y, Xie H. Occurrence, Characteristics, and PCR-Based Detection of Pectobacterium polaris Causing Soft Rot of Chinese Cabbage in China. PLANT DISEASE 2021; 105:2880-2887. [PMID: 33834854 DOI: 10.1094/pdis-12-20-2752-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial soft rot is an important disease of Chinese cabbage (Brassica rapa L. ssp. pekinensis) in China and many other countries. Four pectinolytic bacterial strains (WBC1, WBC6, WBC9, and WBC11) were isolated from soft-rotted Chinese cabbage in Beijing, China. Based on 16S rDNA and pmrA gene sequence analyses, multilocus sequence analysis (MLSA), and genomic average nucleotide identity (ANI) analysis, these four strains were identified as Pectobacterium polaris. This species, previously reported from potato in countries not including China, is a new soft rot pathogen of Chinese cabbage in China. Biochemical characteristics of these P. polaris strains tested by Biolog were mostly consistent with those of P. polaris NIBIO1006T. Their pathogenicity on Chinese cabbage is temperature dependent, with all four strains as well as the type strain exhibiting high pathogenicity at 23°C and 28°C. These four strains infected Lactuca sativa, Daucus carota, Solanum tuberosum, and Capsicum annuum by artificial inoculation. Specific polymerase chain reaction (PCR) and quantitative PCR (qPCR) primers for P. polaris were developed on the basis of its specific gene sequences (determined by genome comparison methods). Both PCR and qPCR detected not only genomic DNA of P. polaris but also the pathogen from diseased plant tissues even before external symptoms appeared. Their detection sensitivities were as low as 1 pg and 100 pg genomic DNA of P. polaris, respectively. To our knowledge, this study is the first to both report the emergence of P. polaris on Chinese cabbage in China and provide rapid and accurate PCR/qPCR-based detection systems specific for P. polaris.
Collapse
Affiliation(s)
- Changlong Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Xiaoying Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Zijing Bo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
- School of Life Sciences, University of Yantai, Shandong 264005, China
| | - Wenxiao Du
- School of Life Sciences, University of Yantai, Shandong 264005, China
| | - Lu Fu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Yu Tian
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Shuang Cui
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Yanxia Shi
- School Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| |
Collapse
|
19
|
Quantitative Real-Time PCR Assay for the Detection of Pectobacterium parmentieri, a Causal Agent of Potato Soft Rot. PLANTS 2021; 10:plants10091880. [PMID: 34579412 PMCID: PMC8468878 DOI: 10.3390/plants10091880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Pectobacterium parmentieri is a plant-pathogenic bacterium, recently attributed as a separate species, which infects potatoes, causing soft rot in tubers. The distribution of P. parmentieri seems to be global, although the bacterium tends to be accommodated to moderate climates. Fast and accurate detection systems for this pathogen are needed to study its biology and to identify latent infection in potatoes and other plant hosts. The current paper reports on the development of a specific and sensitive detection protocol based on a real-time PCR with a TaqMan probe for P. parmentieri, and its evaluation. In sensitivity assays, the detection threshold of this protocol was 102 cfu/mL on pure bacterial cultures and 102–103 cfu/mL on plant material. The specificity of the protocol was evaluated against P. parmentieri and more than 100 strains of potato-associated species of Pectobacterium and Dickeya. No cross-reaction with the non-target bacterial species, or loss of sensitivity, was observed. This specific and sensitive diagnostic tool may reveal a wider distribution and host range for P. parmentieri and will expand knowledge of the life cycle and environmental preferences of this pathogen.
Collapse
|
20
|
Species of Dickeya and Pectobacterium Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States. Microorganisms 2021; 9:microorganisms9081733. [PMID: 34442812 PMCID: PMC8401272 DOI: 10.3390/microorganisms9081733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
An outbreak of bacterial soft rot and blackleg of potato has occurred since 2014 with the epicenter being in the northeastern region of the United States. Multiple species of Pectobacterium and Dickeya are causal agents, resulting in losses to commercial and seed potato production over the past decade in the Northeastern and North Central United States. To clarify the pathogen present at the outset of the epidemic in 2015 and 2016, a phylogenetic study was made of 121 pectolytic soft rot bacteria isolated from symptomatic potato; also included were 27 type strains of Dickeya and Pectobacterium species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated dnaJ, dnaX and gyrB fragments revealed the epidemic isolates to cluster with type strains of D. chrysanthemi, D. dianthicola, D. dadantii, P. atrosepticum, P. brasiliense, P. carotovorum, P. parmentieri, P. polaris, P. punjabense, and P. versatile. Genetic diversity within D. dianthicola strains was low, with one sequence type (ST1) identified in 17 of 19 strains. Pectobacterium parmentieri was more diverse, with ten sequence types detected among 37 of the 2015–2016 strains. This study can aid in monitoring future shifts in potato soft rot pathogens within the U.S. and inform strategies for disease management.
Collapse
|
21
|
Boluk G, Arizala D, Dobhal S, Zhang J, Hu J, Alvarez AM, Arif M. Genomic and Phenotypic Biology of Novel Strains of Dickeya zeae Isolated From Pineapple and Taro in Hawaii: Insights Into Genome Plasticity, Pathogenicity, and Virulence Determinants. FRONTIERS IN PLANT SCIENCE 2021; 12:663851. [PMID: 34456933 PMCID: PMC8386352 DOI: 10.3389/fpls.2021.663851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Dickeya zeae, a bacterial plant pathogen of the family Pectobacteriaceae, is responsible for a wide range of diseases on potato, maize, rice, banana, pineapple, taro, and ornamentals and significantly reduces crop production. D. zeae causes the soft rot of taro (Colocasia esculenta) and the heart rot of pineapple (Ananas comosus). In this study, we used Pacific Biosciences single-molecule real-time (SMRT) sequencing to sequence two high-quality complete genomes of novel strains of D. zeae: PL65 (size: 4.74997 MB; depth: 701x; GC: 53.6%) and A5410 (size: 4.7792 MB; depth: 558x; GC: 53.5%) isolated from economically important Hawaiian crops, taro, and pineapple, respectively. Additional complete genomes of D. zeae representing three additional hosts (philodendron, rice, and banana) and other species used for a taxonomic comparison were retrieved from the NCBI GenBank genome database. Genomic analyses indicated the truncated type III and IV secretion systems (T3SS and T4SS) in the taro strain, which only harbored one and two genes of T3SS and T4SS, respectively, and showed high heterogeneity in the type VI secretion system (T6SS). Unlike strain EC1, which was isolated from rice and recently reclassified as D. oryzae, neither the genome PL65 nor A5410 harbors the zeamine biosynthesis gene cluster, which plays a key role in virulence of other Dickeya species. The percentages of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the two genomes were 94.47 and 57.00, respectively. In this study, we compared the major virulence factors [plant cell wall-degrading extracellular enzymes and protease (Prt)] produced by D. zeae strains and evaluated the virulence on taro corms and pineapple leaves. Both strains produced Prts, pectate lyases (Pels), and cellulases but no significant quantitative differences were observed (p > 0.05) between the strains. All the strains produced symptoms on taro corms and pineapple leaves, but the strain PL65 produced symptoms more rapidly than others. Our study highlights the genetic constituents of pathogenicity determinants and genomic heterogeneity that will help to understand the virulence mechanisms and aggressiveness of this plant pathogen.
Collapse
Affiliation(s)
- Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Jingxin Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
22
|
Ge T, Jiang H, Johnson SB, Larkin RP, Charkowski AO, Secor G, Hao J. Genotyping Dickeya dianthicola Causing Potato Blackleg and Soft Rot Outbreak Associated With Inoculum Geography in the United States. PLANT DISEASE 2021; 105:1976-1983. [PMID: 33210970 DOI: 10.1094/pdis-10-20-2138-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An outbreak of blackleg and soft rot of potato, caused primarily by the bacterial pathogen Dickeya dianthicola, has resulted in significant economic losses in the northeastern United States since 2015. The spread of this seedborne disease is highly associated with seed distribution; therefore, the pathogen likely spread with seed tubers. To describe the blackleg epidemic and track inoculum origins, a total of 1,183 potato samples were collected from 11 states associated with blackleg outbreak from 2015 to 2019. Of these samples, 39.8% tested positive for D. dianthicola. Seventeen isolates of D. dianthicola were recovered from these samples and the genetic diversity of these isolates was examined. Fingerprinting with BOX-A1R-based repetitive extragenic palindromic PCR and phylogenetic analysis based on sequences of the 16S rRNA and gapA genes indicated that D. dianthicola isolates were divided into three genotypes, denoted types I, II, and III. Ninety-five percent of samples from Maine were type I. Type II was found in Maine only in 2015 and 2018. Type II was present throughout the 5 years in some states at a lower percentage than type I. Type III was found in Pennsylvania, New Jersey, and Massachusetts, but not in Maine. Therefore, type I appears to be associated with Maine, but type II appeared to be distributed throughout the northeastern United States. The type II and rarer type III strains were closer to the D. dianthicola type strain isolated from the United Kingdom. This work provides evidence that the outbreak of blackleg of potato in the northeastern United States was caused by multiple strains of D. dianthicola. The geographic origins of these strains remain unknown.
Collapse
Affiliation(s)
- Tongling Ge
- School of Food and Agriculture, University of Maine, Orono, ME
| | - He Jiang
- School of Food and Agriculture, University of Maine, Orono, ME
| | | | - Robert P Larkin
- New England Plant, Soil, and Water Laboratory, U.S. Department of Agriculture Agricultural Research Service, University of Maine, Orono, ME
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO
| | - Gary Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME
| |
Collapse
|
23
|
Lu Q, Yan F, Liu Y, Li Q, Yang M, Liu P. Comparative Genomic Analyses Reveal Functional Insights Into Key Determinants of the Pathogenesis of Pectobacterium actinidiae in Kiwifruit. PHYTOPATHOLOGY 2021; 111:789-798. [PMID: 33245255 DOI: 10.1094/phyto-07-20-0287-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Gram-negative bacterial species Pectobacterium actinidiae causes summer canker in kiwifruit plants. However, little is known about its virulence factors and mechanisms of genetic adaptation. We aimed to identify the key determinants that control the virulence of P. actinidiae in kiwifruit by genomic and functional analyses. Analysis of four P. actinidiae isolates indicated low genetic variability with an average of 98.7% genome-level sequence similarity and 82% shared protein-coding gene content. Phylogenetic analysis, based on both bulk single nucleotide polymorphisms (SNPs) and single-copy genes, revealed that P. actinidiae strains cluster into a single clade, which is closely related to the clades of P. odoriferum (species with a completely different host range). Through comparison between these two clades of strains, 746 unique core orthologs/genes were clustered in the clades of P. actinidiae, especially key virulence determinants involved in the biosynthesis of secretion systems (type III, IV, and VI), iron, flagellar structure, and the quorum-sensing system. Our results provide insights into the pathogenomics underlying the genetic diversification and evolution of pathogenicity in P. actinidiae species.
Collapse
Affiliation(s)
- Qi Lu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Fuhua Yan
- Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, People's Republic of China
| | - Yuanyuan Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qiaohong Li
- Kiwifruit Breeding and Utilization Key Laboratory, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, People's Republic of China
| | - Meng Yang
- School of Horticulture, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
24
|
Interaction between Dickeya dianthicola and Pectobacterium parmentieri in Potato Infection under Field Conditions. Microorganisms 2021; 9:microorganisms9020316. [PMID: 33557052 PMCID: PMC7913861 DOI: 10.3390/microorganisms9020316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/21/2023] Open
Abstract
Dickeya and Pectobacterium spp. both cause blackleg and soft rot of potato, which can be a yield-reducing factor to potato production. The purpose of this study was to examine the interaction between these two bacterial genera causing potato infection, and subsequent disease development and yield responses under field conditions. Analysis of 883 potato samples collected in Northeastern USA using polymerase chain reaction determined that Dickeya dianthicola and P. parmentieri were found in 38.1% and 53.3% of all samples, respectively, and that 20.6% of samples contained both D. dianthicola and P. parmentieri. To further investigate the relationship between the two bacterial species and their interaction, field trials were established. Potato seed pieces of “Russet Burbank”, “Lamoka”, and “Atlantic” were inoculated with bacterial suspension of D. dianthicola at 107 colony-forming unite (CFU)/mL using a vacuum infiltration method, air dried, and then planted in the field. Two-year results showed that there was a high correlation (p < 0.01) between yield loss and percent of inoculated seed pieces. In a secondary field trial conducted in 2018 and 2019, seed pieces of potato “Shepody”, “Lamoka” and “Atlantic” were inoculated with D. dianthicola, P. parmentieri, or mixture of both species, and then planted. In 2019, disease severity index, as measured by the most sensitive variety “Lamoka”, was 16.2 with D. dianthicola inoculation, 10.4 with P. parmentieri, 25.4 with inoculation with both bacteria. Two-year data had a similar trend. Thus, D. dianthicola was more virulent than P. parmentieri, but the co-inoculation of the two species resulted in increased disease severity compared to single-species inoculation with either pathogen.
Collapse
|
25
|
Genomic divergence between Dickeya zeae strain EC2 isolated from rice and previously identified strains, suggests a different rice foot rot strain. PLoS One 2020; 15:e0240908. [PMID: 33079956 PMCID: PMC7575072 DOI: 10.1371/journal.pone.0240908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Rice foot rot caused by Dickeya zeae is an important bacterial disease of rice worldwide. In this study, we identified a new strain EC2 from rice in Guangdong province, China. This strain differed from the previously identified strain from rice in its biochemical characteristics, pathogenicity, and genomic constituents. To explore genomic discrepancies between EC2 and previously identified strains from rice, a complete genome sequence of EC2 was obtained and used for comparative genomic analyses. The complete genome sequence of EC2 is 4,575,125 bp in length. EC2 was phylogenetically closest to previously identified Dickeya strains from rice, but not within their subgroup. In terms of secretion systems, genomic comparisons revealed that EC2 harbored only type I (T1SS), typeⅡ (T2SS), and type VI (T6SS) secretion systems. The flagella cluster of this strain possessed specific genomic characteristics like other D. zeae strains from Guangdong and from rice; within this locus, the genetic diversity among strains from rice was much lower than that of within strains from non-rice hosts. Unlike other strains from rice, EC2 lost the zeamine cluster, but retained the clustered regularly interspaced short palindromic repeats-1 (CRISPR-1) array. Compared to the other D. zeae strains containing both exopolysaccharide (EPS) and capsular polysaccharide (CPS) clusters, EC2 harbored only the CPS cluster, while the other strains from rice carried only the EPS cluster. Furthermore, we found strain MS1 from banana, carrying both EPS and CPS clusters, produced significantly more EPS than the strains from rice, and exhibited different biofilm-associated phenotypes. Comparative genomics analyses suggest EC2 likely evolved through a pathway different from the other D. zeae strains from rice, producing a new type of rice foot rot pathogen. These findings emphasize the emergence of a new type of D. zeae strain causing rice foot rot, an essential step in the early prevention of this rice bacterial disease.
Collapse
|
26
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
27
|
Li L, Yuan L, Shi Y, Xie X, Chai A, Wang Q, Li B. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics 2019; 20:486. [PMID: 31195968 PMCID: PMC6567464 DOI: 10.1186/s12864-019-5831-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background Pectobacterium carotovorum subsp. brasiliense is a broad host range bacterial pathogen, which causes blackleg of potatoes and bacterial soft rot of vegetables worldwide. Production of plant cell wall degrading enzymes is usually critical for Pectobacterium infection. However, other virulence factors and the mechanisms of genetic adaptation still need to be studied in detail. Results In this study, the complete genome of P. carotovorum subsp. brasiliense strain SX309 isolated from cucumber was compared with eight other pathogenic bacteria belonging to the Pectobacterium genus, which were isolated from various host plants. Genome comparison revealed that most virulence genes are highly conserved in the Pectobacterium strains, especially for the key virulence determinants involved in the biosynthesis of extracellular enzymes and others including the type II and III secretion systems, quorum sensing system, flagellar and chemotactic genes. Nevertheless, some variable regions of the T6SS and the CRISP-Cas immune system are unique for P. carotovorum subsp. brasiliense. Conclusions The extensive comparative genomics analysis revealed highly conserved virulence genes in the Pectobacterium strains. However, several variable regions of type VI secretion system and two subtype Cas mechanism-Cas immune systems possibly contribute to the process of Pectobacterium infection and adaptive immunity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5831-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
28
|
Li X, Ma Y, Liang S, Tian Y, Yin S, Xie S, Xie H. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 2018; 19:889. [PMID: 30526490 PMCID: PMC6286560 DOI: 10.1186/s12864-018-5269-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pectobacterium spp. are necrotrophic bacterial plant pathogens of the family Pectobacteriaceae, responsible for a wide spectrum of diseases of important crops and ornamental plants including soft rot, blackleg, and stem wilt. P. carotovorum is a genetically heterogeneous species consisting of three valid subspecies, P. carotovorum subsp. brasiliense (Pcb), P. carotovorum subsp. carotovorum (Pcc), and P. carotovorum subsp. odoriferum (Pco). RESULTS Thirty-two P. carotovorum strains had their whole genomes sequenced, including the first complete genome of Pco and another circular genome of Pcb, as well as the high-coverage genome sequences for 30 additional strains covering Pcc, Pcb, and Pco. In combination with 52 other publicly available genome sequences, the comparative genomics study of P. carotovorum and other four closely related species P. polaris, P. parmentieri, P. atrosepticum, and Candidatus P. maceratum was conducted focusing on CRISPR-Cas defense systems and pathogenicity determinants. Our analysis identified two CRISPR-Cas types (I-F and I-E) in Pectobacterium, as well as another I-C type in Dickeya that is not found in Pectobacterium. The core pathogenicity factors (e.g., plant cell wall-degrading enzymes) were highly conserved, whereas some factors (e.g., flagellin, siderophores, polysaccharides, protein secretion systems, and regulatory factors) were varied among these species and/or subspecies. Notably, a novel type of T6SS as well as the sorbitol metabolizing srl operon was identified to be specific to Pco in Pectobacterium. CONCLUSIONS This study not only advances the available knowledge about the genetic differentiation of individual subspecies of P. carotovorum, but also delineates the general genetic features of P. carotovorum by comparison with its four closely related species, thereby substantially enriching the extent of information now available for functional genomic investigations about Pectobacterium.
Collapse
Affiliation(s)
- Xiaoying Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Yali Ma
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Shuqing Liang
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Yu Tian
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Sanjun Yin
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Sisi Xie
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| |
Collapse
|
29
|
Ahmed FA, Larrea-Sarmiento A, Alvarez AM, Arif M. Genome-informed diagnostics for specific and rapid detection of Pectobacterium species using recombinase polymerase amplification coupled with a lateral flow device. Sci Rep 2018; 8:15972. [PMID: 30374117 PMCID: PMC6206099 DOI: 10.1038/s41598-018-34275-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022] Open
Abstract
Pectobacterium species cause serious bacterial soft rot diseases worldwide on economically important fruit and vegetable crops including tomato and potato. Accurate and simple methods are essential for rapid pathogen identification and timely management of the diseases. Recombinase polymerase amplification (RPA) combined with a lateral flow device (LFD) was developed for specific detection of Pectobacterium sp. directly from infected plant materials with no need for DNA isolation. The specificity of RPA-LFD was tested with 26 Pectobacterium sp. strains and 12 non-Pectobacterium species and no false positive or false negative outcomes were observed. RPA primers and probe for host control were also developed to detect the host genome for enhanced reliability and accuracy of the developed assay. The detection limit of 10 fg was obtained with both sensitivity and spiked sensitivity assays. No inhibitory effects were observed on the RPA assay when targets (pathogen and host) were directly detected from infected potato and tomato sap. The developed RPA assay has numerous applications from routine diagnostics at point-of-care, biosecurity, surveillance and disease management to epidemiological studies. In addition, this tool can also be used to discover reservoir hosts for Pectobacterium species.
Collapse
Affiliation(s)
- Firas A Ahmed
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
- Agriculture College, University of Kufa, Al-Najaf, Iraq
| | - Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
30
|
Zoledowska S, Motyka-Pomagruk A, Sledz W, Mengoni A, Lojkowska E. High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genomics 2018; 19:751. [PMID: 30326842 PMCID: PMC6192338 DOI: 10.1186/s12864-018-5140-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pectobacterium parmentieri is a newly established species within the plant pathogenic family Pectobacteriaceae. Bacteria belonging to this species are causative agents of diseases in economically important crops (e.g. potato) in a wide range of different environmental conditions, encountered in Europe, North America, Africa, and New Zealand. Severe disease symptoms result from the activity of P. parmentieri virulence factors, such as plant cell wall degrading enzymes. Interestingly, we observe significant phenotypic differences among P. parmentieri isolates regarding virulence factors production and the abilities to macerate plants. To establish the possible genomic basis of these differences, we sequenced 12 genomes of P. parmentieri strains (10 isolated in Poland, 2 in Belgium) with the combined use of Illumina and PacBio approaches. De novo genome assembly was performed with the use of SPAdes software, while annotation was conducted by NCBI Prokaryotic Genome Annotation Pipeline. RESULTS The pan-genome study was performed on 15 genomes (12 de novo assembled and three reference strains: P. parmentieri CFBP 8475T, P. parmentieri SCC3193, P. parmentieri WPP163). The pan-genome includes 3706 core genes, a high number of accessory (1468) genes, and numerous unique (1847) genes. We identified the presence of well-known genes encoding virulence factors in the core genome fraction, but some of them were located in the dispensable genome. A significant fraction of horizontally transferred genes, virulence-related gene duplications, as well as different CRISPR arrays were found, which can explain the observed phenotypic differences. Finally, we found also, for the first time, the presence of a plasmid in one of the tested P. parmentieri strains isolated in Poland. CONCLUSIONS We can hypothesize that a large number of the genes in the dispensable genome and significant genomic variation among P. parmentieri strains could be the basis of the potential wide host range and widespread diffusion of P. parmentieri. The obtained data on the structure and gene content of P. parmentieri strains enabled us to speculate on the importance of high genomic plasticity for P. parmentieri adaptation to different environments.
Collapse
Affiliation(s)
- S Zoledowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - A Motyka-Pomagruk
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - W Sledz
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - A Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - E Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
31
|
Abstract
Bacterial soft rot is a disease complex caused by multiple genera of gram-negative and gram-positive bacteria, with Dickeya and Pectobacterium being the most widely studied soft-rot bacterial pathogens. In addition to soft rot, these bacteria also cause blackleg of potato, foot rot of rice, and bleeding canker of pear. Multiple Dickeya and Pectobacterium species cause the same symptoms on potato, complicating epidemiology and disease resistance studies. The primary pathogen species present in potato-growing regions differs over time and space, further complicating disease management. Genomics technologies are providing new management possibilities, including improved detection and biocontrol methods that may finally allow effective disease management. The recent development of inbred diploid potato lines is also having a major impact on studying soft-rot pathogens because it is now possible to study soft-rot disease in model plant species that produce starchy vegetative storage organs. Together, these new discoveries have changed how we face diseases caused by these pathogens.
Collapse
Affiliation(s)
- Amy O Charkowski
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA;
| |
Collapse
|
32
|
Niemi O, Laine P, Koskinen P, Pasanen M, Pennanen V, Harjunpää H, Nykyri J, Holm L, Paulin L, Auvinen P, Palva ET, Pirhonen M. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Stand Genomic Sci 2017; 12:87. [PMID: 29276572 PMCID: PMC5738896 DOI: 10.1186/s40793-017-0301-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Bacteria of the genus Pectobacterium are economically important plant pathogens that cause soft rot disease on a wide variety of plant species. Here, we report the genome sequence of Pectobacterium carotovorum strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980's. The genome of strain SCC1 consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp. In total 4451 genes were predicted, of which 4349 are protein coding and 102 are RNA genes.
Collapse
Affiliation(s)
- Outi Niemi
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Patrik Koskinen
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Miia Pasanen
- Plant Pathology, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Ville Pennanen
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Heidi Harjunpää
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Johanna Nykyri
- Plant Pathology, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Liisa Holm
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - E. Tapio Palva
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Plant Pathology, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Dees MW, Lysøe E, Rossmann S, Perminow J, Brurberg MB. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2017; 67:5222-5229. [PMID: 29068285 DOI: 10.1099/ijsem.0.002448] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Pectobacterium, which belongs to the bacterial family Enterobacteriaceae, contains numerous species that cause soft rot diseases in a wide range of plants. The species Pectobacterium carotovorum is highly heterogeneous, indicating a need for re-evaluation and a better classification of the species. PacBio was used for sequencing of two soft-rot-causing bacterial strains (NIBIO1006T and NIBIO1392), initially identified as P. carotovorumstrains by fatty acid analysis and sequencing of three housekeeping genes (dnaX, icdA and mdh). Their taxonomic relationship to other Pectobacterium species was determined and the distance from any described species within the genus Pectobacterium was less than 94 % average nucleotide identity (ANI). Based on ANI, phylogenetic data and genome-to-genome distance, strains NIBIO1006T, NIBIO1392 and NCPPB3395 are suggested to represent a novel species of the genus Pectobacterium, for which the name Pectobacterium polaris sp. nov. is proposed. The type strain is NIBIO1006T (=DSM 105255T=NCPPB 4611T).
Collapse
Affiliation(s)
- Merete Wiken Dees
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Simeon Rossmann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Juliana Perminow
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
34
|
Burns JL, Jariwala PB, Rivera S, Fontaine BM, Briggs L, Weinert EE. Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant Pathogen Pectobacterium carotovorum. ACS Chem Biol 2017; 12:2070-2077. [PMID: 28612602 DOI: 10.1021/acschembio.7b00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O2-dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.
Collapse
Affiliation(s)
- Justin L. Burns
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Parth B. Jariwala
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Shannon Rivera
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Benjamin M. Fontaine
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Laura Briggs
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Emily E. Weinert
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
35
|
Meng X, Chai A, Shi Y, Xie X, Ma Z, Li B. Emergence of Bacterial Soft Rot in Cucumber Caused by Pectobacterium carotovorum subsp. brasiliense in China. PLANT DISEASE 2017; 101:279-287. [PMID: 30681927 DOI: 10.1094/pdis-05-16-0763-re] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During 2014 to 2015, a devastating bacterial soft rot on cucumber stems and leaves occurred in Shandong, Shanxi, Hebei, Henan, and Liaoning provinces of China, resulting in serious economic losses for cucumber production. The gummosis emerged on the surface of leaves, stems, petioles, and fruit of cucumber. The basal stem color was dark brown and the stem base turned to wet rot. Yellow spots and wet rot emerged at the edge of the infected cucumber leaves and gradually infected the leaf centers. In total, 45 bacterial strains were isolated from the infected tissues. On the basis of phenotypic properties of morphology, physiology, biochemistry, and 16S ribosomal RNA gene sequence analysis, the pathogen was identified as Pectobacterium carotovorum. Multilocus sequence analysis confirmed that the isolates were P. carotovorum subsp. brasiliense, and the pathogens fell in clade II. The pathogenicity of isolated bacteria strains was confirmed. The strains reisolated were the same as the original. The host range test confirmed that strains had a wide range of hosts. As far as we know, this is the first report of cucumber stem soft rot caused by P. carotovorum subsp. brasiliense in China as well as in the world, which has a significant economic impact on cucumber production.
Collapse
Affiliation(s)
- Xianglong Meng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081; and Department of Plant Pathology, China Agricultural University, Beijing 100094
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences
| | - Zhanhong Ma
- Department of Plant Pathology, China Agricultural University
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences
| |
Collapse
|
36
|
Yasuhara‐Bell J, Marrero G, De Silva A, Alvarez AM. Specific detection of Pectobacterium carotovorum by loop-mediated isothermal amplification. MOLECULAR PLANT PATHOLOGY 2016; 17:1499-1505. [PMID: 26833881 PMCID: PMC6638492 DOI: 10.1111/mpp.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/13/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre- and post-harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non-pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop-mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non-target genera of plant-associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular-based detection assays.
Collapse
Affiliation(s)
- Jarred Yasuhara‐Bell
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| | - Glorimar Marrero
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| | - Asoka De Silva
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| |
Collapse
|
37
|
Draft genome of a South African strain of Pectobacterium carotovorum subsp. brasiliense. Braz J Microbiol 2016; 48:11-12. [PMID: 27939377 PMCID: PMC5221399 DOI: 10.1016/j.bjm.2016.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
The draft genome of Pectobacterium carotovorum subsp. brasiliense (Pcb) which causes blackleg of potato was submitted to the NCBI and released with reference number NZ_LGRF00000000.1. The estimated genome size based on the draft genome assembly is 4,820,279 bp from 33 contigs ranging in length from 444 to 1,660,019 nucleotides. The genome annotation showed 4250 putative genes, 4114 CDS and 43 pseudo-genes. Three complete rRNA gene species were detected: nine 5S, one 16S and one 23S. Other partial rRNA gene fragments were also identified, nine 16S rRNA and three 23S rRNA. A total of 69 tRNA genes and one ncRNA gene were also annotated in this genome.
Collapse
|
38
|
Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG, Hélias V, Faure D. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int J Syst Evol Microbiol 2016; 66:5379-5383. [PMID: 27692046 DOI: 10.1099/ijsem.0.001524] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).
Collapse
Affiliation(s)
- Slimane Khayi
- Institute of Integrative Biology of the Cell (I2BC), CEA CNRS Univ. Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Jérémy Cigna
- Institute of Integrative Biology of the Cell (I2BC), CEA CNRS Univ. Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.,Semences, Innovation, Protection Recherche et Environnement (SIPRE), 62217 Achicourt, France
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Valérie Hélias
- FN3PT-RD3PT, 75008 Paris, France.,IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, 35650 Le Rheu, France
| | - Denis Faure
- Institute of Integrative Biology of the Cell (I2BC), CEA CNRS Univ. Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
39
|
Davis II EW, Weisberg AJ, Tabima JF, Grunwald NJ, Chang JH. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria. PeerJ 2016; 4:e2222. [PMID: 27547538 PMCID: PMC4958008 DOI: 10.7717/peerj.2222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
Understanding the population structure and genetic diversity of plant pathogens, as well as the effect of agricultural practices on pathogen evolution, is important for disease management. Developments in molecular methods have contributed to increase the resolution for accurate pathogen identification, but those based on analysis of DNA sequences can be less straightforward to use. To address this, we developed Gall-ID, a web-based platform that uses DNA sequence information from 16S rDNA, multilocus sequence analysis and whole genome sequences to group disease-associated bacteria to their taxonomic units. Gall-ID was developed with a particular focus on gall-forming bacteria belonging to Agrobacterium, Pseudomonas savastanoi, Pantoea agglomerans, and Rhodococcus. Members of these groups of bacteria cause growth deformation of plants, and some are capable of infecting many species of field, orchard, and nursery crops. Gall-ID also enables the use of high-throughput sequencing reads to search for evidence for homologs of characterized virulence genes, and provides downloadable software pipelines for automating multilocus sequence analysis, analyzing genome sequences for average nucleotide identity, and constructing core genome phylogenies. Lastly, additional databases were included in Gall-ID to help determine the identity of other plant pathogenic bacteria that may be in microbial communities associated with galls or causative agents in other diseased tissues of plants. The URL for Gall-ID is http://gall-id.cgrb.oregonstate.edu/.
Collapse
Affiliation(s)
- Edward W. Davis II
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Javier F. Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Niklaus J. Grunwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
40
|
Panda P, Vanga BR, Lu A, Fiers M, Fineran PC, Butler R, Armstrong K, Ronson CW, Pitman AR. Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol 2016; 7:397. [PMID: 27065965 PMCID: PMC4814525 DOI: 10.3389/fmicb.2016.00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Integrative and conjugative elements (ICEs) play a central role in the evolution of bacterial virulence, their transmission between bacteria often leading to the acquisition of virulence factors that alter host range or aggressiveness. Much is known about the functions of the virulence determinants that ICEs harbor, but little is understood about the cryptic effects of ICEs on their host cell. In this study, the importance of horizontally acquired island 2 (HAI2), an ICE in the genome of Pectobacterium atrosepticum SCRI1043, was studied using a strain in which the entire ICE had been removed by CRISPR-Cas-mediated genome editing. HAI2 encodes coronafacic acid, a virulence factor that enhances blackleg disease of potato stems caused by P. atrosepticum SCRI1043. As expected, deletion of HAI2 resulted in reduced blackleg symptoms in potato stems. A subsequent screen for HAI2-related ICEs in other strains of the Pectobacterium genus revealed their ubiquitous nature in P. atrosepticum. Yet, HAI2-related ICEs were only detected in the genomes of a few P. carotovorum strains. These strains were notable as blackleg causing strains belonging to two different subspecies of P. carotovorum. Sequence analysis of the ICEs in different strains of both P. atrosepticum and P. carotovorum confirmed that they were diverse and were present in different locations on the genomes of their bacterial host, suggesting that the cfa cluster was probably acquired independently on a number of occasions via chromosomal insertion of related ICEs. Excision assays also demonstrated that the ICEs in both P. atrosepticum and P. carotovorum are mobilized from the host chromosome. Thus, the future spread of these ICEs via lateral gene transfer might contribute to an increase in the prevalence of blackleg-causing strains of P. carotovorum.
Collapse
Affiliation(s)
- Preetinanda Panda
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Bhanupratap R. Vanga
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ashley Lu
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Mark Fiers
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Peter C. Fineran
- The Bio-Protection Research CentreLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ruth Butler
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | | | - Clive W. Ronson
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Andrew R. Pitman
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| |
Collapse
|
41
|
Czajkowski R, Pérombelon MCM, Jafra S, Lojkowska E, Potrykus M, van der Wolf JM, Sledz W. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. THE ANNALS OF APPLIED BIOLOGY 2015; 166:18-38. [PMID: 25684775 PMCID: PMC4320782 DOI: 10.1111/aab.12166] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/05/2014] [Indexed: 05/10/2023]
Abstract
The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in storage thereby reducing yield and quality. Efficient and cost-effective detection and identification methods are essential to investigate the ecology and pathogenesis of the SRE as well as in seed certification programmes. The aim of this review was to collect all existing information on methods available for SRE detection. The review reports on the sampling and preparation of plant material for testing and on over thirty methods to detect, identify and differentiate the soft rot and blackleg causing bacteria to species and subspecies level. These include methods based on biochemical characters, serology, molecular techniques which rely on DNA sequence amplification as well as several less-investigated ones.
Collapse
Affiliation(s)
- R Czajkowski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | | | - S Jafra
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | - E Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | - M Potrykus
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | | | - W Sledz
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| |
Collapse
|
42
|
Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes. Genetica 2014; 143:241-52. [PMID: 25297844 DOI: 10.1007/s10709-014-9793-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
Abstract
The blackleg and soft-rot diseases caused by pectinolytic enterobacteria such as Pectobacterium and Dickeya are major causes of losses affecting potato crop in the field and upon storage. In this work, we report the isolation, characterization and genome analysis of the Pectobacterium wasabiae (formerly identified as Pectobacterium carotovorum subsp. carotovorum) strain RNS 08.42.1A, that has been isolated from a Solanum tuberosum host plant in France. Comparative genomics with 3 other P. wasabiae strains isolated from potato plants in different areas in North America and Europe, highlighted both a strong similarity at the whole genome level (ANI > 99 %) and a conserved synteny of the virulence genes. In addition, our analyses evidenced a robust separation between these four P. wasabiae strains and the type strain P. wasabiae CFBP 3304(T), isolated from horseradish in Japan. In P. wasabiae RNS 08.42.1A, the expI and expR nucleotidic sequences are more related to those of some Pectobacterium atrosepticum and P. carotovorum strains (90 % of identity) than to those of the other potato P. wasabiae strains (70 to 74 % of identity). This could suggest a recruitment of these genes in the P. wasabiae strain RNS 08.42.1A by an horizontal transfer between pathogens infecting the same potato host plant.
Collapse
|
43
|
Lee DH, Kim JB, Lim JA, Han SW, Heu S. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea. THE PLANT PATHOLOGY JOURNAL 2014; 30:117-24. [PMID: 25288994 PMCID: PMC4174852 DOI: 10.5423/ppj.oa.12.2013.0117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 05/20/2023]
Abstract
The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Jin-Beom Kim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Jeong-A Lim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 456-756, Korea
| | - Sunggi Heu
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
- Corresponding author. Phone) +82-31-290-0455, FAX) +82-31-290-0407, E-mail)
| |
Collapse
|
44
|
Draft Genome Sequence of Pectobacterium wasabiae Strain CFIA1002. GENOME ANNOUNCEMENTS 2014; 2:genomeA.00214-14. [PMID: 24831134 PMCID: PMC4022798 DOI: 10.1128/genomea.00214-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pectobacterium wasabiae, originally causing soft rot disease in horseradish in Japan, was recently found to cause blackleg-like symptoms on potato in the United States, Canada, and Europe. A draft genome sequence of a Canadian potato isolate of P. wasabiae CFIA1002 will enhance the characterization of its pathogenicity and host specificity features.
Collapse
|
45
|
Marrero G, Schneider KL, Jenkins DM, Alvarez AM. Phylogeny and classification of Dickeya based on multilocus sequence analysis. Int J Syst Evol Microbiol 2014; 63:3524-3539. [PMID: 24003072 DOI: 10.1099/ijs.0.046490-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial heart rot of pineapple reported in Hawaii in 2003 and reoccurring in 2006 was caused by an undetermined species of Dickeya. Classification of the bacterial strains isolated from infected pineapple to one of the recognized Dickeya species and their phylogenetic relationships with Dickeya were determined by a multilocus sequence analysis (MLSA), based on the partial gene sequences of dnaA, dnaJ, dnaX, gyrB and recN. Individual and concatenated gene phylogenies revealed that the strains form a clade with reference Dickeya sp. isolated from pineapple in Malaysia and are closely related to D. zeae; however, previous DNA-DNA reassociation values suggest that these strains do not meet the genomic threshold for consideration in D. zeae, and require further taxonomic analysis. An analysis of the markers used in this MLSA determined that recN was the best overall marker for resolution of species within Dickeya. Differential intraspecies resolution was observed with the other markers, suggesting that marker selection is important for defining relationships within a clade. Phylogenies produced with gene sequences from the sequenced genomes of strains D. dadantii Ech586, D. dadantii Ech703 and D. zeae Ech1591 did not place the sequenced strains with members of other well-characterized members of their respective species. The average nucleotide identity (ANI) and tetranucleotide frequencies determined for the sequenced strains corroborated the results of the MLSA that D. dadantii Ech586 and D. dadantii Ech703 should be reclassified as Dickeya zeae Ech586 and Dickeya paradisiaca Ech703, respectively, whereas D. zeae Ech1591 should be reclassified as Dickeya chrysanthemi Ech1591.
Collapse
Affiliation(s)
- Glorimar Marrero
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Kevin L Schneider
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel M Jenkins
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
46
|
Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:19-43. [PMID: 24820995 DOI: 10.1146/annurev-phyto-102313-045907] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Crop diseases emerge without warning. In many cases, diseases cross borders, or even oceans, before plant pathologists have time to identify and characterize the causative agents. Genome sequencing, in combination with intensive sampling of pathogen populations and application of population genetic tools, is now providing the means to unravel how bacterial crop pathogens emerge from environmental reservoirs, how they evolve and adapt to crops, and what international and intercontinental routes they follow during dissemination. Here, we introduce the field of population genomics and review the population genomics research of bacterial plant pathogens over the past 10 years. We highlight the potential of population genomics for investigating plant pathogens, using examples of population genomics studies of human pathogens. We also describe the complementary nature of the fields of population genomics and molecular plant-microbe interactions and propose how to translate new insights into improved disease prevention and control.
Collapse
Affiliation(s)
- Boris A Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia 24061; ,
| | | | | |
Collapse
|
47
|
Davidsson PR, Kariola T, Niemi O, Palva ET. Pathogenicity of and plant immunity to soft rot pectobacteria. FRONTIERS IN PLANT SCIENCE 2013; 4:191. [PMID: 23781227 PMCID: PMC3678301 DOI: 10.3389/fpls.2013.00191] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 05/20/2023]
Abstract
Soft rot pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall-degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemi)biotrophs such as Pseudomonas, type III secretion systems (T3SS) and T3 effectors do not appear central to pathogenesis of pectobacteria. Indeed, recent genomic analysis of several Pectobacterium species including the emerging pathogen Pectobacterium wasabiae has shown that many strains lack the entire T3SS as well as the T3 effectors. Instead, this analysis has indicated the presence of novel virulence determinants. Resistance to broad host range pectobacteria is complex and does not appear to involve single resistance genes. Instead, activation of plant innate immunity systems including both SA (salicylic acid) and JA (jasmonic acid)/ET (ethylene)-mediated defenses appears to play a central role in attenuation of Pectobacterium virulence. These defenses are triggered by detection of pathogen-associated molecular patterns (PAMPs) or recognition of modified-self such as damage-associated molecular patterns (DAMPs) and result in enhancement of basal immunity (PAMP/DAMP-triggered immunity or pattern-triggered immunity, PTI). In particular plant cell wall fragments released by the action of the degradative enzymes secreted by pectobacteria are major players in enhanced immunity toward these pathogens. Most notably bacterial pectin-degrading enzymes release oligogalacturonide (OG) fragments recognized as DAMPs activating innate immune responses. Recent progress in understanding OG recognition and signaling allows novel genetic screens for OG-insensitive mutants and will provide new insights into plant defense strategies against necrotrophs such as pectobacteria.
Collapse
Affiliation(s)
| | - Tarja Kariola
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Outi Niemi
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - E. T. Palva
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
48
|
Hogan CS, Mole BM, Grant SR, Willis DK, Charkowski AO. The type III secreted effector DspE is required early in solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx(3-6)D/E motifs. PLoS One 2013; 8:e65534. [PMID: 23755246 PMCID: PMC3670860 DOI: 10.1371/journal.pone.0065534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022] Open
Abstract
Pectobacterium species are enterobacterial plant-pathogens that cause soft rot disease in diverse plant species. Unlike hemi-biotrophic plant pathogenic bacteria, the type III secretion system (T3SS) of Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) appears to secrete only one effector protein, DspE. Previously, we found that the T3SS regulator HrpL and the effector DspE are required for P. carotovorum pathogenesis on leaves. Here, we identified genes up-regulated by HrpL, visualized expression of dspE in leaves, and established that DspE causes host cell death. DspE required its full length and WxxxE-like motifs, which are characteristic of the AvrE-family effectors, for host cell death. We also examined expression in plant leaves and showed that hrpL is required for the expression of dspE and hrpN, and that the loss of a functional T3SS had unexpected effects on expression of other genes during leaf infection. These data support a model where P. carotovorum uses the T3SS early in leaf infection to initiate pathogenesis through elicitation of DspE-mediated host cell death.
Collapse
Affiliation(s)
- Clifford S. Hogan
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth M. Mole
- Department of Biology and Curriculum in Molecular Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah R. Grant
- Department of Biology and Curriculum in Molecular Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David K. Willis
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Vegetable Crops Research Unit, United States Department of Agriculture – Agricultural Research Service, Madison, Wisconsin, United States of America
| | - Amy O. Charkowski
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
49
|
Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, Broberg M, Plyusnin I, Törönen P, Holm L, Pirhonen M, Palva ET. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 2012; 8:e1003013. [PMID: 23133391 PMCID: PMC3486870 DOI: 10.1371/journal.ppat.1003013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.
Collapse
Affiliation(s)
- Johanna Nykyri
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Outi Niemi
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Patrik Koskinen
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | - Miia Pasanen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Martin Broberg
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Ilja Plyusnin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Liisa Holm
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - E. Tapio Palva
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
De Boer SH, Li X, Ward LJ. Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. PHYTOPATHOLOGY 2012; 102:937-947. [PMID: 22713077 DOI: 10.1094/phyto-04-12-0083-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pectobacterium atrosepticum, P. carotovorum subsp. brasiliensis, P. carotovorum subsp. carotovorum, and P. wasabiae were detected in potato stems with blackleg symptoms using species- and subspecies-specific polymerase chain reaction (PCR). The tests included a new assay for P. wasabiae based on the phytase gene sequence. Identification of isolates from diseased stems by biochemical or physiological characterization, PCR, and multi-locus sequence typing (MLST) largely confirmed the PCR detection of Pectobacterium spp. in stem samples. P. atrosepticum was most commonly present but was the sole Pectobacterium sp. detected in only 52% of the diseased stems. P. wasabiae was most frequently present in combination with P. atrosepticum and was the sole Pectobacterium sp. detected in 13% of diseased stems. Pathogenicity of P. wasabiae on potato and its capacity to cause blackleg disease were demonstrated by stem inoculation and its isolation as the sole Pectobacterium sp. from field-grown diseased plants produced from inoculated seed tubers. Incidence of P. carotovorum subsp. brasiliensis was low in diseased stems, and the ability of Canadian strains to cause blackleg in plants grown from inoculated tubers was not confirmed. Canadian isolates of P. carotovorum subsp. brasiliensis differed from Brazilian isolates in diagnostic biochemical tests but conformed to the subspecies in PCR specificity and typing by MLST.
Collapse
Affiliation(s)
- S H De Boer
- Canadian Food Inspection Agency, Charlottetown, Canada
| | | | | |
Collapse
|