1
|
Cooper KK, Mourkas E, Schiaffino F, Parker CT, Pinedo Vasquez TN, Garcia Bardales PF, Peñataro Yori P, Paredes Olortegui M, Manzanares Villanueva K, Romaina Cachique L, Silva Delgado H, Hitchings MD, Huynh S, Sheppard SK, Pascoe B, Kosek MN. Sharing of cmeRABC alleles between C. coli and C. jejuni associated with extensive drug resistance in Campylobacter isolates from infants and poultry in the Peruvian Amazon. mBio 2025; 16:e0205424. [PMID: 39727415 PMCID: PMC11796421 DOI: 10.1128/mbio.02054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Campylobacter is a serious health threat because of the rapid progressive evolution of antimicrobial resistance and efficient transmission from zoonotic as well as human sources. Resistance to fluoroquinolones and macrolides is particularly concerning as this compromises the two most effective oral antibiotic agents currently available for human campylobacteriosis. Here, we report on the prevalence and worldwide distribution of the operon cmeRABC, which encodes an efflux pump conferring high levels of combined resistance to fluoroquinolones and macrolides in Campylobacter strains isolated from poultry (n = 75) and children (n = 177). These mutations were found to be highly prevalent in isolates from poultry (62.7%) and children (29.4%) in Iquitos, Peru. We investigated the population structure of genes in the cmeRABC operon and identified a potential genetic bottleneck for the cmeA and cmeB genes. While most cmeB alleles segregate by species, alleles associated with high resistance to fluoroquinolones and macrolides were found in both Campylobacter jejuni and Campylobacter coli. We inferred that the likely ancestry of these alleles was from C. jejuni and was later acquired by C. coli through recombination. Publicly accessible global genomic data from 16,120 Campylobacter genomes identified these mutations in approximately 6% of C. jejuni and C. coli isolates globally, with higher prevalence in samples from poultry in many countries, including Peru. Our findings suggest that these extensively drug-resistant Campylobacter strains originated from C. jejuni in poultry.IMPORTANCEAntimicrobial resistance in Campylobacter is a growing public health concern, driven by the rapid evolution and zoonotic transmission of resistant strains. This study focuses on mutations in the cmeABC efflux pump, which confer high resistance to fluoroquinolones and macrolides, the two most effective oral antibiotics for human campylobacteriosis. By analyzing genomes from poultry and children in Iquitos, Peru, as well as global genomic data sets, we identified a significant prevalence of these resistance-associated mutations, particularly in poultry and children. Our findings suggest that these mutations originated in Campylobacter jejuni and spread to C. coli through recombination. Globally, these mutations are found in approximately 6% of isolates, with higher prevalence in poultry in multiple countries. This research underscores the critical role of genomic epidemiology in understanding the origins, evolution, and dissemination of antimicrobial resistance and highlights the need to address poultry as a reservoir for resistant Campylobacter.
Collapse
Affiliation(s)
- Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Evangelos Mourkas
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Francesca Schiaffino
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | | | | | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| | | | | | | | - Hermann Silva Delgado
- School of Human Medicine, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| |
Collapse
|
2
|
Bukari Z, Emmanuel T, Woodward J, Ferguson R, Ezughara M, Darga N, Lopes BS. The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies. Trop Med Infect Dis 2025; 10:25. [PMID: 39852676 PMCID: PMC11768457 DOI: 10.3390/tropicalmed10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial resistance (AMR) in Campylobacter species, particularly C. jejuni and C. coli, poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated poultry. Extensive exposure to antibiotics in human and veterinary medicine creates selection pressure, driving resistance through mechanisms such as point mutations, horizontal gene transfer, and efflux pumps. Resistance to fluoroquinolones, macrolides, and tetracyclines complicates treatment and increases the risk of severe infections. Drug-resistant Campylobacter is transmitted to humans via contaminated food, water, and direct contact with animals, highlighting its zoonotic potential. Addressing this challenge requires effective interventions. Pre-harvest strategies like biosecurity and immune-based methods reduce bacterial loads on farms, while post-harvest measures, including carcass decontamination and freezing, limit contamination. Emerging approaches, such as bacteriocins and natural antimicrobials, offer chemical-free alternatives. Integrated, multidisciplinary interventions across the food chain are essential to mitigate AMR transmission and enhance food safety. Sustainable agricultural practices, antimicrobial stewardship, and innovative solutions are critical to curbing Campylobacter resistance and protecting global public health. Our review examines the dynamics of antimicrobial resistance in Campylobacter and presents current strategies to mitigate Campylobacter-related AMR, offering valuable insights for antimicrobial control in the poultry industry.
Collapse
Affiliation(s)
- Zubeiru Bukari
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Toyin Emmanuel
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Jude Woodward
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Richard Ferguson
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Martha Ezughara
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Nikhil Darga
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
3
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics (Basel) 2024; 13:1143. [PMID: 39766533 PMCID: PMC11672454 DOI: 10.3390/antibiotics13121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Campylobacter jejuni (CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
4
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
6
|
Rhoades NS, Cinco IR, Hendrickson SM, Prongay K, Haertel AJ, Flores GE, Slifka MK, Messaoudi I. Infant diarrheal disease in rhesus macaques impedes microbiome maturation and is linked to uncultured Campylobacter species. Commun Biol 2024; 7:37. [PMID: 38182754 PMCID: PMC10770169 DOI: 10.1038/s42003-023-05695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Diarrheal diseases remain one of the leading causes of death for children under 5 globally, disproportionately impacting those living in low- and middle-income countries (LMIC). Campylobacter spp., a zoonotic pathogen, is one of the leading causes of food-borne infection in humans. Yet to be cultured Campylobacter spp. contribute to the total burden in diarrheal disease in children living in LMIC thus hampering interventions. We performed microbiome profiling and metagenomic genome assembly on samples collected from over 100 infant rhesus macaques longitudinally and during cases of clinical diarrhea within the first year of life. Acute diarrhea was associated with long-lasting taxonomic and functional shifts of the infant gut microbiome indicative of microbiome immaturity. We constructed 36 Campylobacter metagenomic assembled genomes (MAGs), many of which fell within 4 yet to be cultured species. Finally, we compared the uncultured Campylobacter MAGs assembled from infant macaques with publicly available human metagenomes to show that these uncultured species are also found in human fecal samples from LMIC. These data highlight the importance of unculturable Campylobacter spp. as an important target for reducing disease burden in LMIC children.
Collapse
Affiliation(s)
- Nicholas S Rhoades
- Department of Molecular biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Isaac R Cinco
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Sara M Hendrickson
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Kamm Prongay
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Andrew J Haertel
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Gilberto E Flores
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Lin C, Li LJ, Ren K, Zhou SYD, Isabwe A, Yang LY, Neilson R, Yang XR, Cytryn E, Zhu YG. Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere. ISME COMMUNICATIONS 2023; 3:94. [PMID: 37660098 PMCID: PMC10475086 DOI: 10.1038/s43705-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Kexin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agriculture Research Organization, 7528809, Rishon Lezion, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
8
|
Yang Y, Tao H, Ma W, Wang N, Chen X, Wang W. Lysis profile and preference of Myxococcus sp. PT13 for typical soil bacteria. Front Microbiol 2023; 14:1211756. [PMID: 37378286 PMCID: PMC10291197 DOI: 10.3389/fmicb.2023.1211756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Myxococcus sp. PT13 is a wild strain with multiple predatory properties that prey on multiple model microorganisms preserved in the laboratory. However, the lysis spectrum of PT13 on typical soil bacteria and its driving effect on soil microecosystems are still unclear. Methods In this study, the lawn predation method was used to determine the predation diameter of 62 typical soil bacteria by myxobacteria PT13 and analyze their lysis spectra. Results and Discussion The results showed that PT13 had a predation diameter greater than 15 mm against typical soil microorganisms such as Aeromonas, Bacillus, Brevibacterium, Fictibacillus, Glutamicibacter, Herbaspirillum, and Leifsonia and had an outstanding lysis effect but a significant preference (p < 0.05). Absolute high-throughput sequencing results showed that PT13 predation drove the microcosmic system composed of 16 bacterial genera, with a significant decrease in the Shannon index by 11.8% (CK = 2.04, D = 1.80) and a significant increase in the Simpson index by 45.0% (CK = 0.20, D = 0.29). The results of principal coordinate analysis (PCoA) showed that myxobacterial addition significantly disturbed the microcosmic microbial community structure (ANOSIM, p < 0.05). LEfSe analysis showed that the relative and absolute abundances (copy numbers) of Bacillus, Pedobacter, Staphylococcus, Streptomyces and Fictibacillus decreased significantly very likely due to myxobacterial predation (p < 0.05). However, the predatory effect of PT13 also increased the relative or absolute abundances of some species, such as Sphingobacterium, Paenarthrobacter, Microbacterium, and Leifsonia. It can be concluded that PT13 has a broad-spectrum lysis spectrum but poor cleavage ability for Streptomyces, and the interaction between complex microorganisms limits the predation effect of PT13 on some prey bacteria. This in turn allows some prey to coexist with myxobacteria. This paper will lay a theoretical foundation for the regulation of soil microecology dominated by myxobacteria.
Collapse
|
9
|
Dias TS, de Almeida Figueira A, Costa GA, da Cunha NC, Rossi DA, de Melo RT, de Almeida Pereira VL, de Aquino MHC. SVR-flaA typing of erythromycin- and ciprofloxacin-resistant Campylobacter jejuni strains isolated from poultry slaughterhouses in southern Brazil. Braz J Microbiol 2023; 54:1065-1073. [PMID: 37055624 PMCID: PMC10234967 DOI: 10.1007/s42770-023-00969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
The emergence of fluoroquinolone and macrolide resistance in C. jejuni, a recognized zoonotic pathogen, has increased worldwide. This study aimed to investigate phenotypic resistance to ciprofloxacin and erythromycin, the molecular mechanisms involved, and the strain of C. jejuni isolated from broiler carcasses. Eighty C. jejuni isolates from broiler carcasses in southern Brazil were investigated for their susceptibility to ciprofloxacin and erythromycin at minimal inhibitory concentrations. Mismatch amplification mutation assay-polymerase chain reaction (MAMA-PCR) was performed to detect substitutions of Thr-86-Ile, A2074C, and A2075G of domain V in the 23S rRNA. The presence of ermB gene and CmeABC operon were investigated by PCR. DNA sequencing was used to detect substitutions in the L4 and L22 proteins of the erythromycin-resistant strains. The Short Variable Region (SVR) of flaA was used to type all the strains resistant to both antimicrobials. Ciprofloxacin and erythromycin resistance were detected in 81.25% and 30.00% of the strains, respectively, and minimal inhibitory concentration values ranged from ≤ 0.125 to 64 µg/mL for ciprofloxacin and 0.5 to > 128 µg/mL for erythromycin. The Thr-86-Ile mutation in gyrA was observed in 100% of the ciprofloxacin-resistant strains. Mutations in both the A2074C and A2075G positions of 23S rRNA were observed in 62.5% of the erythromycin-resistant strains, while 37.5% had only the mutation A2075G. None of the strains harbored CmeABC operon, and ermB was not detected. Using DNA sequencing, the amino acid substitution T177S was detected in L4, and substitutions I65V, A103V, and S109A were detected in L22. Twelve flaA-SVR alleles were identified among the strains, with the most common SVR-flaA allele, type 287, covering 31.03% of ciprofloxacin- and erythromycin-resistant isolates. The present study revealed a high incidence and high levels of resistance to ciprofloxacin and erythromycin, as well as broad molecular diversity in C. jejuni isolates from broiler carcasses.
Collapse
Affiliation(s)
- Thomas Salles Dias
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil.
| | - Arthur de Almeida Figueira
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
| | - Gisllany Alves Costa
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
| | - Nathalie Costa da Cunha
- Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Virginia Léo de Almeida Pereira
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
- Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Maria Helena Cosendey de Aquino
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
- Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| |
Collapse
|
10
|
Rayamajhee B, Willcox MDP, Henriquez FL, Petsoglou C, Subedi D, Carnt N. Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol 2022; 38:975-990. [PMID: 36109313 DOI: 10.1016/j.pt.2022.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
The opportunistic protist Acanthamoeba, which interacts with other microbes such as bacteria, fungi, and viruses, shows significant similarity in cellular and functional aspects to human macrophages. Intracellular survival of microbes in this microbivorous amoebal host may be a crucial step for initiation of infection in higher eukaryotic cells. Therefore, Acanthamoeba-microbe adaptations are considered an evolutionary model of macrophage-pathogen interactions. This paper reviews Acanthamoeba as an emerging human pathogen and different ecological interactions between Acanthamoeba and microbes that may serve as environmental training grounds and a genetic melting pot for the evolution, persistence, and transmission of potential human pathogens.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Mark D P Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Blantyre, South Lanarkshire, G72 0LH, UK
| | - Constantinos Petsoglou
- Sydney and Sydney Eye Hospital, Southeastern Sydney Local Health District, Sydney, Australia; Save Sight Institute, University of Sydney, Sydney, Australia
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
11
|
Pan-Genome Analysis of Campylobacter: Insights on the Genomic Diversity and Virulence Profile. Microbiol Spectr 2022; 10:e0102922. [PMID: 36069574 PMCID: PMC9602946 DOI: 10.1128/spectrum.01029-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genus Campylobacter contains pathogens that cause bacterial gastroenteritis in humans and animals. Despite large-scale sequencing efforts to raise clinical awareness of Campylobacter, little is known about the diversity and functions of virulence factors. Here, we constructed the pan-genome of Campylobacter using 39 representative genomes, elucidating their genetic diversity, evolutionary characteristics, and virulence and resistance profiles. The Campylobacter pan-genome was open and showed extensive genome variability, with high levels of gene expansion and contraction as the organism evolved. These Campylobacter members had diverse virulence gene content, and six potential core virulence genes (porA, PEB4, cheY, htrB, Cj1135, and kpsF) have been identified. The conserved mechanisms for Campylobacter pathogenicity were related to adherence, motility, and immune modulation. We emphasized the relative importance of variable virulence genes. Many virulence genes have experienced expansion or contraction in specific lineages, which may be one of the factors causing differences in the content of virulence genes. Additionally, these Campylobacter genomes have a high prevalence of the cmeA and cmeC genes, which are linked to the CmeABC pump and contribute to multidrug resistance. The genomic variations, core and variable virulence factors, and resistance genes of Campylobacter characterized in this study would contribute to a better understanding of the virulence of Campylobacter and more effective use of candidates for drug development and prevention of Campylobacter infections. IMPORTANCE Pathogenic members of the genus Campylobacter are recognized as one of the major causative agents of human bacterial gastroenteritis. This study revealed the pan-genome of 39 Campylobacter species, provided the most updated reconstruction of the global virulence gene pool of 39 Campylobacter species, and identified species-related virulence differences. This study highlighted the basic conserved functionality and specificity of pathogenicity that are crucial to infection, which was critical for improving the diagnosis and prevention of Campylobacter infections.
Collapse
|
12
|
Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions. Microorganisms 2022; 10:microorganisms10101894. [PMID: 36296171 PMCID: PMC9612045 DOI: 10.3390/microorganisms10101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis worldwide but is rarely transferred between human hosts. Although a recognized microaerophile, the majority of C. jejuni are incapable of growing in an aerobic environment. The persistence and transmission of this pathogen outside its warm-blooded avian and mammalian hosts is poorly understood. Acanthamoebae species are predatory protists and form an important ecological niche with several bacterial species. Here, we investigate the interaction of C. jejuni 11168H and Acanthamoebae castellanii at the single-cell level. We observe that a subpopulation of C. jejuni cells can resist killing by A. castellanii, and non-digested bacteria are exocytosed into the environment where they can persist. In addition, we observe that A. castellanii can harbor C. jejuni 11168H even upon encystment. Transcriptome analyses of C. jejuni interactions revealed similar survival mechanisms when infecting both A. castellanii and warm-blooded hosts. In particular, nitrosative stress defense mechanisms and flagellum function are important as confirmed by mutational analyses of C. jejuni 11168H. This study describes a new host–pathogen interaction for C. jejuni and confirms that amoebae are transient hosts for the persistence, adaptability, and potential transmission of C. jejuni.
Collapse
|
13
|
Dias TS, Costa GA, de Almeida Figueira A, Dos Santos Machado L, da Cunha NC, do Nascimento ER, de Almeida Pereira VL, de Aquino MHC. Molecular markers associated with antimicrobial resistance and genotypes of Campylobacter jejuni and Campylobacter coli isolated from broiler and swine flocks in southeast Brazil. Comp Immunol Microbiol Infect Dis 2022; 88:101866. [PMID: 36027679 DOI: 10.1016/j.cimid.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/30/2022]
Abstract
This study aimed to identify molecular markers associated with antimicrobial resistance and genotype isolates of Campylobacter spp. from broiler and swine flocks due to its importance to one-health. C. jejuni (n=27) and C. coli (n = 35) strains were screened for the antimicrobial genetic markers C257T in gyrA, A2074C and A2075G in 23S rRNA, CmeABC, ermB, tetO and blaOXA61 by PCR. Fifteen strains had SVR-flaA and porA genes sequenced to evaluate their genetic diversity. Among C. jejuni strains 62.96% had C257T mutation and only one strain had A2075G mutation. CmeA, cmeB, cmeC, tetO and blaOXA61 were detected respectively in 92.59%, 100%, 100%, 85.19%, 85.19% of the strains. All C. coli had C257T mutation; 48.75% had A2075G and cmeA, cmeB, cmeC, tetO, blaOXA61 were detected in 8.57%, 94.29%, 91.43%, 91.43%, 80%, respectively. Twelve porA and SVR-flaA alleles were detected, with a Simpson index of diversity value of 0.962.
Collapse
Affiliation(s)
- Thomas Salles Dias
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil.
| | - Gisllany Alves Costa
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Arthur de Almeida Figueira
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Leandro Dos Santos Machado
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Nathalie Costa da Cunha
- Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Elmiro Rosendo do Nascimento
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Virginia Léo de Almeida Pereira
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil; Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Maria Helena Cosendey de Aquino
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil; Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| |
Collapse
|
14
|
Erega A, Stefanic P, Danevčič T, Smole Možina S, Mandic Mulec I. Impact of Bacillus subtilis Antibiotic Bacilysin and Campylobacter jejuni Efflux Pumps on Pathogen Survival in Mixed Biofilms. Microbiol Spectr 2022; 10:e0215622. [PMID: 35938811 PMCID: PMC9430781 DOI: 10.1128/spectrum.02156-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
The foodborne pathogen Campylobacter jejuni is typically found in an agricultural environment; in animals, such as birds, as an intestinal commensal; and also in food products, especially fresh poultry meat. Campylobacter interactions within mixed species biofilms are poorly understood, especially at the microscale. We have recently shown that the beneficial bacterium Bacillus subtilis reduces C. jejuni survival and biofilm formation in coculture by secreting the antibiotic bacillaene. We extend these studies here by providing evidence that besides bacillaene, the antagonistic effect of B. subtilis involves a nonribosomal peptide bacilysin and that the fully functional antagonism depends on the quorum-sensing transcriptional regulator ComA. Using confocal laser scanning microscopy, we also show that secreted antibiotics influence the distribution of C. jejuni and B. subtilis cells in the submerged biofilm and decrease the thickness of the pathogen's biofilm. Furthermore, we demonstrate that genes encoding structural or regulatory proteins of the efflux apparatus system (cmeF and cmeR), respectively, contribute to the survival of C. jejuni during interaction with B. subtilis PS-216. In conclusion, this study demonstrates a strong potential of B. subtilis PS-216 to reduce C. jejuni biofilm growth, which supports the application of the PS-216 strain to pathogen biofilm control. IMPORTANCE Campylobacter jejuni is a prevalent cause of foodborne infections worldwide, while Bacillus subtilis as a potential probiotic represents an alternative strategy to control this alimentary infection. However, only limited literature exists on the specific mechanisms that shape interactions between B. subtilis and C. jejuni in biofilms. This study shows that in the two species biofilms, B. subtilis produces two antibiotics, bacillaene and bacilysin, that inhibit C. jejuni growth. In addition, we provide the first evidence that specific pathogen efflux pumps contribute to the defense against B. subtilis attack. Specifically, the CmeDEF pump acts during the defense against bacilysin, while CmeR-dependent overexpression of CmeABC nullifies the bacillaene attack. The role of specific B. subtilis antibiotics and these polyspecific pumps, known for providing resistance against medically relevant antibiotics, has not been studied during bacterial competition in biofilms before. Hence, this work broadens our understanding of mechanisms that shape antagonisms and defense during probiotic-pathogen interactions.
Collapse
Affiliation(s)
- A. Erega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - P. Stefanic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - T. Danevčič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - I. Mandic Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology/COMPETE, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Anis N, Bonifait L, Quesne S, Baugé L, Yassine W, Guyard-Nicodème M, Chemaly M. Survival of Campylobacter jejuni Co-Cultured with Salmonella spp. in Aerobic Conditions. Pathogens 2022; 11:812. [PMID: 35890056 PMCID: PMC9323934 DOI: 10.3390/pathogens11070812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Campylobacter and Salmonella are responsible for the two major foodborne zoonotic diseases in Europe; poultry is the main infection source. Campylobacter cannot grow under aerobic conditions, but can show aerobic survival when co-cultured with other microorganisms; however, its interaction with Salmonella has not been studied yet. In this study, these two bacteria were co-cultured under controlled aerobic conditions. Different concentrations and strains of C. jejuni were incubated with or without different Salmonella serotypes (10 CFU) at 37 °C for 16 h. C. jejuni did not grow after incubation with or without Salmonella. The survival of C. jejuni was observed only for the highest initial concentration of 6 log CFU/mL with or without Salmonella. However, its survival was significantly higher when co-cultured with Salmonella. No survival was observed at lower concentrations. C. jejuni survival was positively affected by the presence of Salmonella but depended on the Salmonella serotype, the C. jejuni strain and the initial concentration. On the other hand, the Salmonella enumerations were not affected by C. jejuni. Our results suggest potential interactions between Salmonella and C. jejuni that require further investigations for a clearer understanding of their behavior in natural habitats.
Collapse
Affiliation(s)
- Nagham Anis
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Laetitia Bonifait
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Ségolène Quesne
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Louise Baugé
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Wissam Yassine
- Faculty of Sciences, Lebanese University, Beirut 10999, Lebanon;
| | - Muriel Guyard-Nicodème
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| | - Marianne Chemaly
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, 22440 Ploufragan, France; (N.A.); (L.B.); (S.Q.); (L.B.); (M.C.)
| |
Collapse
|
16
|
Nasher F, Wren BW. Transient internalization of Campylobacter jejuni in Amoebae enhances subsequent invasion of human cells. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35175913 PMCID: PMC8941996 DOI: 10.1099/mic.0.001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide and is a major public health problem. The ability of C. jejuni to interact and potentially invade epithelial cells is thought to be key for disease development in humans. We examined C. jejuni grown under standard laboratory conditions, 11168HCBA with that harvested from within Acanthamoeba castellanii (11168HAC/CBA) or Acanthamoeba polyphaga (11168HAP/CBA), and compared their ability to invade different cell lines. C. jejuni harvested from within amoebae had a ~3.7-fold increase in invasiveness into T84 human epithelial cells and a striking ~11-fold increase for re-entry into A. castellanii cells. We also investigated the invasiveness and survivability of six diverse representative C. jejuni strains within Acanthamoeba spp., our results confirm that invasion and survivability is likely host-cell-dependent. Our survival assay data led us to conclude that Acanthamoeba spp. are a transient host for C. jejuni and that survival within amoebae pre-adapts C. jejuni and enhances subsequent cell invasion. This study provides new insight into C. jejuni interactions with amoebae and its increased invasiveness potential in mammalian hosts.
Collapse
Affiliation(s)
- Fauzy Nasher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
17
|
Shagieva E, Demnerova K, Michova H. Waterborne Isolates of Campylobacter jejuni Are Able to Develop Aerotolerance, Survive Exposure to Low Temperature, and Interact With Acanthamoeba polyphaga. Front Microbiol 2021; 12:730858. [PMID: 34777280 PMCID: PMC8578730 DOI: 10.3389/fmicb.2021.730858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is regarded as the leading cause of bacterial gastroenteritis around the world. Even though it is generally considered to be a sensitive microaerobic pathogen, it is able to survive in the environment outside of the intestinal tract of the host. This study aimed to assess the impact of selected environmental parameters on the survival of 14 C. jejuni isolates of different origins, including 12 water isolates. The isolates were tested for their antibiotic resistance, their ability to survive at low temperature (7°C), develop aerotolerance, and to interact with the potential protozoan host Acanthamoeba polyphaga. The antibiotic susceptibility was determined by standard disk diffusion according to EUCAST. Out of the 14 isolates, 8 were resistant to ciprofloxacin (CIP) and 5 to tetracycline (TET), while only one isolate was resistant to erythromycin (ERY). Five isolates were resistant to two different antibiotic classes. Tetracycline resistance was only observed in isolates isolated from wastewater and a clinical sample. Further, the isolates were tested for their survival at 7°C under both aerobic and microaerobic conditions using standard culture methods. The results showed that under microaerobic conditions, all isolates maintained their cultivability for 4 weeks without a significant decrease in the numbers of bacteria and variation between the isolates. However, significant differences were observed under aerobic conditions (AC). The incubation led to a decrease in the number of cultivable cells, with complete loss of cultivability after 2 weeks (one water isolate), 3 weeks (7 isolates), or 4 weeks of incubation (6 isolates). Further, all isolates were studied for their ability to develop aerotolerance by repetitive subcultivation under microaerobic and subsequently AC. Surprisingly, all isolates were able to adapt and grow under AC. As the last step, 5 isolates were selected to evaluate a potential protective effect provided by A. polyphaga. The cocultivation of isolates with the amoeba resulted in the survival of about 40% of cells treated with an otherwise lethal dose of gentamicin. In summary, C. jejuni is able to adapt and survive in a potentially detrimental environment for a prolonged period of time, which emphasizes the role of the environmental transmission route in the spread of campylobacteriosis.
Collapse
Affiliation(s)
- Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
18
|
Akbar S, Stevens DC. Functional genomics study of Pseudomonas putida to determine traits associated with avoidance of a myxobacterial predator. Sci Rep 2021; 11:16445. [PMID: 34385565 PMCID: PMC8360965 DOI: 10.1038/s41598-021-96046-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Predation contributes to the structure and diversity of microbial communities. Predatory myxobacteria are ubiquitous to a variety of microbial habitats and capably consume a broad diversity of microbial prey. Predator-prey experiments utilizing myxobacteria have provided details into predatory mechanisms and features that facilitate consumption of prey. However, prey resistance to myxobacterial predation remains underexplored, and prey resistances have been observed exclusively from predator-prey experiments that included the model myxobacterium Myxococcus xanthus. Utilizing a predator-prey pairing that instead included the myxobacterium, Cystobacter ferrugineus, with Pseudomonas putida as prey, we observed surviving phenotypes capable of eluding predation. Comparative transcriptomics between P. putida unexposed to C. ferrugineus and the survivor phenotype suggested that increased expression of efflux pumps, genes associated with mucoid conversion, and various membrane features contribute to predator avoidance. Unique features observed from the survivor phenotype when compared to the parent P. putida include small colony variation, efflux-mediated antibiotic resistance, phenazine-1-carboxylic acid production, and increased mucoid conversion. These results demonstrate the utility of myxobacterial predator-prey models and provide insight into prey resistances in response to predatory stress that might contribute to the phenotypic diversity and structure of bacterial communities.
Collapse
Affiliation(s)
- Shukria Akbar
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - D Cole Stevens
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.
| |
Collapse
|
19
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
20
|
Complete Genome Sequence of Campylobacter jejuni Strain G1, Isolated from a Patient with Guillain-Barré Syndrome. Microbiol Resour Announc 2021; 10:e0050521. [PMID: 34323606 PMCID: PMC8320459 DOI: 10.1128/mra.00505-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Here, I report the complete genome sequence of Campylobacter jejuni strain G1, belonging to Penner serotype HS1. One remarkable feature of the genome of this isolate is the presence of four copies of Mu-like prophages, of which none are present in some other strains, including the reference strain NCTC11168.
Collapse
|
21
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
22
|
Park YL, Choi TR, Kim HJ, Song HS, Lee HS, Park SL, Lee SM, Kim SH, Park S, Bhatia SK, Gurav R, Sung C, Seo SO, Yang YH. NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes. J Microbiol Biotechnol 2021; 31:250-258. [PMID: 33148940 PMCID: PMC9705875 DOI: 10.4014/jmb.2009.09017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.
Collapse
Affiliation(s)
- Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Serom Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 0509, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 1662, Republic of Korea,S.O. Seo Fax: +82-2-2164-4316 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 0509, Republic of Korea,Corresponding authors Y.H. Yang Fax: +82-2-3437-8360 E-mail:
| |
Collapse
|
23
|
Šimunović K, Zajkoska S, Bezek K, Klančnik A, Barlič Maganja D, Smole Možina S. Comparison of Campylobacter jejuni Slaughterhouse and Surface-Water Isolates Indicates Better Adaptation of Slaughterhouse Isolates to the Chicken Host Environment. Microorganisms 2020; 8:microorganisms8111693. [PMID: 33143223 PMCID: PMC7693524 DOI: 10.3390/microorganisms8111693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is an emerging food-borne pathogen that poses a high risk to human health. Knowledge of the strain source can contribute significantly to an understanding of this pathogen, and can lead to improved control measures in the food-processing industry. In this study, slaughterhouse and surface-water isolates of C. jejuni were characterized and compared in terms of their antimicrobial resistance profiles and adhesion to stainless steel and chicken skin. Resistance of C. jejuni biofilm cells to benzalkonium chloride and Satureja montana ethanolic extract was also tested. The data show that the slaughterhouse isolates are more resistant to ciprofloxacin, and adhere better to stainless steel at 42 °C, and at 37 °C in 50% chicken juice. Additionally, biofilm cells of the isolate with the greatest adhesion potential (C. jejuni S6) were harvested and tested for resistance to S. montana ethanolic extract, benzalkonium chloride, and erythromycin; and for efflux-pump activity, as compared to their planktonic cells. The biofilm cells showed increased resistance to both S. montana ethanolic extract and erythromycin, and increased efflux-pump activity. These data indicate adaptation of C. jejuni slaughterhouse isolates to the chicken host, as well as increased biofilm cell resistance due to increased efflux-pump activity.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Sandra Zajkoska
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Katja Bezek
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.B.); (D.B.M.)
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Darja Barlič Maganja
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.B.); (D.B.M.)
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
- Correspondence: ; Tel.: +386-1-3203751; Fax: +386-1-2565782
| |
Collapse
|
24
|
Šimunović K, Bucar F, Klančnik A, Pompei F, Paparella A, Smole Možina S. In Vitro Effect of the Common Culinary Herb Winter Savory ( Satureja montana) against the Infamous Food Pathogen Campylobacter jejuni. Foods 2020; 9:E537. [PMID: 32344626 PMCID: PMC7230815 DOI: 10.3390/foods9040537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
The culinary herb Satureja montana, known as winter savory, is an ingredient of traditional dishes known in different parts of the world. As an ingredient of foods it has the potential to improve their safety. In this study, the herb's activity was investigated against Campylobacter jejuni, the leading cause of the most prevalent bacterial gastroenteritis worldwide. The ethanolic extract and essential oil of the herb were chemically characterized and six pure compounds-carvacrol, thymol, thymoquinone, p-cymene, γ-terpinene, and rosmarinic acid-were chosen for further analysis. The antimicrobial activity of the ethanolic extract (MIC 250 mg/L) was 4-fold higher compared to the essential oil. Carvacrol, thymol and thymoquinone had the strongest antimicrobial effect (MIC 31.25 mg/L) and a strong synergistic activity between carvacrol and thymol was determined (FICi 0.2). Strong inhibitory effect on C. jejuni efflux pumps (2-fold inhibition) and disruption of membrane integrity (> 80% disruption) of the herb were determined as modes of action. For resistance against the herb, C. jejuni need efflux pumps, although increased resistance against this herb does not co-occur with increased efflux pump activity, as for antibiotics. This study shows the potential of a common culinary herb for the reduction of the food pathogen C. jejuni without increasing resistance.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (A.K.); (F.P.)
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria;
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (A.K.); (F.P.)
| | - Francesco Pompei
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (A.K.); (F.P.)
- Department of Food Science, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, via Balzarini 1, 64100 Teramo, Italy;
| | - Antonello Paparella
- Department of Food Science, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, via Balzarini 1, 64100 Teramo, Italy;
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (A.K.); (F.P.)
| |
Collapse
|
25
|
Ghatak S, He Y, Reed S, Irwin P. Comparative Genomic Analysis of a Multidrug-Resistant Campylobacter jejuni Strain YH002 Isolated from Retail Beef Liver. Foodborne Pathog Dis 2020; 17:576-584. [PMID: 32077758 DOI: 10.1089/fpd.2019.2770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide. In this study, we report the comparative genomic and functional characteristics of C. jejuni YH002 recently isolated from retail beef liver. Whole-genome sequencing and annotation of the strain revealed novel genetic features, including an integrated intact phage element, multiple antimicrobial resistance (AMR) genes, virulence factors, and a Phd-Doc type toxin-antitoxin (TA) system. Phenotypic tests of AMR showed that C. jejuni YH002 was resistant to amoxicillin and tetracycline, which correlates with the AMR genes found in the strain. Comparative analysis of cell motility at genotypic and phenotypic levels identified discernible patterns of amino acid changes, which could explain the variations of motility among C. jejuni strains. Together, these results provide important clues to the genetic mechanisms of AMR and cell motility in C. jejuni. The finding of a Phd-Doc TA system in the genome of C. jejuni YH002 is the first report of this TA system in Campylobacter spp.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, India
| | - Yiping He
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| | - Sue Reed
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| | - Peter Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| |
Collapse
|
26
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
27
|
Klančnik A, Gobin I, Jeršek B, Smole Možina S, Vučković D, Tušek Žnidarič M, Abram M. Adhesion of Campylobacter jejuni Is Increased in Association with Foodborne Bacteria. Microorganisms 2020; 8:E201. [PMID: 32023990 PMCID: PMC7074767 DOI: 10.3390/microorganisms8020201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to evaluate Campylobacter jejuni NTCT 11168 adhesion to abiotic and biotic surfaces when grown in co-culture with Escherichia coli ATCC 11229 and/or Listeria monocytogenes 4b. Adhesion of C. jejuni to polystyrene and to Caco-2 cells and Acanthamoeba castellanii was lower for at least 3 log CFU/mL compared to E. coli and L. monocytogenes. Electron micrographs of ultrathin sections revealed interactions of C. jejuni with host cells. In co-culture with E. coli and L. monocytogenes, adhesion of C. jejuni to all tested surfaces was significantly increased for more than 1 log CFU/mL. There was 10% higher aggregation for C. jejuni than for other pathogens, and high co-aggregation of co-cultures of C. jejuni with E. coli and L. monocytogenes. These data show that C. jejuni in co-cultures with E. coli and L. monocytogenes present significantly higher risk than C. jejuni as mono-cultures, which need to be taken into account in risk evaluation. C. jejuni adhesion is a prerequisite for their colonization, biofilm formation, and further contamination of the environment. C. jejuni survival under adverse conditions as a factor in their pathogenicity and depends on their adhesion to different surfaces, not only as individual strains, but also in co-cultures with other bacteria like E. coli and L. monocytogenes.
Collapse
Affiliation(s)
- Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.J.); (S.S.M.)
| | - Ivana Gobin
- Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, HR-51000 Rijeka, Croatia; (I.G.); (D.V.); (M.A.)
| | - Barbara Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.J.); (S.S.M.)
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.J.); (S.S.M.)
| | - Darinka Vučković
- Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, HR-51000 Rijeka, Croatia; (I.G.); (D.V.); (M.A.)
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia;
| | - Maja Abram
- Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, HR-51000 Rijeka, Croatia; (I.G.); (D.V.); (M.A.)
- Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Krešimirova 42, HR-51000 Rijeka, Croatia
| |
Collapse
|
28
|
Espinoza-Vergara G, Hoque MM, McDougald D, Noorian P. The Impact of Protozoan Predation on the Pathogenicity of Vibrio cholerae. Front Microbiol 2020; 11:17. [PMID: 32038597 PMCID: PMC6985070 DOI: 10.3389/fmicb.2020.00017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
In the aquatic environment, Vibrio spp. interact with many living organisms that can serve as a replication niche, including heterotrophic protists, or protozoa. Protozoa engulf bacteria and package them into phagosomes where the cells are exposed to low pH, antimicrobial peptides, reactive oxygen/nitrogen species, proteolytic enzymes, and low concentrations of essential metal ions such as iron. However, some bacteria can resist these digestive processes. For example, Vibrio cholerae and Vibrio harveyi can resist intracellular digestion. In order to survive intracellularly, bacteria have acquired and/or developed specific factors that help them to resist the unfavorable conditions encountered inside of the phagosomes. Many of these intra-phagosomal factors used to kill and digest bacteria are highly conserved between eukaryotic cells and thus are also expressed by the innate immune system in the gastrointestinal tract as the first line of defense against bacterial pathogens. Since pathogenic bacteria have been shown to be hypervirulent after they have passed through protozoa, the resistance to digestion by protist hosts in their natural environment plays a key role in enhancing the infectious potential of pathogenic Vibrio spp. This review will investigate the current knowledge in interactions of bacteria with protozoa and human host to better understand the mechanisms used by both protozoa and human hosts to kill bacteria and the bacterial response to them.
Collapse
Affiliation(s)
- Gustavo Espinoza-Vergara
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - M Mozammel Hoque
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Diane McDougald
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Science, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Parisa Noorian
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Remarkable Features of Mitochondrial DNA of Acanthamoeba polyphaga Linc Ap-1, Revealed by Whole-Genome Sequencing. Microbiol Resour Announc 2019; 8:8/25/e00430-19. [PMID: 31221647 PMCID: PMC6588368 DOI: 10.1128/mra.00430-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing of Acanthamoeba polyphaga Linc Ap-1 resulted in a draft assembly of the chromosomal DNA and a complete sequence of the mitochondrial DNA (mtDNA). Despite very high sequence similarity with the mtDNA of Acanthamoeba castellanii Neff, in contrast to Acanthamoeba polyphaga Linc Ap-1, the determined DNA sequence revealed a complete absence of introns. Whole-genome sequencing of Acanthamoeba polyphaga Linc Ap-1 resulted in a draft assembly of the chromosomal DNA and a complete sequence of the mitochondrial DNA (mtDNA). Despite very high sequence similarity with the mtDNA of Acanthamoeba castellanii Neff, in contrast to Acanthamoeba polyphaga Linc Ap-1, the determined DNA sequence revealed a complete absence of introns.
Collapse
|
30
|
Contact lens-related polymicrobial keratitis: Acanthamoeba spp. genotype T4 and Candida albicans. Parasitol Res 2018; 117:3431-3436. [PMID: 30094541 DOI: 10.1007/s00436-018-6037-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
A 31-year-old female daily user of contact lenses sought medical attention, reporting blurred vision and irritation of the left eye. Slit-lamp examination revealed hyperemia and an irregular corneal epithelium surface, and empirical treatment was started. A corneal scrape was obtained and examined for the presence of fungi, bacteria, and Acanthamoeba spp. The results of the microbial culture revealed growth of Acanthamoeba spp. and Candida albicans. The Acanthamoeba isolate was characterized by cyst morphology as belonging to group II according to Pussard and Pons. Sequencing of the diagnostic fragment 3 (DF3) region located on the 18S ribosomal DNA identified the isolate as genotype T4. The patient was treated with chlorhexidine 0.02% and polyhexamethylene biguanide (PHMB) 0.02% drops for 5 months until the infection resolved. Lately, rare cases of polymicrobial keratitis associated with Acanthamoeba and Candida albicans have been reported. Cases of co-infection are more difficult to treat, since the specific treatment depends on precise identification of the agents involved.
Collapse
|
31
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|