1
|
Rijal R, Gomer RH. Gallein potentiates isoniazid's ability to suppress Mycobacterium tuberculosis growth. Front Microbiol 2024; 15:1369763. [PMID: 38690363 PMCID: PMC11060752 DOI: 10.3389/fmicb.2024.1369763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug tolerance. Increased intracellular polyphosphate (polyP) in Mtb enhances tolerance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.
Collapse
Affiliation(s)
- Ramesh Rijal
- Gomer Lab, Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H. Gomer
- Gomer Lab, Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Hu C, Garey KW. Microscopy methods for Clostridioides difficile. Anaerobe 2024; 86:102822. [PMID: 38341023 DOI: 10.1016/j.anaerobe.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Microscopic technologies including light and fluorescent, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cryo-electron microscopy have been widely utilized to visualize Clostridioides difficile at the molecular, cellular, community, and structural biology level. This comprehensive review summarizes the microscopy tools (fluorescent and reporter system) in their use to study different aspects of C. difficile life cycle and virulence (sporulation, germination) or applications (detection of C. difficile or use of antimicrobials). With these developing techniques, microscopy tools will be able to find broader applications and address more challenging questions to study C. difficile and C. difficile infection.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
3
|
Rijal R, Gomer RH. Gallein and isoniazid act synergistically to attenuate Mycobacterium tuberculosis growth in human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574965. [PMID: 38260681 PMCID: PMC10802476 DOI: 10.1101/2024.01.10.574965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug resistance. Increased intracellular polyphosphate (polyP) in Mtb enhances resistance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
4
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
6
|
Marini E, Olivença C, Ramalhete S, Aguirre AM, Ingle P, Melo MN, Antunes W, Minton NP, Hernandez G, Cordeiro TN, Sorg JA, Serrano M, Henriques AO. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog 2023; 19:e1011741. [PMID: 37956166 PMCID: PMC10681294 DOI: 10.1371/journal.ppat.1011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/27/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.
Collapse
Affiliation(s)
- Eleonora Marini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Andrea Martinez Aguirre
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Wilson Antunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Joseph A Sorg
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| |
Collapse
|
7
|
Malyshev D, Jones IA, McKracken M, Öberg R, Harper GM, Joshi LT, Andersson M. Hypervirulent R20291 Clostridioides difficile spores show disinfection resilience to sodium hypochlorite despite structural changes. BMC Microbiol 2023; 23:59. [PMID: 36879193 PMCID: PMC9986864 DOI: 10.1186/s12866-023-02787-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Clostridioides difficile is a spore forming bacterial species and the major causative agent of nosocomial gastrointestinal infections. C. difficile spores are highly resilient to disinfection methods and to prevent infection, common cleaning protocols use sodium hypochlorite solutions to decontaminate hospital surfaces and equipment. However, there is a balance between minimising the use of harmful chemicals to the environment and patients as well as the need to eliminate spores, which can have varying resistance properties between strains. In this work, we employ TEM imaging and Raman spectroscopy to analyse changes in spore physiology in response to sodium hypochlorite. We characterize different C. difficile clinical isolates and assess the chemical's impact on spores' biochemical composition. Changes in the biochemical composition can, in turn, change spores' vibrational spectroscopic fingerprints, which can impact the possibility of detecting spores in a hospital using Raman based methods. RESULTS We found that the isolates show significantly different susceptibility to hypochlorite, with the R20291 strain, in particular, showing less than 1 log reduction in viability for a 0.5% hypochlorite treatment, far below typically reported values for C. difficile. While TEM and Raman spectra analysis of hypochlorite-treated spores revealed that some hypochlorite-exposed spores remained intact and not distinguishable from controls, most spores showed structural changes. These changes were prominent in B. thuringiensis spores than C. difficile spores. CONCLUSION This study highlights the ability of certain C. difficile spores to survive practical disinfection exposure and the related changes in spore Raman spectra that can be seen after exposure. These findings are important to consider when designing practical disinfection protocols and vibrational-based detection methods to avoid a false-positive response when screening decontaminated areas.
Collapse
Affiliation(s)
| | | | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Redistribution of the Novel Clostridioides difficile Spore Adherence Receptor E-Cadherin by TcdA and TcdB Increases Spore Binding to Adherens Junctions. Infect Immun 2023; 91:e0047622. [PMID: 36448839 PMCID: PMC9872679 DOI: 10.1128/iai.00476-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile causes antibiotic-associated diseases in humans, ranging from mild diarrhea to severe pseudomembranous colitis and death. A major clinical challenge is the prevention of disease recurrence, which affects nearly ~20 to 30% of the patients with a primary C. difficile infection (CDI). During CDI, C. difficile forms metabolically dormant spores that are essential for recurrence of CDI (R-CDI). In prior studies, we have shown that C. difficile spores interact with intestinal epithelial cells (IECs), which contribute to R-CDI. However, this interaction remains poorly understood. Here, we provide evidence that C. difficile spores interact with E-cadherin, contributing to spore adherence and internalization into IECs. C. difficile toxins TcdA and TcdB lead to adherens junctions opening and increase spore adherence to IECs. Confocal micrographs demonstrate that C. difficile spores associate with accessible E-cadherin; spore-E-cadherin association increases upon TcdA and TcdB intoxication. The presence of anti-E-cadherin antibodies decreased spore adherence and entry into IECs. By enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and immunogold labeling, we observed that E-cadherin binds to C. difficile spores, specifically to the hairlike projections of the spore, reducing spore adherence to IECs. Overall, these results expand our knowledge of how C. difficile spores bind to IECs by providing evidence that E-cadherin acts as a spore adherence receptor to IECs and by revealing how toxin-mediated damage affects spore interactions with IECs.
Collapse
|
9
|
Morais MLGDS, Santos MGC, Costa CL, Martins CS, Leitão RFDC, de Melo Pacífico D, Quesada-Gómez C, Castelo Branco D, Ferreira EDO, Brito GADC. Comparative biofilm-forming ability between Clostridioides difficile strains isolated in Latin America and the epidemic NAP1/027 strain. Front Cell Infect Microbiol 2022; 12:1033698. [PMID: 36619751 PMCID: PMC9815708 DOI: 10.3389/fcimb.2022.1033698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction One of the challenges in treating Clostridioides difficile infection (CDI) is that the bacterium forms biofilms, a critical virulence mechanism known to promote antibiotic resistance and, as a result, consequently, a higher recurrence of the disease. The goal of this study was to compare the ability of three MLST Clade 2 strains to form a biofilm in vitro: ICC-45 (ribotype SLO231/UK[CE]821), a ST41 toxinotype IXb isolated in Brazil; and two epidemic NAP1/027/ST01 strains: NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica and the reference epidemic strain NAP1/027/ST01 (R20291); and ATCC700057, a non-toxigenic strain. Methods The ability of strains to form biofilm was evaluated using crystal violet staining. In addition, samples were stained with the Film Tracer biofilm matrix (Invitrogen®) and the biofilm matrix thickness was measured using confocal microscopy. The matrix architecture was determined using Scanning electron microscop. Confocal microscopy was used to detect the presence of toxin A (tcdA) using an anti-Clostridioides difficile TcdA antibody. The expression of virulence genes (tcdA, tcdB, tcdC, cdtB, spo0A, slpA, cwp66 and cwp84) was examined, as well as the effect of antibiotics metronidazole (MTZ) and vancomycin (VAN) on biofilm growth. Results All of the strains tested formed a moderate biofilm with 1.1 <DO570nm>3.5. After 72h, biofilm biomass of the NAP1/027/ST01 epidemic strains (LIBA5756 and R20291) was significantly higher than ICC-45 and ATCC 700057 biofilms, as confirmed by electron and confocal microscopy. At 120h, the LIBA5756 biofilm biomass decreased compared to other strains. The toxigenic strains R20291 or LIBA 5756 had higher expression of genes tcdA, tcdB, tcdC, cdtA, slpA and spo0A than ICC-45, but there were no significant differences in the expression levels of cdtB, cwp66 and cwp84. In epidemic strains, VAN and MTZ inhibited biofilm formation; however, in the ICC-45 strain, MIC concentrations of VAN and MIC and 4MIC of MTZ did not inhibit biofilm formation. Conclusion The three MLST Clade 2 isolated from different rybotipes, two of which were isolated from Latin America, are competent biofilm-forming bacteria, indicating their ability to induce C. difficile infection recurrence, making treatment difficult.
Collapse
Affiliation(s)
- Maria Luana Gaudencio dos Santos Morais
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil,Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mayara Gilde Castro Santos
- Laboratório de Biologia de Anaeróbios, Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília Leite Costa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil,Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição Silva Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Dvison de Melo Pacífico
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Carlos Quesada-Gómez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Débora Castelo Branco
- Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Eliane de Oliveira Ferreira
- Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gerly Anne de Castro Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil,*Correspondence: Gerly Anne de Castro Brito,
| |
Collapse
|
10
|
Inactivation of Clostridium perfringens C1 Spores by the Combination of Mild Heat and Lactic Acid. Foods 2022; 11:foods11233771. [PMID: 36496579 PMCID: PMC9735559 DOI: 10.3390/foods11233771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridium perfringens is a major pathogen causing foodborne illnesses. In this experiment, the inactivation effects of heat and lactic acid (LA) treatments on C. perfringens spores was investigated. Heat treatment (80 °C, 90 °C and 100 °C), LA (0.5% and 1%), and combined LA and heat treatments for 30 and 60 min were performed. Residual spore counts showed that the count of C. perfringens spores was below the detection limit within 30 min of treatment with 1% LA and heat treatment at 90 °C. Scanning electron microscopy and confocal scanning laser microscopy results showed that the surface morphology of the spores was severely disrupted by the co-treatment. The particle size of the spores was reduced to 202 nm and the zeta potential to −3.66 mv. The inner core of the spores was disrupted and the co-treatment resulted in the release of 77% of the nuclear contents 2,6-pyridinedicarboxylic acid. In addition, the hydrophobicity of spores was as low as 11% after co-treatment with LA relative to the control, indicating that the outer layer of spores was severely disrupted. Thus, synergistic heating and LA treatment were effective in inactivating C. perfringens spores.
Collapse
|
11
|
Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores. Microorganisms 2022; 10:microorganisms10101918. [DOI: 10.3390/microorganisms10101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the exosporium, plays an essential role in interactions with host surfaces and the immune system. The main exosporium proteins identified to date include three orthologues of the BclA family of collagen-like proteins, and three cysteine-rich proteins. However, how the underlying spore coat influences exosporium assembly remains unclear. In this work, we explore the contribution of spore coat proteins cotA and cotB, and the spore surface protein, CDIF630_02480, to the exosporium ultrastructure, formation of the polar appendage and the surface accessibility of exosporium proteins. Transmission electron micrographs of spores of insertional inactivation mutants demonstrate that while cotB contributes to the formation of thick-exosporium spores, cotA and CDIF630_02480 contribute to maintain proper thickness of the spore coat and exosporium layers, respectively. The effect of the absence of cotA, cotB and CDIF630_02480 on the surface accessibility of the exosporium proteins CdeA, CdeC, CdeM, BclA2 and BclA3 to antibodies was affected by the presence of the spore appendage, suggesting that different mechanisms of assembly of the exosporium layer might be implicated in each spore phenotype. Collectively, this work contributes to our understanding of the associations between spore coat and exosporium proteins, and how these associations affect the assembly of the spore outer layers. These results have implications for the development of anti-infecting agents targeting C. difficile spores.
Collapse
|
12
|
Tan C, Zhu F, Xiao Y, Wu Y, Meng X, Liu S, Liu T, Chen S, Zhou J, Li C, Wu A. Immunoinformatics Approach Toward the Introduction of a Novel Multi-Epitope Vaccine Against Clostridium difficile. Front Immunol 2022; 13:887061. [PMID: 35720363 PMCID: PMC9204425 DOI: 10.3389/fimmu.2022.887061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium difficile (C.difficile) is an exclusively anaerobic, spore-forming, and Gram-positive pathogen that is the most common cause of nosocomial diarrhea and is becoming increasingly prevalent in the community. Because C. difficile is strictly anaerobic, spores that can survive for months in the external environment contribute to the persistence and diffusion of C. difficile within the healthcare environment and community. Antimicrobial therapy disrupts the natural intestinal flora, allowing spores to develop into propagules that colonize the colon and produce toxins, thus leading to antibiotic-associated diarrhea and pseudomembranous enteritis. However, there is no licensed vaccine to prevent Clostridium difficile infection (CDI). In this study, a multi-epitope vaccine was designed using modern computer methods. Two target proteins, CdeC, affecting spore germination, and fliD, affecting propagule colonization, were chosen to construct the vaccine so that it could simultaneously induce the immune response against two different forms (spore and propagule) of C. difficile. We obtained the protein sequences from the National Center for Biotechnology Information (NCBI) database. After the layers of filtration, 5 cytotoxic T-cell lymphocyte (CTL) epitopes, 5 helper T lymphocyte (HTL) epitopes, and 7 B-cell linear epitopes were finally selected for vaccine construction. Then, to enhance the immunogenicity of the designed vaccine, an adjuvant was added to construct the vaccine. The Prabi and RaptorX servers were used to predict the vaccine's two- and three-dimensional (3D) structures, respectively. Additionally, we refined and validated the structures of the vaccine construct. Molecular docking and molecular dynamics (MD) simulation were performed to check the interaction model of the vaccine-Toll-like receptor (TLR) complexes, vaccine-major histocompatibility complex (MHC) complexes, and vaccine-B-cell receptor (BCR) complex. Furthermore, immune stimulation, population coverage, and in silico molecular cloning were also conducted. The foregoing findings suggest that the final formulated vaccine is promising against the pathogen, but more researchers are needed to verify it.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xiao
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqi Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Siyao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| |
Collapse
|
13
|
Acuña-Amador L, Quesada-Gómez C, Rodríguez C. Clostridioides difficile in Latin America: A comprehensive review of literature (1984-2021). Anaerobe 2022; 74:102547. [PMID: 35337973 DOI: 10.1016/j.anaerobe.2022.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
This narrative review summarizes literature on C. difficile and C. difficile infections (CDI) that emerged from Latin America (LA) between 1984 and 2021. The revised information includes papers in English, Spanish, or Portuguese that were retrieved from the databases Pubmed, Scopus, Web of Science, Google Scholar, Scielo, and Lilacs. Information is presented chronologically and segregated in subregions, focusing on clinical presentation, risk factors, detection and typing methods, prevalence and incidence rates, circulating strains, and, when available, phenotypic traits, such as antimicrobial susceptibility patterns. Studies dealing with cases, clinical aspects of CDI, and performance evaluations of diagnostic methods predominated. However, they showed substantial differences in case definitions, measuring units, populations, and experimental designs. Although a handful of autochthonous strains were identified, predominantly in Brazil and Costa Rica, the presentation and epidemiology of CDI in LA were highly comparable to what has been reported in other regions of the world. Few laboratories isolate and type this bacterium and even less generate whole genome sequences or perform basic science on C. difficile. Less than ten countries lead academic productivity on C. difficile or CDI-related topics, and information from various countries in Central America and the Caribbean is still lacking. The review ends with a global interpretation of the data and recommendations to further develop and consolidate this discipline in LA.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - Carlos Quesada-Gómez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - César Rodríguez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
14
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
15
|
Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021; 12:682111. [PMID: 34177868 PMCID: PMC8225356 DOI: 10.3389/fmicb.2021.682111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Collapse
Affiliation(s)
- Madita Brauer
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juliane Hoyer
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susanne Sievers
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
17
|
Frost LR, Cheng JKJ, Unnikrishnan M. Clostridioides difficile biofilms: A mechanism of persistence in the gut? PLoS Pathog 2021; 17:e1009348. [PMID: 33705497 PMCID: PMC7951904 DOI: 10.1371/journal.ppat.1009348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Lucy R. Frost
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jeffrey K. J. Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Castro-Córdova P, Mora-Uribe P, Reyes-Ramírez R, Cofré-Araneda G, Orozco-Aguilar J, Brito-Silva C, Mendoza-León MJ, Kuehne SA, Minton NP, Pizarro-Guajardo M, Paredes-Sabja D. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nat Commun 2021; 12:1140. [PMID: 33602902 PMCID: PMC7893008 DOI: 10.1038/s41467-021-21355-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5β1 and vitronectin-αvβ1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.
Collapse
Affiliation(s)
- Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Paola Mora-Uribe
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Glenda Cofré-Araneda
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Josué Orozco-Aguilar
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Christian Brito-Silva
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - María José Mendoza-León
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Sarah A Kuehne
- School of Dentistry and Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, UK
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
19
|
Costa CL, Azevedo CPD, Quesada-Gómez C, Brito GADC, Regueira-Neto MDS, Guedes GMDM, Rocha MFG, Sidrim JJC, Cordeiro RDA, Carvalho CBMD, Castelo-Branco DDSCM. Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Anaerobe 2021; 69:102322. [PMID: 33515722 DOI: 10.1016/j.anaerobe.2021.102322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, anaerobic bacillus which is the leading cause of health-care-associated infective diarrhea. The rising incidence of antibiotic resistance in pathogens such as C. difficile makes researches on alternative antibacterial products very important, especially those exploring natural products like propolis. Brazilian Red Propolis, found in the Northeast region of Brazil, is composed by products from regional plants that have the antimicrobial properties. This study aimed to evaluate the in vitro activity of Brazilian Red Propolis (BRP) against C. difficile strains in planktonic and biofilm forms. The susceptibility of four strains of C. difficile to BRP was analyzed by broth microdilution method and vancomycin was included as control drug. BRP-exposed C. difficile cells were evaluated by scanning electron microscopy (SEM). Then, the effects of BRP on growing and mature C. difficile biofilms were also evaluated. BRP minimum inhibitory concentration was 625 μg/mL against all tested strains, while vancomycin MIC range was 0.5-2 μg/mL. SEM showed the loss of homogeneity in bacterial cell wall and cell fragmentation, after BRP-exposure. BRP, at MIC, reduced (P < 0.05) the biomass, matrix proteins and matrix carbohydrates of growing biofilms, and, at 8xMIC, reduced (P < 0.05) the biomass and matrix proteins of mature biofilms. The present study demonstrated that BRP inhibits planktonic growth, damages cell wall, decreases biofilm growth and harms mature biofilms of C. difficile.
Collapse
Affiliation(s)
- Cecília Leite Costa
- Group of Applied Medical Microbiology - GrAMM, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; Biomedicine School, Christus University, Fortaleza, CE, Brazil; Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Carolina Pimentel de Azevedo
- Group of Applied Medical Microbiology - GrAMM, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Carlos Quesada-Gómez
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | | | - Marcos da Silveira Regueira-Neto
- Laboratory of Bioinformatics and Evolutionary Biology, Department of Genetics, Biosciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Glaucia Morgana de Melo Guedes
- Group of Applied Medical Microbiology - GrAMM, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| | - Marcos Fábio Gadelha Rocha
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - José Júlio Costa Sidrim
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rossana de Aguiar Cordeiro
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cibele Barreto Mano de Carvalho
- Group of Applied Medical Microbiology - GrAMM, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Debora de Souza Collares Maia Castelo-Branco
- Group of Applied Medical Microbiology - GrAMM, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
20
|
Budi N, Safdar N, Rose WE. Treatment issues in recurrent Clostridioides difficile infections and the possible role of germinants. FEMS MICROBES 2020; 1:xtaa001. [PMID: 37333958 PMCID: PMC10117431 DOI: 10.1093/femsmc/xtaa001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/14/2020] [Indexed: 07/30/2023] Open
Abstract
Clostridioides difficile is the number one cause of hospital-acquired infections in the United States and one of the CDC's urgent-level pathogen threats. The inflammation caused by pathogenic C. difficile results in diarrhea and pseudomembranous colitis. Patients who undergo clinically successful treatment for this disease commonly experience recurrent infections. Current treatment options can eradicate the vegetative cell form of the bacteria but do not impact the spore form, which is impervious to antibiotics and resists conventional environmental cleaning procedures. Antibiotics used in treating C. difficile infections (CDI) often do not eradicate the pathogen and can prevent regeneration of the microbiome, leaving them vulnerable to recurrent CDI and future infections upon subsequent non-CDI-directed antibiotic therapy. Addressing the management of C. difficile spores in the gastrointestinal (GI) tract is important to make further progress in CDI treatment. Currently, no treatment options focus on reducing GI spores throughout CDI antibiotic therapy. This review focuses on colonization of the GI tract, current treatment options and potential treatment directions emphasizing germinant with antibiotic combinations to prevent recurrent disease.
Collapse
Affiliation(s)
- Noah Budi
- Corresponding author: School of Pharmacy, University of Wisconsin-Madison, Room 4123, 777 Highland Avenue, Madison, WI 53705, USA. Tel: +1-920-419-7704; E-mail:
| | - Nasia Safdar
- Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA, 53726
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA, 53705
| |
Collapse
|
21
|
Pizarro-Guajardo M, Calderón-Romero P, Romero-Rodríguez A, Paredes-Sabja D. Characterization of Exosporium Layer Variability of Clostridioides difficile Spores in the Epidemically Relevant Strain R20291. Front Microbiol 2020; 11:1345. [PMID: 32714296 PMCID: PMC7343902 DOI: 10.3389/fmicb.2020.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a Gram-positive anaerobic intestinal pathogenic bacterium and the causative agent of antibiotic-associated diarrhea. C. difficile spore is a dormant state which acts as a vehicle of transmission and infection. In C. difficile spores, the outermost exosporium layer is the first barrier of interaction with the host and should carry spore ligands involved in spore-host interactions. C. difficile forms two types of spores (i.e., thin and thick exosporium layers). In this communication, we contribute to understand several biological aspects of these two exosporium morphotypes. By transmission electron microscopy, we demonstrate that both exosporium morphotypes appear simultaneously during sporulation and that spore-coat laminations are formed under anaerobic conditions. Nycodenz density-gradient allows enrichment of spores with a thick-exosporium layer morphotype and presence of polar appendage. Using translational fluorescent fusions with exosporium proteins BclA3, CdeA, CdeC, and CdeM as well as with several spore coat proteins, we observed that expression intensity and distribution of SNAP-translational fusions in R20291 strain is highly heterogeneous. Electron micrographs demonstrate that multicopy expression of CdeC, but not CdeM, SNAP translational fusion, increases the abundance of the thick exosporium morphotype. Collectively, these results raise further questions on how these distinctive exosporium morphotypes are made during spore formation.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Paulina Calderón-Romero
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alba Romero-Rodríguez
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
22
|
Lv R, Zou M, Chen W, Zhou J, Ding T, Ye X, Liu D. Ultrasound: Enhance the detachment of exosporium and decrease the hydrophobicity of Bacillus cereus spores. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
24
|
Pizarro-Guajardo M, Chamorro-Veloso N, Vidal RM, Paredes-Sabja D. New insights for vaccine development against Clostridium difficile infections. Anaerobe 2019; 58:73-79. [DOI: 10.1016/j.anaerobe.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
|
25
|
Biofilm-derived spores of Clostridioides (Clostridium) difficile exhibit increased thermotolerance compared to planktonic spores. Anaerobe 2018; 54:169-171. [PMID: 30292821 DOI: 10.1016/j.anaerobe.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/04/2018] [Accepted: 10/04/2018] [Indexed: 11/21/2022]
Abstract
Biofilm-derived spores of strains of four ribotypes (001, 020, 027 & 078) of Clostridioides (Clostridium) difficile were found to exhibit increased thermotolerance compared to spores produced in planktonic culture. In addition, 'thick' and 'thin' exosporium morphotypes described previously were visualised by electron microscopy in both biofilm and planktonic spores.
Collapse
|
26
|
Pizarro-Guajardo M, Cristina Ravanal M, Daniela Paez M, Callegari E, Paredes-Sabja D. Identification of Clostridium difficile Immunoreactive Spore Proteins of the Epidemic Strain R20291. Proteomics Clin Appl 2018; 12:e1700182. [PMID: 29573213 PMCID: PMC6370038 DOI: 10.1002/prca.201700182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/25/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Clostridium difficile infections are the leading cause of diarrhea associated with the use of antibiotics. During infection, C. difficile initiates a sporulation cycle leading to the persistence of C. difficile spores in the host and disease dissemination. The development of vaccine and passive immunization therapies against C. difficile has focused on toxins A and B. In this study, an immunoproteome-based approach to identify immunogenic proteins located on the outer layers of C. difficile spores as potential candidates for the development of immunotherapy and/or diagnostic methods against this devastating infection is used. EXPERIMENTAL DESIGN To identify potential immunogenic proteins on the surface of C. difficile R20291, spore coat/exosporium extracts are separated by 2D electrophoresis (2-DE) and analyzed for reactivity against C. difficile spore-specific goat sera. Finally, the selected spots are in-gel digested with chymotrypsin, peptides generated are separated by nanoUPLC followed by MS/MS using Quad-TOF-MS, corroborated by Ultimate 3000RS-nano-UHPLC coupled to Q-Exactive-Plus-Orbitrap MS. RESULTS The analysis identify five immunoreactive proteins: spore coat proteins CotE, CotA, and CotCB; exosporium protein CdeC; and a cytosolic methyltransferase. CONCLUSION This data provides a list of spore surface protein candidates as antigens for vaccine development against C. difficile infections.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - María Cristina Ravanal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Maria Daniela Paez
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Eduardo Callegari
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
27
|
Comparison of qPCR versus culture for the detection and quantification of Clostridium difficile environmental contamination. PLoS One 2018; 13:e0201569. [PMID: 30161136 PMCID: PMC6116935 DOI: 10.1371/journal.pone.0201569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Contaminated surfaces serve as an important reservoir for Clostridium difficile transmission. Current strategies to detect environmental contamination of C. difficile rely heavily on culture, and often only indicate presence versus absence of spores. The goal of this study was to compare quantitative PCR (qPCR) to culture for the detection and quantification of C. difficile from inert surfaces. First, we compared the limit of detection (LOD) of a 16S rRNA gene and toxin B gene qPCR assay for detection of C. difficile in solution. Second, we compared the LODs of 16S rRNA gene qPCR versus culture for detection of C. difficile from surfaces. Solution experiments were performed by direct seeding of spores into neutralizing broth, whereas surface experiments involved seeding of spores onto plastic test surfaces, and recovery using sponge swabs. Both experiments were conducted using spores expressing short (NAP1) and long (NAP4) hair lengths. Combining data from both strains, the overall LOD for C. difficile cells in solution was 1.4 cells for 16S rRNA gene and 23.6 cells for toxin B gene qPCR (p<0.001). The overall LOD for C. difficile cells from surfaces was 17.1 cells for 16S rRNA gene qPCR and 54.5 cells for culture (p = 0.05), and was not statistically different between strains for each method (p = 0.52). Overall, the proportion of C. difficile cells recovered from surfaces was good when detected by 16S rRNA gene qPCR and culture (qPCR: 76%, culture: 67%, p = 0.36), but, 16S rRNA gene qPCR was capable of detecting lower levels of surface contamination. Future work attempting to measure the presence of C. difficile on environmental surfaces should consider using qPCR.
Collapse
|
28
|
Calderón-Romero P, Castro-Córdova P, Reyes-Ramírez R, Milano-Céspedes M, Guerrero-Araya E, Pizarro-Guajardo M, Olguín-Araneda V, Gil F, Paredes-Sabja D. Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathog 2018; 14:e1007199. [PMID: 30089172 PMCID: PMC6101409 DOI: 10.1371/journal.ppat.1007199] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/20/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea that can culminate in fatal colitis. During the infection, C. difficile produces metabolically dormant spores, which persist in the host and can cause recurrence of the infection. The surface of C. difficile spores seems to be the key in spore-host interactions and persistence. The proteome of the outermost exosporium layer of C. difficile spores has been determined, identifying two cysteine-rich exosporium proteins, CdeC and CdeM. In this work, we explore the contribution of both cysteine-rich proteins in exosporium integrity, spore biology and pathogenesis. Using targeted mutagenesis coupled with transmission electron microscopy we demonstrate that both cysteine rich proteins, CdeC and CdeM, are morphogenetic factors of the exosporium layer of C. difficile spores. Notably, cdeC, but not cdeM spores, exhibited defective spore coat, and were more sensitive to ethanol, heat and phagocytic cells. In a healthy colonic mucosa (mouse ileal loop assay), cdeC and cdeM spore adherence was lower than that of wild-type spores; while in a mouse model of recurrence of the disease, cdeC mutant exhibited an increased infection and persistence during recurrence. In a competitive infection mouse model, cdeC mutant had increased fitness over wild-type. Through complementation analysis with FLAG fusion of known exosporium and coat proteins, we demonstrate that CdeC and CdeM are required for the recruitment of several exosporium proteins to the surface of C. difficile spores. CdeC appears to be conserved exclusively in related Peptostreptococcaeace family members, while CdeM is unique to C. difficile. Our results sheds light on how CdeC and CdeM affect the biology of C. difficile spores and the assembly of the exosporium layer and, demonstrate that CdeC affect C. difficile pathogenesis. We discovered a mechanism of assembly of the outer most layer of Clostridium difficile spores, the exosporium. While CdeC is conserved in several Peptostreptococcaeace family members, CdeM is unique to C. difficile. We show that two proteins that are rich in cysteine amino acid residues, CdeC and CdeM, are essential for the recruitment of additional spore coat and exosporium proteins. The absence of CdeC, had profound implications in the correct spore coat assembly which were related to decreased spore resistant properties that are relevant for in vivo infection such as lysozyme resistance, macrophage infection. Notably, the absence of either cysteine rich proteins leads to a decrease in spore adherence of C. difficile spores to healthy colonic mucosa; but only the absence of CdeC affected in vivo competitive fitness in a mouse model, recurrence of the disease in a mouse model of recurrent infection. Considering the importance of the outer layers of C. difficile spores in spore-host interactions, our findings have broad implications on the biology of C. difficile spores and to C. difficile pathogenesis.
Collapse
Affiliation(s)
- Paulina Calderón-Romero
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mauro Milano-Céspedes
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enzo Guerrero-Araya
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valeria Olguín-Araneda
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
29
|
Chilton C, Pickering D, Freeman J. Microbiologic factors affecting Clostridium difficile recurrence. Clin Microbiol Infect 2018; 24:476-482. [DOI: 10.1016/j.cmi.2017.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
|
30
|
|
31
|
Pizarro-Guajardo M, Díaz-González F, Álvarez-Lobos M, Paredes-Sabja D. Characterization of Chicken IgY Specific to Clostridium difficile R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease. Front Cell Infect Microbiol 2017; 7:365. [PMID: 28856119 PMCID: PMC5557795 DOI: 10.3389/fcimb.2017.00365] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) are the leading cause of world-wide nosocomial acquired diarrhea. The current main clinical challenge in CDI is the elevated rate of infection recurrence that may reach up to 30% of the patients, which has been associated to the formation of dormant spores during the infection. We sought to characterize the effects of oral administration of specific anti-spore IgY in mouse models of CDI and recurrent CDI. The specificity of anti-spore IgY was evaluated in vitro. In both, initiation mouse model and recurrence mouse model, we evaluated the prophylactic and therapeutic effect of anti-spore IgY, respectively. Our results demonstrate that anti-spore IgY exhibited high specificity and titers against C. difficile spores and reduced spore adherence to intestinal cells in vitro. Administration of anti-spore IgY to C57BL/6 mice prior and during CDI delayed the appearance of the diarrhea by 1.5 day, and spore adherence to the colonic mucosa by 90%. Notably, in the recurrence model, co-administration of anti-spore IgY coupled with vancomycin delayed the appearance of recurrent diarrhea by a median of 2 days. Collectively, these observations suggest that anti-spore IgY antibodies may be used as a novel prophylactic treatment for CDI, or in combination with antibiotics to treat CDI and prevent recurrence of the infection.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Fernando Díaz-González
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Manuel Álvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad CatólicaSantiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
32
|
Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D. Updates on Clostridium difficile spore biology. Anaerobe 2017; 45:3-9. [DOI: 10.1016/j.anaerobe.2017.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
|
33
|
Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Front Microbiol 2016; 7:1698. [PMID: 27833595 PMCID: PMC5080291 DOI: 10.3389/fmicb.2016.01698] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60-75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the resistance of C. difficile to common decontamination methods. These results further demonstrate that the vegetative cells and spores of various C. difficile strains have different resistance properties that may impact decontamination of surfaces and hands.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Samiha T Karim
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Ricardo A Pascual
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Lina M Jowhar
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Sarah E Anderson
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Shonna M McBride
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|