1
|
Zhou Z, Shi X, Bhople P, Jiang J, Chater CCC, Yang S, Perez-Moreno J, Yu F, Liu D. Enhancing C and N turnover, functional bacteria abundance, and the efficiency of biowaste conversion using Streptomyces-Bacillus inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120895. [PMID: 38626487 DOI: 10.1016/j.jenvman.2024.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Parag Bhople
- Crops, Environment, And Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Y35TC98, Ireland
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jesus Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Edafologia, Texcoco, 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Huang L, Bae HS, Young C, Pain AJ, Martin JB, Ogram A. Campylobacterota dominate the microbial communities in a tropical karst subterranean estuary, with implications for cycling and export of nitrogen to coastal waters. Environ Microbiol 2021; 23:6749-6763. [PMID: 34472187 DOI: 10.1111/1462-2920.15746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
Subterranean estuaries (STEs), the zones in which seawater and subsurface groundwater mix, are recognized as hotspots for biogeochemical reactions; however, little is known of the microbial communities that control many of those reactions. This study investigated the potential functions of microbes inhabiting a cenote and an offshore submarine spring (Pargos) in the near-coastal waters of the Yucatan Peninsula, Mexico. The inland cenote (Cenote Siete Bocas; C7B) is characterized by a chemocline that is host to an array of physicochemical gradients associated with microbial activities. The chemocline includes an increasing gradient in sulfide concentrations with depth and a decreasing gradient in nitrate concentrations. The microbial community within the chemocline was dominated by Sulfurimonas and Sulfurovum of the Campylobacteria, which are likely responsible for sulfide oxidation coupled with nitrate reduction. Although C7B has not been directly connected with Pargos Spring, water discharging from the spring has physicochemical characteristics and microbial community structures similar to C7B, strongly suggesting biogeochemical processing in the STE impacts groundwater composition prior to discharge. This work yields insight into the microbial communities and biogeochemical reactions in STEs in karstic aquifers and provides evidence for the importance of Campylobacteria in controlling nitrate concentrations exported to marine springs.
Collapse
Affiliation(s)
- Laibin Huang
- Soil and Water Science Department, University of Florida, Gainesville, FL, USA
| | - Hee-Sung Bae
- Soil and Water Science Department, University of Florida, Gainesville, FL, USA
| | - Caitlin Young
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Andrea J Pain
- Center for Environmental Science, Horn Point Laboratory, University of Maryland, Cambridge, MD, USA
| | - Jonathan B Martin
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Andrew Ogram
- Soil and Water Science Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Pierangeli GMF, Domingues MR, de Jesus TA, Coelho LHG, Hanisch WS, Pompêo MLM, Saia FT, Gregoracci GB, Benassi RF. Higher Abundance of Sediment Methanogens and Methanotrophs Do Not Predict the Atmospheric Methane and Carbon Dioxide Flows in Eutrophic Tropical Freshwater Reservoirs. Front Microbiol 2021; 12:647921. [PMID: 33815337 PMCID: PMC8010658 DOI: 10.3389/fmicb.2021.647921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Freshwater reservoirs emit greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2), contributing to global warming, mainly when impacted by untreated sewage and other anthropogenic sources. These gases can be produced by microbial organic carbon decomposition, but little is known about the microbiota and its participation in GHG production and consumption in these environments. In this paper we analyzed the sediment microbiota of three eutrophic tropical urban freshwater reservoirs, in different seasons and evaluated the correlations between microorganisms and the atmospheric CH4 and CO2 flows, also correlating them to limnological variables. Our results showed that deeper water columns promote high methanogen abundance, with predominance of acetoclastic Methanosaeta spp. and hydrogenotrophs Methanoregula spp. and Methanolinea spp. The aerobic methanotrophic community was affected by dissolved total carbon (DTC) and was dominated by Crenothrix spp. However, both relative abundance of the total methanogenic and aerobic methanotrophic communities in sediments were uncoupled to CH4 and CO2 flows. Network based approach showed that fermentative microbiota, including Leptolinea spp. and Longilinea spp., which produces substrates for methanogenesis, influence CH4 flows and was favored by anthropogenic pollution, such as untreated sewage loads. Additionally, less polluted conditions favored probable anaerobic methanotrophs such as Candidatus Bathyarchaeota, Sva0485, NC10, and MBG-D/DHVEG-1, which promoted lower gaseous flows, confirming the importance of sanitation improvement to reduce these flows in tropical urban freshwater reservoirs and their local and global warming impact.
Collapse
Affiliation(s)
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Tatiane Araujo de Jesus
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Lúcia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | | | | | | | | | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
4
|
Zhao L, Meng B, Feng X. Mercury methylation in rice paddy and accumulation in rice plant: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110462. [PMID: 32179234 DOI: 10.1016/j.ecoenv.2020.110462] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The bioavailability and toxicity of mercury (Hg) are dependent on its chemical speciation, in which methylmercury (MeHg) is the most toxic compound. Inorganic Hg can be transformed into MeHg in anaerobic conditions. Subsequent accumulation and biomagnification in the food chain pose a potential threat to human health. Previous studies have confirmed that paddy soil is an important site for MeHg production, and rice fields are an important source of MeHg in terrestrial ecosystems. Rice (Oryza sativa L.) is recently confirmed as a potential bioaccumulator plant of MeHg. Understanding the behaviour of Hg in rice paddies is important, particularly the mechanisms involved in Hg sources, uptake, toxicity, detoxification, and accumulation in crops. This review highlights the issue of MeHg-contaminated rice, and presents the current understanding of the Hg cycling in the rice paddy ecosystem, including the mechanism and processes of Hg species accumulation in rice plants and Hg methylation/demethylation processes in rice paddies and the primary controlling factors. The review also identified various research gaps in previous studies and proposes future research objectives to reduce the impact of Hg-contamination in rice crops.
Collapse
Affiliation(s)
- Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang, 550025, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| |
Collapse
|
5
|
Meyer KM, Hopple AM, Klein AM, Morris AH, Bridgham SD, Bohannan BJM. Community structure - Ecosystem function relationships in the Congo Basin methane cycle depend on the physiological scale of function. Mol Ecol 2020; 29:1806-1819. [PMID: 32285532 DOI: 10.1111/mec.15442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/28/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
Belowground ecosystem processes can be highly variable and difficult to predict using microbial community data. Here, we argue that this stems from at least three issues: (a) complex covariance structure of samples (with environmental conditions or spatial proximity) can make distinguishing biotic drivers a challenge; (b) communities can control ecosystem processes through multiple mechanisms, making the identification of these controls a challenge; and (c) ecosystem function assessments can be broad in physiological scale, encapsulating multiple processes with unique microbially mediated controls. We test these assertions using methane (CH4 )-cycling processes in soil samples collected along a wetland-to-upland habitat gradient in the Congo Basin. We perform our measurements of function under controlled laboratory conditions and statistically control for environmental covariates to aid in identifying biotic drivers. We divide measurements of microbial communities into four attributes (abundance, activity, composition, and diversity) that represent different forms of community control. Lastly, our process measurements differ in physiological scale, including broader processes (gross methanogenesis and methanotrophy) that involve more mediating groups, to finer processes (hydrogenotrophic methanogenesis and high-affinity CH4 oxidation) with fewer mediating groups. We observed that finer scale processes can be more readily predicted from microbial community structure than broader scale processes. In addition, the nature of those relationships differed, with broad processes limited by abundance while fine-scale processes were associated with diversity and composition. These findings demonstrate the importance of carefully defining the physiological scale of ecosystem function and performing community measurements that represent the range of possible controls on ecosystem processes.
Collapse
Affiliation(s)
- Kyle M Meyer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Anya M Hopple
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Ann M Klein
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Andrew H Morris
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Scott D Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
6
|
Hu H, Wang B, Bravo AG, Björn E, Skyllberg U, Amouroux D, Tessier E, Zopfi J, Feng X, Bishop K, Nilsson MB, Bertilsson S. Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121967. [PMID: 31901845 DOI: 10.1016/j.jhazmat.2019.121967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.
Collapse
Affiliation(s)
- Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden.
| | - Baolin Wang
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - David Amouroux
- CNRS/Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Materiaux-mira, UMR5254, 64000, Pau, France
| | - Emmanuel Tessier
- CNRS/Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Materiaux-mira, UMR5254, 64000, Pau, France
| | - Jakob Zopfi
- Department of Environmental Sciences, Biogeochemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| |
Collapse
|
7
|
Abraham BS, Caglayan D, Carrillo NV, Chapman MC, Hagan CT, Hansen ST, Jeanty RO, Klimczak AA, Klingler MJ, Kutcher TP, Levy SH, Millard-Bruzos AA, Moore TB, Prentice DJ, Prescott ME, Roehm R, Rose JA, Yin M, Hyodo A, Lail K, Daum C, Clum A, Copeland A, Seshadri R, del Rio TG, Eloe-Fadrosh EA, Benskin JB. Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades. ENVIRONMENTAL MICROBIOME 2020; 15:2. [PMID: 33902723 PMCID: PMC8067648 DOI: 10.1186/s40793-019-0352-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/21/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND Currently, much is unknown about the taxonomic diversity and the mechanisms of methane metabolism in the Florida Everglades ecosystem. The Loxahatchee National Wildlife Refuge is a section of the Florida Everglades that is almost entirely unstudied in regard to taxonomic profiling. This short report analyzes the metagenome of soil samples from this Refuge to investigate the predominant taxa, as well as the abundance of genes involved in environmentally significant metabolic pathways related to methane production (nitrogen fixation and dissimilatory sulfite reduction). METHODS Shotgun metagenomic sequencing using the Illumina platform was performed on 17 soil samples from four different sites within the Loxahatchee National Wildlife Refuge, and underwent quality control, assembly, and annotation. The soil from each sample was tested for water content and concentrations of organic carbon and nitrogen. RESULTS The three most common phyla of bacteria for every site were Actinobacteria, Acidobacteria, and Proteobacteria; however, there was variation in relative phylum composition. The most common phylum of Archaea was Euryarchaeota for all sites. Alpha and beta diversity analyses indicated significant congruity in taxonomic diversity in most samples from Sites 1, 3, and 4 and negligible congruity between Site 2 and the other sites. Shotgun metagenomic sequencing revealed the presence of biogeochemical biomarkers of particular interest (e.g., mrcA, nifH, and dsrB) within the samples. The normalized abundances of mcrA, nifH, and dsrB exhibited a positive correlation with nitrogen concentration and water content, and a negative correlation with organic carbon concentration. CONCLUSION This Everglades soil metagenomic study allowed examination of wetlands biological processes and showed expected correlations between measured organic constituents and prokaryotic gene frequency. Additionally, the taxonomic profile generated gives a basis for the diversity of prokaryotic microbial life throughout the Everglades.
Collapse
Affiliation(s)
| | - Deniz Caglayan
- Boca Raton Community High School, Boca Raton, FL 33486 USA
| | | | | | | | - Skye T. Hansen
- Boca Raton Community High School, Boca Raton, FL 33486 USA
| | | | | | | | | | - Sydney H. Levy
- Boca Raton Community High School, Boca Raton, FL 33486 USA
| | | | | | | | | | - Richard Roehm
- Boca Raton Community High School, Boca Raton, FL 33486 USA
| | - Jordan A. Rose
- Boca Raton Community High School, Boca Raton, FL 33486 USA
| | - Mulan Yin
- Boca Raton Community High School, Boca Raton, FL 33486 USA
| | - Ayumi Hyodo
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843 USA
| | - Kathleen Lail
- Department of Energy, Joint Genome Institute, Berkeley, CA 94720 USA
| | - Christopher Daum
- Department of Energy, Joint Genome Institute, Berkeley, CA 94720 USA
| | - Alicia Clum
- Department of Energy, Joint Genome Institute, Berkeley, CA 94720 USA
| | - Alex Copeland
- Department of Energy, Joint Genome Institute, Berkeley, CA 94720 USA
| | - Rekha Seshadri
- Department of Energy, Joint Genome Institute, Berkeley, CA 94720 USA
| | | | | | | |
Collapse
|
8
|
Periphyton and Flocculent Materials Are Important Ecological Compartments Supporting Abundant and Diverse Mercury Methylator Assemblages in the Florida Everglades. Appl Environ Microbiol 2019; 85:AEM.00156-19. [PMID: 31028023 DOI: 10.1128/aem.00156-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
Mercury (Hg) methylation in the Florida Everglades is of great environmental concern because of its adverse effects on human and wildlife health through biomagnification in aquatic food webs. Periphyton and flocculant materials (floc) overlaying peat soil are important ecological compartments producing methylmercury (MeHg) in this ecosystem. These compartments retain higher concentrations of MeHg than did soil at study sites across nutrient and/or sulfate gradient(s). To better understand what controls Hg methylation in these compartments, the present study explored the structures and abundances of Hg methylators using genes hgcAB as biomarkers. The hgcA sequences indicated that these compartments hosted a high diversity of Hg methylators, including Deltaproteobacteria, Chloroflexi, Firmicutes, and Methanomicrobia, with community compositions that differed between these habitats. The copy numbers of hgcAB quantified by quantitative PCR revealed that floc and soil supported higher numbers of Hg methylators than periphyton in the Everglades ecosystem. The abundance of Hg methylators was strongly positively correlated with concentrations of carbon and nutrients (e.g., phosphorus and nitrogen) according to redundancy analysis. Strong correlations were also observed among numbers of sulfate reducers, methanogens, and the dominant hgcAB-carrying groups, suggesting that hgcAB would spread primarily through the growth of those assemblages. The abundances of Hg methylators were weakly negatively correlated to MeHg concentrations, suggesting that the size of this population would not solely determine the final concentrations of MeHg in the ecological compartments studied. This study extends the knowledge regarding the distribution of diverse potential mercury methylators in different environmental compartments in a wetland of national concern.IMPORTANCE Methylmercury is a potent neurotoxin that impacts the health of humans and wildlife. Most mercury in wetlands such as the Florida Everglades enters as inorganic mercury via atmospheric deposition, some of which is transformed to the more toxic methylmercury through the activities of anaerobic microorganisms. We investigated the numbers and phylogenetic diversity of hgcAB, genes that are linked to mercury methylation, in the soil, floc, and periphyton in areas of the Everglades with different sulfate and nutrient concentrations. Soil harbored relatively high numbers of cells capable of methylating mercury; however, little detectable methylmercury was present in soil. The greatest concentrations of methylmercury were found in floc and periphyton. The dominant methylators in those compartments included methanogens and Syntrophobacteriales This work provides significant insight into the microbial processes that control methylation and form the basis for accumulation through the food chain in this important environment.
Collapse
|
9
|
Cai Y, Zheng Z, Zhao Y, Zhang Y, Guo S, Cui Z, Wang X. Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. BIORESOURCE TECHNOLOGY 2018; 266:166-175. [PMID: 29966926 DOI: 10.1016/j.biortech.2018.06.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The addition of trace elements to aid anaerobic digestion has already been widely studied. However, the effects of rare trace elements on anaerobic digestion remain unclear. In this study, the effects of Mo, Se and Mn on anaerobic digestion of rice straw were explored. The results showed the methane yield increased by 59.3%, 47.1% and 48.9% in the first 10 days following addition of Mo (0.01 mg/L), Se (0.1 mg/L) and Mn (1.0 mg/L), respectively. Toxic effects and the accumulation of volatile fatty acids (VFAs) were observed when the Se, Mo and Mn concentrations were greater than 100, 1000 and 1000 mg/L, respectively. The half-maximal inhibitory concentrations (IC50) for Se, Mn and Mo were 79.9 mg/L, 773.9 mg/L and 792.3 mg/L, respectively. The addition of trace elements has changed the bacterial structure of the bacteria, which in turn has affected the digestion performance.
Collapse
Affiliation(s)
- Yafan Cai
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yubin Zhao
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yue Zhang
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shiyu Guo
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Methanogens Are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades. Appl Environ Microbiol 2018; 84:AEM.02222-17. [PMID: 29374038 DOI: 10.1128/aem.02222-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to investigate the interaction of the nitrogen (N) cycle with methane production in the Florida Everglades, a large freshwater wetland. This study provides an initial analysis of the distribution and expression of N-cycling genes in Water Conservation Area 2A (WCA-2A), a section of the marsh that underwent phosphorus (P) loading for many years due to runoff from upstream agricultural activities. The elevated P resulted in increased primary productivity and an N limitation in P-enriched areas. Results from quantitative real-time PCR (qPCR) analyses indicated that the N cycle in WCA-2A was dominated by nifH and nirK/S, with an increasing trend in copy numbers in P-impacted sites. Many nifH sequences (6 to 44% of the total) and nifH transcript sequences (2 to 49%) clustered with the methanogenic Euryarchaeota, in stark contrast to the proportion of core gene sequences representing Archaea (≤0.27% of SSU rRNA genes) for the WCA-2A microbiota. Notably, archaeal nifH gene transcripts were detected at all sites and comprised a significant proportion of total nifH transcripts obtained from the unimpacted site, indicating that methanogens are actively fixing N2 Laboratory incubations with soils taken from WCA-2A produced nifH transcripts with the production of methane from H2 plus CO2 and acetate as electron donors and carbon sources. Methanogenic N2 fixation is likely to be an important, although largely unrecognized, route through which fixed nitrogen enters the anoxic soils of the Everglades and may have significant relevance regarding methane production in wetlands.IMPORTANCE Wetlands are the most important natural sources of the greenhouse gas methane, and much of that methane emanates from (sub)tropical peatlands. Primary productivity in these peatlands is frequently limited by the availability of nitrogen or phosphorus; however, the response to nutrient limitations of microbial communities that control biogeochemical cycling critical to ecosystem function may be complex and may be associated with a range of processes, including methane production. We show that many, if not most, of the methanogens in the peatlands of the Florida Everglades possess the nifH gene and actively express it for N2 fixation coupled with methanogenesis. These findings indicate that archaeal N2 fixation would play crucial role in methane emissions and overall N cycle in subtropical wetlands suffering N limitation.
Collapse
|
11
|
Liu P, Pommerenke B, Conrad R. Identification ofSyntrophobacteraceaeas major acetate-degrading sulfate reducing bacteria in Italian paddy soil. Environ Microbiol 2017; 20:337-354. [DOI: 10.1111/1462-2920.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Pengfei Liu
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| | - Bianca Pommerenke
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| |
Collapse
|
12
|
Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island. Appl Microbiol Biotechnol 2017; 101:6241-6252. [DOI: 10.1007/s00253-017-8342-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/30/2023]
|
13
|
Liu P, Conrad R. Syntrophobacteraceae-affiliated species are major propionate-degrading sulfate reducers in paddy soil. Environ Microbiol 2017; 19:1669-1686. [DOI: 10.1111/1462-2920.13698] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Pengfei Liu
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Ralf Conrad
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
14
|
Stasik S, Wendt-Potthoff K. Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond. WATER RESEARCH 2016; 106:223-231. [PMID: 27723480 DOI: 10.1016/j.watres.2016.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
Oil sands tailings ponds are primary storage basins for tailings produced during oil sands processing in Alberta (Canada). Due to microbial metabolism, methane production contributes to greenhouse gas emissions, but positively affects tailings densification, which is relevant for operational water re-use. Depending on the age and depth of tailings, the activity of sulfate-reducing bacteria (SRB) may control methanogenesis due to the competition for substrates. To assess the depth-related impact of sulfate reduction on CH4 emissions, original tailings of two vicinal pond profiles were incubated in anoxic microcosms with/without molybdate as selective inhibitor of microbial sulfate reduction. Integrating methane production rates, considerable volumes of CH4 emissions (∼5.37 million L d-1) may be effectively prevented by the activity of SRB in sulfidic tailings between 3.5 and 7.5 m. To infer metabolic potentials controlling methanogenic pathways, a set of relevant organic acids (acetate, formate, propionate, butyrate, lactate) was added to part of the microcosms. Generally, organic acid transformation shifted with depth, with highest rates (305-446 μmol L-1 d-1) measured in fresh tailings at 5.5-7.5 m. In all depths, a transient accumulation of acetate revealed its importance as key intermediate during organic matter decomposition. SRB dominated the transformation of acetate, butyrate and propionate, but were not essential for lactate and formate turnover. Acetate as methanogenic substrate was important only at 13.5 m. At 1-7.5 m, methanogenesis significantly increased in presence of organic acids, most likely due to the syntrophic oxidation of acetate to CO2 by SRB and subsequent conversion to CH4.
Collapse
Affiliation(s)
- Sebastian Stasik
- Department of Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Katrin Wendt-Potthoff
- Department of Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany
| |
Collapse
|
15
|
Cavé L, Brothier E, Abrouk D, Bouda PS, Hien E, Nazaret S. Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues. Appl Microbiol Biotechnol 2016; 100:10597-10608. [DOI: 10.1007/s00253-016-7950-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 11/28/2022]
|