1
|
Li S, Wang Y, Sun K, Li Y, Lu C, Gao Y. Fe(III)-Aided Novosphingobium sp. ES2-1 Regulates Molecular Mechanisms of 17β-Estradiol Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22245-22256. [PMID: 39636603 DOI: 10.1021/acs.est.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
17β-estradiol (E2) is one of the strongest environmental estrogens threatening wildlife and human health globally. Microbial degradation is an alternative strategy to remediate E2-contaminated sites and may be regulated by ubiquitous Fe(III) in eco-environments. We have previously obtained a high-efficiency E2 degrader, Novosphingobium sp. ES2-1, and investigated its metabolic pathway in connection with monooxygenase EstO1-induced ring-B opening; however, the molecular mechanisms of ring-A cleavage in E2 are sorely lacking, especially under Fe(III)-aided regulation. Here, an extradiol dioxygenase EstN1 from strain ES2-1 involved in the ring-A cleavage of E2 was reported. It catalyzed the 4,5-seco reaction of 4-hydroxyestrone (4-OH-E1, a key E2-oxidized intermediate) with the support of the electron transport chain consisting of ferredoxin EstN2 and ferredoxin reductase EstN3, resulting in a ring-A meta-cleaved product. Interestingly, Fe(III)-assisted strain ES2-1 consolidated the opening of rings A and B in E2 by reinforcing the expression of estO1 and estN1 genes, consequently enhancing E2 metabolism. Compared to Fe(III) starvation, the biodegradation half-life of E2 was sharply reduced from 1.35 to 0.59 d after Fe(III) supplementation. Simultaneously, the transcription of estO1 and estN1 genes increased clearly from 4.3 to 47.5 times and 6.6 to 246.8 times after Fe(III) induction, respectively, accompanied by remarkable improvement in the abundance of ring-A/B cleavage products and their pyridine derivatives. These findings highlight the significance of Fe(III) in regulating the microbial remediation of environmental estrogens at the molecular level.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Yiru Wang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuxin Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Chao Lu
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
2
|
Song H, Chen WJ, Chen SF, Liu M, Si G, Zhu X, Bhatt K, Mishra S, Ghorab MA, Chen S. Unveiling the hydrolase Oph2876 mediated chlorpyrifos degradation mechanism in Pseudomonas nitroreducens and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136570. [PMID: 39603136 DOI: 10.1016/j.jhazmat.2024.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Chlorpyrifos contamination is a currently on-going issue with significant environmental impacts. As such, rapid and effective techniques that remove chlorpyrifos from the environment are urgently required. Here, a strain of Pseudomonas nitroreducens W-7 exhibited exceptional degradation ability towards both chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP). W-7 can effectively reduce the toxicity of chlorpyrifos and TCP towards a variety of sensitive organisms through its superior degradation capacity. W-7 demonstrated efficient soil bioremediation by removing over 50 % of chlorpyrifos (25 mg/kg) from both sterile and non-sterile soils within 5 days, with significantly reduced half-lives. Additionally, 16S rDNA high-throughput sequencing of the soil revealed that the introduction of W-7 had no significant impact on the soil microbial community. A pivotal hydrolase Oph2876 containing conserved motif (HxHxDH) and a bimetallic catalytic center was identified from W-7. Oph2876 was a heat- and alkali-resistant enzyme with low sequence similarity (< 44 %) with other reported organophosphorus hydrolases, with a better substrate affinity for hydrolysis of chlorpyrifos to TCP. The molecular docking and site-directed mutagenesis studies indicated that the amino acid residues Asp235, His214, and His282, which were associated with the conserved sequence "HxHxDH", were crucial for the activity of Oph2876. These findings contribute to a better understanding of the biodegradation mechanism of chlorpyrifos and present useful agents for the development of effective chlorpyrifos bioremediation strategies.
Collapse
Affiliation(s)
- Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guiling Si
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xixian Zhu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Jaiswal A, Pandey AK, Mishra Y, Dubey SK. Insights into the biodegradation of fipronil through soil microcosm-omics analyses of Pseudomonas sp. FIP_ A4. CHEMOSPHERE 2024; 363:142944. [PMID: 39067829 DOI: 10.1016/j.chemosphere.2024.142944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Fipronil, a phenylpyrazole insecticide, is used to kill insects resistant to conventional insecticides. Though its regular and widespread use has substantially reduced agricultural losses, it has also caused its accumulation in various environmental niches. The biodegradation is an effective natural process that helps in reducing the amount of residual insecticides. This study deals with an in-depth investigation of fipronil degradation kinetics and pathways in Pseudomonas sp. FIP_A4 using multi-omics approaches. Soil-microcosm results revealed ∼87% degradation within 40 days. The whole genome of strain FIP_A4 comprises 4.09 Mbp with 64.6% GC content. Cytochrome P450 monooxygenase and enoyl-CoA hydratase-related protein, having 30% identity with dehalogenase detected in the genome, can mediate the initial degradation process. Proteome analysis revealed differential enzyme expression of dioxygenases, decarboxylase, and hydratase responsible for subsequent degradation. Metabolome analysis displayed fipronil metabolites in the presence of the bacterium, supporting the proposed degradation pathway. Molecular docking and dynamic simulation of each identified enzyme in complex with the specific metabolite disclosed adequate binding and high stability in the enzyme-metabolite complex. This study provides in-depth insight into genes and their encoded enzymes involved in the fipronil degradation and formation of different metabolites during pollutant degradation. The outcome of this study can contribute immensely to developing efficient technologies for the bioremediation of fipronil-contaminated soils.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India.
| |
Collapse
|
4
|
Yang H, Qian Z, Zhang S, Peng T, Li J, Meng S, Mao A, Hu Z. Efficient bioremediation of multiple steroid hormones by halotolerant 17β-hydroxysteroid dehydrogenase derived from moderately halophilic Pontibacillus chungwhensis HN14. World J Microbiol Biotechnol 2024; 40:296. [PMID: 39122994 DOI: 10.1007/s11274-024-04095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Steroid hormones exhibit potent endocrine disrupting activity and have been shown to disrupt the equilibrium of aquatic ecosystems and pose a threat to public health through their persistent and carcinogenic effects. Pontibacillus chungwhensis HN14, a moderately halophilic bacterium with the capacity to effectively degrade various polycyclic aromatic hydrocarbons and other organic pollutants, was previously isolated. Additionally, the strain HN14 showed strong environmental adaptability under various environmental stress conditions. In this study, the steroid degradation by strain HN14 was studied for the first time. We demonstrated that strain HN14 could degrade estradiol (E2) to maintain the growth of the strain and could convert E2 to estrone. Additionally, the efficient substrate degradation efficiency of P. chungwhensis HN14 under high salinity and high substrate concentration conditions was demonstrated. Furthermore, a 17β-hydroxysteroid dehydrogenase, 17β-HSD(HN14), was identified in strain HN14. Comparative analysis reveals that 17β-HSD(HN14) shares approximately 38% sequence identity with 17β-HSDx from Rhodococcus sp. P14. In addition, 100 µg of purified 17β-HSD(HN14) could effectively convert about 40% of 0.25 mM of E2 within 1 h period, with an enzyme activity of 17.5 U/mg, and catalyze the dehydrogenation of E2 and testosterone at the C-17 position. The characterization of purified enzyme properties reveals that 17β-HSD(HN14) exhibits exceptional structural robustness and enzymatic efficacy even under high salinity conditions of up to 20%. Overall, this study enhances our comprehension of steroid biodegradation in strain HN14 and contributes novel ideas and theoretical underpinnings for advancing bioremediation technologies targeting steroid pollution in high-saline environments.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
- Guangdong Research Center of Offshore Environmental Pollution Control Engineering, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
5
|
Alghamdi AK, Parween S, Hirt H, Saad MM. Unraveling the genomic secrets of Tritonibacter mobilis AK171: a plant growth-promoting bacterium isolated from Avicennia marina. BMC Genomics 2024; 25:672. [PMID: 38969999 PMCID: PMC11225332 DOI: 10.1186/s12864-024-10555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
The scarcity of freshwater resources resulting in a significant yield loss presents a pressing challenge in agriculture. To address this issue, utilizing abundantly available saline water could offer a smart solution. In this study, we demonstrate that the genome sequence rhizosphere bacterium Tritonibacter mobilis AK171, a halophilic marine bacterium recognized for its ability to thrive in saline and waterlogged environments, isolated from mangroves, has the remarkable ability to enable plant growth using saline irrigation. AK171 is characterized as rod-shaped cells, displays agile movement in free-living conditions, and adopts a rosette arrangement in static media. Moreover, The qualitative evaluation of PGP traits showed that AK171 could produce siderophores and IAA but could not solubilize phosphate nor produce hydrolytic enzymes it exhibits a remarkable tolerance to high temperatures and salinity. In this study, we conducted a comprehensive genome sequence analysis of T. mobilis AK171 to unravel the genetic mechanisms underlying its plant growth-promoting abilities in such challenging conditions. Our analysis revealed diverse genes and pathways involved in the bacterium's adaptation to salinity and waterlogging stress. Notably, T. mobilis AK171 exhibited a high level of tolerance to salinity and waterlogging through the activation of stress-responsive genes and the production of specific enzymes and metabolites. Additionally, we identified genes associated with biofilm formation, indicating its potential role in establishing symbiotic relationships with host plants. Furthermore, our analysis unveiled the presence of genes responsible for synthesizing antimicrobial compounds, including tropodithietic acid (TDA), which can effectively control phytopathogens. This genomic insight into T. mobilis AK171 provides valuable information for understanding the molecular basis of plant-microbial interactions in saline and waterlogged environments. It offers potential applications for sustainable agriculture in challenging conditions.
Collapse
Affiliation(s)
- Amal Khalaf Alghamdi
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| | - Maged M Saad
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
Hong Y, Sun G, Sun S, Miao L, Yang H, Wu B, Ma T, Chen S, Sun L, Yang J, Sun Y, Liu Y, Zang H, Li C. Enhancement of triclocarban biodegradation: Metabolic division of labor in co-culture of Rhodococcus sp. BX2 and Pseudomonas sp. LY-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124346. [PMID: 38852663 DOI: 10.1016/j.envpol.2024.124346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Triclocarban (TCC) and its metabolite, 3,4-dichloroaniline (DCA), are classified as emerging organic contaminants (EOCs). Significant concerns arise from water and soil contamination with TCC and its metabolites. These concerns are especially pronounced at high concentrations of up to approximately 20 mg/kg dry weight, as observed in wastewater treatment plants (WWTPs). Here, a TCC-degrading co-culture system comprising Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 was utilized to degrade TCC (14.5 mg/L) by 85.9% in 7 days, showing improved degradation efficiency compared with monocultures. A combination of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), genome sequencing, transcriptomic analysis, and quantitative reverse transcription-PCR (qRT-PCR) was performed. Meanwhile, through the combination of further experiments involving heterologous expression and gene knockout, we proposed three TCC metabolic pathways and identified four key genes (tccG, tccS, phB, phL) involved in the TCC degradation process. Moreover, we revealed the internal labor division patterns and connections in the co-culture system, indicating that TCC hydrolysis products were exchanged between co-cultured strains. Additionally, mutualistic cooperation between BX2 and LY-1 enhances TCC degradation efficiency. Finally, phytotoxicity assays confirmed a significant reduction in the plant toxicity of TCC following synergistic degradation by two strains. The in-depth understanding of the TCC biotransformation mechanisms and microbial interactions provides useful information for elucidating the mechanism of the collaborative biodegradation of various contaminants.
Collapse
Affiliation(s)
- Yaqi Hong
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guanjun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, Department of Bioengineering, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, PR China
| | - Lei Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hua Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bowen Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tian Ma
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Siyuan Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Liwen Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jie Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yueling Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
| |
Collapse
|
7
|
Zhang M, Gao S, Pan K, Liu H, Li Q, Bai X, Zhu Q, Chen Z, Yan X, Hong Q. Functional analysis, diversity, and distribution of the ean cluster responsible for 17 β-estradiol degradation in sphingomonads. Appl Environ Microbiol 2024; 90:e0197423. [PMID: 38619269 PMCID: PMC11107178 DOI: 10.1128/aem.01974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
17β-estradiol (E2) is a natural endocrine disruptor that is frequently detected in surface and groundwater sources, thereby threatening ecosystems and human health. The newly isolated E2-degrading strain Sphingomonas colocasiae C3-2 can degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway; the former is the primary pathway supporting the growth of this strain and the latter is a branching pathway. The novel gene cluster ean was found to be responsible for E2 degradation through the 4,5-seco pathway, where E2 is converted to estrone (E1) by EanA, which belongs to the short-chain dehydrogenases/reductases (SDR) superfamily. A three-component oxygenase system (including the P450 monooxygenase EanB1, the small iron-sulfur protein ferredoxin EanB2, and the ferredoxin reductase EanB3) was responsible for hydroxylating E1 to 4-hydroxyestrone (4-OH-E1). The enzymatic assay showed that the proportion of the three components is critical for its function. The dioxygenase EanC catalyzes ring A cleavage of 4-OH-E1, and the oxidoreductase EanD is responsible for the decarboxylation of the ring A-cleavage product of 4-OH-E1. EanR, a TetR family transcriptional regulator, acts as a transcriptional repressor of the ean cluster. The ean cluster was also found in other reported E2-degrading sphingomonads. In addition, the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 via the 9,10-seco pathway, but its encoding genes are not located within the ean cluster. These results refine research on genes involved in E2 degradation and enrich the understanding of the cleavages of ring A and ring B of E2.IMPORTANCESteroid estrogens have been detected in diverse environments, ranging from oceans and rivers to soils and groundwater, posing serious risks to both human health and ecological safety. The United States National Toxicology Program and the World Health Organization have both classified estrogens as Group 1 carcinogens. Several model organisms (proteobacteria) have established the 4,5-seco pathway for estrogen degradation. In this study, the newly isolated Sphingomonas colocasiae C3-2 could degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway. The novel gene cluster ean (including eanA, eanB1, eanC, and eanD) responsible for E2 degradation by the 4,5-seco pathway was identified; the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 through the 9,10-seco pathway. The TetR family transcriptional regulator EanR acts as a transcriptional repressor of the ean cluster. The cluster ean was also found to be present in other reported E2-degrading sphingomonads, indicating the ubiquity of the E2 metabolism in the environment.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Siyuan Gao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
8
|
Sang M, Liu S, Yan H, Zhang B, Chen S, Wu B, Ma T, Jiang H, Zhao P, Sun G, Gao X, Zang H, Cheng Y, Li C. Synergistic detoxification efficiency and mechanism of triclocarban degradation by a bacterial consortium in the liver-gut-microbiota axis of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134178. [PMID: 38608581 DOI: 10.1016/j.jhazmat.2024.134178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to human health with long-term exposure. Here, Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 were utilized to degrade TCC at environmental related concentrations for enhancing TCC biodegradation and investigating whether the toxicity of intermediate metabolites is lower than that of the parent compound. The results demonstrated that the bacterial consortium could degrade TCC by 82.0% within 7 days. The calculated 96 h LC50 for TCC, as well as its main degradation product 3,4-Dichloroaniline (DCA) were 0.134 mg/L and 1.318 mg/L respectively. Biodegradation also alleviated histopathological lesions induced by TCC in zebrafish liver and gut tissues. Liver transcriptome analysis revealed that biodegradation weakened differential expression of genes involved in disrupted immune regulation and lipid metabolism caused by TCC, verified through RT-qPCR analysis and measurement of related enzyme activities and protein contents. 16 S rRNA sequencing indicated that exposure to TCC led to gut microbial dysbiosis, which was efficiently improved through TCC biodegradation, resulting in decreased relative abundances of major pathogens. Overall, this study evaluated potential environmental risks associated with biodegradation of TCC and explored possible biodetoxification mechanisms, providing a theoretical foundation for efficient and harmless bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Mingyu Sang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyu Liu
- Heilongjiang Provincial Natural Resources Rights and Interests Investigation and Monitoring Institute, Harbin 150030, China
| | - Haohao Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guanjun Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Gao
- Heilongjiang Boneng Green Energy Technology Co., Ltd, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yi Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
9
|
Qiao X, Li P, Zhao J, Li Z, Zhang C, Wu J. Gaining insight into the effect of laccase expression on humic substance formation during lignocellulosic biomass composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171548. [PMID: 38458466 DOI: 10.1016/j.scitotenv.2024.171548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The aim is to enhance lignin humification by promoting laccase activities which can promote lignin depolymerization and reaggregation during composting. 1-Hydroxybenzotriazole (HBT) is employed to conduct laccase mediator system (LMS), application of oxidized graphene (GO) in combination to strengthen LMS. Compared with control, the addition of GO, HBT, and GH (GO coupled with HBT) significantly improved laccase expression and activities (P < 0.05), with lignin humification efficiency also increased by 68.6 %, 36.7 %, and 107.8 %. GH treatment induces microbial expression of laccase by increasing the abundance and synergy of core microbes. The unsupervised learning model, vector autoregressive model and Mantel test function were combined to elucidate the mechanism of action of exogenous materials. The results showed that GO stabilized the composting environment on the one hand, and acted as a support vector to stabilize the LMS and promote the function of laccase on the other. In GH treatment, degradation of macromolecules and humification of small molecules were promoted simultaneously by activating the dual function of laccase. Additionally, it also reveals the GH enhances the humification of lignocellulosic compost by converting phenolic pollutants into aggregates. These findings provide a new way to enhance the dual function of laccase and promote lignin humification during composting. It could effectively achieve the resource utilization of organic solid waste and reduce composting pollution.
Collapse
Affiliation(s)
- Xingyu Qiao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Peiju Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinghan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zonglin Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Zhang S, Ye X, Lin X, Zeng X, Meng S, Luo W, Yu F, Peng T, Huang T, Li J, Hu Z. Novel insights into aerobic 17β-estradiol degradation by enriched microbial communities from mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133045. [PMID: 38016312 DOI: 10.1016/j.jhazmat.2023.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
Various persistent organic pollutants (POPs) including estrogens are often enriched in mangrove regions. This research investigated the estrogens pollution levels in six mangroves located in the Southern China. The estrogen levels were found to be in the range of 5.3-24.9 ng/g dry weight, suggesting that these mangroves had been seriously contaminated. The bacterial communities under estrogen stress were further enriched by supplementing 17β-estradiol (E2) as the sole carbon source. The enriched bacterial communities showed an excellent E2 degradation capacity > 95 %. These communities were able to transform E2 into estrone (E1), 4-hydroxy-estrone, and keto-estrone, etc. 16 S rDNA sequencing and metagenomics analysis revealed that bacterial taxa Oleiagrimonas, Pseudomonas, Terrimonas, and Nitratireductor etc. were the main contributors to estrogen degradation. Moreover, the genes involved in E2 degradation were enriched in the microbial communities, including the genes encoding 17β-hydroxysteroid dehydrogenase, estrone 4-hydroxylase, etc. Finally, the analyses of functional genes and binning genomes demonstrated that E2 was degraded by bacterial communities via dehydrogenation into E1 by 17β-hydroxysteroid dehydrogenase. E1 was then catabolically converted to 3aα-H-4α(3'-propanoate)- 7aβ-methylhexahydro-1,5-indanedione via 4,5-seco pathway. Alternatively, E1 could also be hydroxylated to keto-estrone, followed by B-ring cleavage. This study provides novel insights into the biodegradation of E2 by the bacterial communities in estrogen-contaminated mangroves.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xueying Ye
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Xianbin Lin
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xiangwei Zeng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Wenqi Luo
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
11
|
Li S, Yang W, Mo J, Wang Y, Lu C, Gao Y, Li Y, Sun K. Adaptive responses and metabolic strategies of Novosphingobium sp. ES2-1-17β-estradiol analyzed through integration of genomic and proteomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132543. [PMID: 37717446 DOI: 10.1016/j.jhazmat.2023.132543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Environmental 17β-estradiol (E2) can cause potential harm to ecological balance and human health. Novosphingobium sp. ES2-1 is an E2-degrading bacterium previously obtained, which converts E2 to estrone (E1) and then to 4-hydroxyestrone (4-OH-E1) followed by oxidation to form metabolites with long-chain structure during upstream degradation. Herein, we found that intracellular enzymes were the major contributors to E2 biodegradation by strain ES2-1. A total of 243 proteins were dys-expressed under E2 condition, 123 were up-regulated and 120 were down-regulated thereinto. The up-regulated members of ABC transport systems, aromatics degradation, and fatty acid degradation indicated a reinforced transfer and utilization of E2. Cytochrome P450 monooxygenase (EstP1), 2-keto-4-pentenoate hydratase, pyruvate dehydrogenase, acetyl-CoA acetyltransferase, TonB-dependent receptor were involved in E2 catabolism. During downstream degradation, the metabolites with long-chain structure were decomposed adopting β-oxidation pattern and ultimately entered the TCA cycle; 2-keto-4-pentenoic acid might be an emblematic product of such process. Furthermore, E2 converting to E1 was catalyzed by 17β-dehydrogenase probably encoded by IM701_16645 or IM701_16910; 4-OH-E1 meta-cleavage was catalyzed by a dioxygenase encoded by IM701_20340 or IM701_21000 or IM701_09625. Our study provided an in-depth insight into the adaptive responses and metabolic strategies of Novosphingobium to E2.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China.
| | - Wei Yang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Jingjing Mo
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Yubing Wang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Chao Lu
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yucheng Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
12
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
13
|
Yue W, Genji Y, Bowen W, Yaozu M, Yang Z, Tian M, Hailian Z, Chuanwu X, Yi C, Chunyan L. Papermaking wastewater treatment coupled to 2,3-butanediol production by engineered psychrotrophic Raoultella terrigena. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131994. [PMID: 37418966 DOI: 10.1016/j.jhazmat.2023.131994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The simultaneous bioremediation and bioconversion of papermaking wastewater by psychrotrophic microorganisms holds great promise for developing sustainable environments and economies in cold regions. Here, the psychrotrophic bacterium Raoultella terrigena HC6 presented high endoglucanase (26.3 U/mL), xylosidase (732 U/mL), and laccase (8.07 U/mL) activities for lignocellulose deconstruction at 15 °C. mRNA monitoring and phenotypic variation analyses confirmed that cold-inducible cold shock protein A (CspA) facilitated the expression of the cel208, xynB68, and lac432 genes to increase the enzyme activities in strain HC6. Furthermore, the cspA gene-overexpressing mutant (strain HC6-cspA) was deployed in actual papermaking wastewater and achieved 44.3%, 34.1%, 18.4%, 80.2% and 100% removal rates for cellulose, hemicellulose, lignin, COD, and NO3--N at 15 °C. Simultaneously, 2,3-butanediol (2,3-BD) was produced from the effluent with a titer of 2.98 g/L and productivity of 0.154 g/L/h. This study reveals an association between the cold regulon and lignocellulolytic enzymes and provides a promising candidate for simultaneous papermaking wastewater treatment and 2,3-BD production.
Collapse
Affiliation(s)
- Wang Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yang Genji
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Wu Bowen
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Mi Yaozu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhou Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ma Tian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zang Hailian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xi Chuanwu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cheng Yi
- College of Plant Protection, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Li Chunyan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| |
Collapse
|
14
|
Kim B, Gurung S, Han SR, Lee JH, Oh TJ. Comparative Genomic Analysis of Biofilm-Forming Polar Microbacterium sp. Strains PAMC22086 and PAMC21962 Isolated from Extreme Habitats. Microorganisms 2023; 11:1757. [PMID: 37512929 PMCID: PMC10384088 DOI: 10.3390/microorganisms11071757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The members of Microbacterium isolated from different environments are known to form peptidoglycan. In this study, we compared the biofilm-forming abilities of Microbacterium sp. PAMC22086 (PAMC22086), which was isolated from the soil in the South Shetland Islands and Microbacterium sp. PAMC21962 (PAMC21962), which was isolated from algae in the South Shetland Islands. The analysis of average nucleotide identity and phylogeny of PAMC22086 revealed a 97% similarity to Microbacterium oxydans VIU2A, while PAMC21962 showed a 99.1% similarity to Microbacterium hominis SGAir0570. For the comparative genomic analysis of PAMC22086 and PAMC21962, the genes related to biofilm formation were identified using EggNOG and KEGG pathway databases. The genes possessed by both PAMC22086 and PAMC21962 are cpdA, phnB, rhlC, and glgC, which regulate virulence, biofilm formation, and multicellular structure. Among the genes indirectly involved in biofilm formation, unlike PAMC21962, PAMC22086 possessed csrA, glgC, and glgB, which are responsible for attachment and glycogen biosynthesis. Additionally, in PAMC22086, additional functional genes rsmA, which is involved in mobility and polysaccharide production, and dksA, GTPase, and oxyR, which play roles in cell cycle and stress response, were identified. In addition, the biofilm-forming ability of the two isolates was examined in vivo using the standard crystal violet staining technique, and morphological differences in the biofilm were investigated. It is evident from the different distribution of biofilm-associated genes between the two strains that the bacteria can survive in different niches by employing distinct strategies. Both strains exhibit distinct morphologies. PAMC22086 forms a biofilm that attaches to the side, while PAMC21962 indicates growth starting from the center. The biofilm formation-related genes in Microbacterium are not well understood. However, it has been observed that Microbacterium species form biofilm regardless of the number of genes they possess. Through comparison between different Microbacterium species, it was revealed that specific core genes are involved in cell adhesion, which plays a crucial role in biofilm formation. This study provides a comprehensive profile of the Microbacterium genus's genomic features and a preliminary understanding of biofilm in this genus, laying the foundation for further research.
Collapse
Affiliation(s)
- Byeollee Kim
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - Saru Gurung
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Jun-Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
15
|
Miao L, Chen S, Yang H, Hong Y, Sun L, Yang J, Sun G, Liu Y, Li C, Zang H, Cheng Y. Enhanced bioremediation of triclocarban-contaminated soil by Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 immobilized on biochar and microbial community response. Front Microbiol 2023; 14:1168902. [PMID: 37065135 PMCID: PMC10098447 DOI: 10.3389/fmicb.2023.1168902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Triclocarban (TCC), an emerging organic contaminant (EOC), has become a severe threat to soil microbial communities and ecological security. Here, the TCC-degrading strain Rhodococcus rhodochrous BX2 and DCA-degrading strain Pseudomonas sp. LY-1 (together referred to as TC1) were immobilized on biochar to remove TCC and its intermediates in TCC-contaminated soil. High-throughput sequencing was used to investigate the microbial community structure in TCC-contaminated soil. Analysis of co-occurrence networks was used to explore the mutual relationships among soil microbiome members. The results showed that the immobilized TC1 significantly increased the removal efficiency of TCC from 84.7 to 92.7% compared to CK (no TC1 cells on biochar) in 10 mg/L TCC liquid medium. The utilization of immobilized TC1 also significantly accelerated the removal of TCC from contaminated soil. Microbial community analysis revealed the crucial microorganisms and their functional enzymes participating in TCC degradation in soil. Moreover, the internal labor division patterns and connections of TCC-degrading microbes, with a focus on strains BX2 and LY-1, were unraveled by co-occurrence networks analysis. This work provides a promising strategy to facilitate the bioremediation of TCC in soil, which has potential application value for sustainable biobased economies.
Collapse
Affiliation(s)
- Lei Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Siyuan Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hua Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yaqi Hong
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Liwen Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jie Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Guanjun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Cheng
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Plant Protection, Northeast Agricultural University, Harbin, China
- *Correspondence: Yi Cheng,
| |
Collapse
|