1
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
2
|
Rebai Y, Wagner L, Gnaien M, Hammer ML, Kapitan M, Niemiec MJ, Mami W, Mosbah A, Messadi E, Mardassi H, Vylkova S, Jacobsen ID, Znaidi S. Escherichia coli Nissle 1917 Antagonizes Candida albicans Growth and Protects Intestinal Cells from C. albicans-Mediated Damage. Microorganisms 2023; 11:1929. [PMID: 37630490 PMCID: PMC10457924 DOI: 10.3390/microorganisms11081929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a pathobiont of the gastrointestinal tract. It can contribute to the diversity of the gut microbiome without causing harmful effects. When the immune system is compromised, C. albicans can damage intestinal cells and cause invasive disease. We hypothesize that a therapeutic approach against C. albicans infections can rely on the antimicrobial properties of probiotic bacteria. We investigated the impact of the probiotic strain Escherichia coli Nissle 1917 (EcN) on C. albicans growth and its ability to cause damage to intestinal cells. In co-culture kinetic assays, C. albicans abundance gradually decreased over time compared with C. albicans abundance in the absence of EcN. Quantification of C. albicans survival suggests that EcN exerts a fungicidal activity. Cell-free supernatants (CFS) collected from C. albicans-EcN co-culture mildly altered C. albicans growth, suggesting the involvement of an EcN-released compound. Using a model of co-culture in the presence of human intestinal epithelial cells, we further show that EcN prevents C. albicans from damaging enterocytes both distantly and through direct contact. Consistently, both C. albicans's filamentous growth and microcolony formation were altered by EcN. Taken together, our study proposes that probiotic-strain EcN can be exploited for future therapeutic approaches against C. albicans infections.
Collapse
Affiliation(s)
- Yasmine Rebai
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Lysett Wagner
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mayssa Gnaien
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Merle L. Hammer
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
- Center for Sepsis Control and Care, 07747 Jena, Germany
| | - Maria Joanna Niemiec
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Wael Mami
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (LR11ES31), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Tunis 2010, Tunisia
| | - Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Helmi Mardassi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
- Center for Sepsis Control and Care, 07747 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Sadri Znaidi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
- Institut Pasteur, Institut National de la Recherche Agronomique (INRA), Département Mycologie, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
| |
Collapse
|
3
|
Kathiriya MR, Vekariya YV, Hati S. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10104-3. [PMID: 37347421 DOI: 10.1007/s12602-023-10104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get adapted to the lethal environments.
Collapse
Affiliation(s)
- Mital R Kathiriya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Yogesh V Vekariya
- Department. of Dairy Engineering, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India.
| |
Collapse
|
4
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
5
|
Deletion of the cheZ gene results in the loss of swimming ability and the decrease of adhesion ability to Caco-2 cells in Escherichia coli Nissle 1917. Folia Microbiol (Praha) 2022; 68:395-402. [DOI: 10.1007/s12223-022-01019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
|
6
|
Nag D, Farr D, Raychaudhuri S, Withey JH. An adult zebrafish model for adherent-invasive Escherichia coli indicates protection from AIEC infection by probiotic E. coli Nissle. iScience 2022; 25:104572. [PMID: 35769878 PMCID: PMC9234234 DOI: 10.1016/j.isci.2022.104572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/02/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is an opportunistic pathogen associated with major inflammatory bowel disease, Crohn disease, and ulcerative colitis. Unfavorable conditions push commensal AIEC to induce gut inflammation, sometimes progressing to inflammation-induced colon cancer. Recently, zebrafish have emerged as a useful model to study human intestinal pathogens. Here, a zebrafish model to study AIEC infection was developed. Bath inoculation with AIEC resulted in colonization and tissue disruption in the zebrafish intestine. Gene expression of pro-inflammatory markers including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα), interferon-γ (IFNγ), and S100A-10b (akin to human calprotectin) in the zebrafish intestine was significantly induced by AIEC infection. The probiotic E. coli Nissle 1917 (EcN) was tested as a therapeutic and prophylactic against AIEC infection and reduced AIEC colonization, tissue damage, and pro-inflammatory responses in zebrafish. Furthermore, EcN diminished the propionic-acid-augmented hyperinfection of AIEC in zebrafish. Thus, this study shows the efficacy of EcN against AIEC in an AIEC-zebrafish model. AIEC can colonize, invade, and induce inflammation in the zebrafish gut Probiotic E. coli Nissle can protect zebrafish from AIEC infection EcN is effective both prophylactically and therapeutically against AIEC-induced IBD
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dustin Farr
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Corresponding author
| |
Collapse
|
7
|
Nutraceuticals and Diet Supplements in Crohn's Disease: A General Overview of the Most Promising Approaches in the Clinic. Foods 2022; 11:foods11071044. [PMID: 35407131 PMCID: PMC8998137 DOI: 10.3390/foods11071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory gastrointestinal disorder requiring lifelong medications. The currently approved drugs for CD are associated with relevant side effects and several studies suggest an increased use of nutraceuticals among CD patients, seeking for what is perceived as a more "natural" approach in controlling this highly morbid condition. Nutraceuticals are foods or foods' components with beneficial health properties that could aid in CD treatment for their anti-inflammatory, analgesic and immunoregulatory activities that come along with safety, high tolerability, easy availability and affordability. Depending on their biological effect, nutraceuticals' support could be employed in different subsets of CD patients, both those with active disease, as adjunctive immunomodulatory therapies, and/or in quiescent disease to provide symptomatic relief in patients with residual functional symptoms. Despite the increasing interest of the general public, both limited research and lack of education from healthcare professionals regarding their real clinical effectiveness account for the increasing number of patients turning to unconventional sources. Professionals should recognize their widespread use and the evidence base for or against their efficacy to properly counsel IBD patients. Overall, nutraceuticals appear to be safe complements to conventional therapies; nonetheless, little quality evidence supports a positive impact on underlying inflammatory activity.
Collapse
|
8
|
Mayorgas A, Dotti I, Martínez-Picola M, Esteller M, Bonet-Rossinyol Q, Ricart E, Salas A, Martínez-Medina M. A Novel Strategy to Study the Invasive Capability of Adherent-Invasive Escherichia coli by Using Human Primary Organoid-Derived Epithelial Monolayers. Front Immunol 2021; 12:646906. [PMID: 33854511 PMCID: PMC8039293 DOI: 10.3389/fimmu.2021.646906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decades, Adherent-Invasive Escherichia coli (AIEC) has been linked to the pathogenesis of Crohn’s Disease. AIEC’s characteristics, as well as its interaction with the gut immune system and its role in intestinal epithelial barrier dysfunction, have been extensively studied. Nevertheless, the currently available techniques to investigate the cross-talk between this pathogen and intestinal epithelial cells (IECs) are based on the infection of immortalized cell lines. Despite their many advantages, cell lines cannot reproduce the conditions in tissues, nor do they reflect interindividual variability or gut location-specific traits. In that sense, the use of human primary cultures, either healthy or diseased, offers a system that can overcome all of these limitations. Here, we developed a new infection model by using freshly isolated human IECs. For the first time, we generated and infected monolayer cultures derived from human colonic organoids to study the mechanisms and effects of AIEC adherence and invasion on primary human epithelial cells. To establish the optimal conditions for AIEC invasion studies in human primary organoid-derived epithelial monolayers, we designed an infection-kinetics study to assess the infection dynamics at different time points, as well as with two multiplicities of infection (MOI). Overall, this method provides a model for the study of host response to AIEC infections, as well as for the understanding of the molecular mechanisms involved in adhesion, invasion and intracellular replication. Therefore, it represents a promising tool for elucidating the cross-talk between AIEC and the intestinal epithelium in healthy and diseased tissues.
Collapse
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Isabella Dotti
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Marta Martínez-Picola
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Miriam Esteller
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Queralt Bonet-Rossinyol
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Elena Ricart
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | | |
Collapse
|
9
|
Mayorgas A, Dotti I, Salas A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol Nutr Food Res 2020; 65:e2000188. [DOI: 10.1002/mnfr.202000188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Isabella Dotti
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Azucena Salas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| |
Collapse
|
10
|
Xu J, Xia K, Li P, Qian C, Li Y, Liang X. Functional investigation of the chromosomal ccdAB and hipAB operon in Escherichia coli Nissle 1917. Appl Microbiol Biotechnol 2020; 104:6731-6747. [PMID: 32535695 PMCID: PMC7293176 DOI: 10.1007/s00253-020-10733-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin systems (TASs) have attracted much attention due to their important physiological functions. These small genetic factors have been widely studied mostly in commensal Escherichia coli strains, whereas the role of TASs in the probiotic E. coli Nissle 1917 (EcN) is still elusive. Here, the physiological role of chromosomally encoded type II TASs in EcN was examined. We showed that gene pair ECOLIN_00240-ECOLIN_00245 and ECOLIN_08365-ECOLIN_08370 were two functional TASs encoding CcdAB and HipAB, respectively. The homologs of CcdAB and HipAB were more conserved in E. coli species belonging to pathogenic groups, suggesting their important roles in EcN. CRISPRi-mediated repression of ccdAB and hipAB significantly reduced the biofilm formation of EcN in the stationary phase. Moreover, ccdAB and hipAB were shown to be responsible for the persister formation in EcN. Biofilm and persister formation of EcN controlled by the ccdAB and hipAB were associated with the expression of genes involved in DNA synthesis, SOS response, and stringent response. Besides, CRISPRi was proposed to be an efficient tool in annotating multiple TASs simultaneously. Collectively, our results advance knowledge and understanding of the role of TASs in EcN, which will enhance the utility of EcN in probiotic therapy. Key points • Two TASs in EcN were identified as hipAB and ccdAB. • Knockdown of HipAB and CcdAB resulted in decreased biofilm formation of EcN. • Transcriptional silencing of hipAB and ccdAB affected the persister formation of EcN. • An attractive link between TASs and stress response was unraveled in EcN. • CRISPRi afforded a fast and in situ annotation of multiple TASs simultaneously.
Collapse
Affiliation(s)
- Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Pinyi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chenggong Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Ferguson LR. Inflammatory bowel disease: why this provides a useful example of the evolving science of nutrigenomics. J R Soc N Z 2020. [DOI: 10.1080/03036758.2020.1728345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lynnette R. Ferguson
- Auckland Cancer Society Research Centre and Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Massip C, Branchu P, Bossuet-Greif N, Chagneau CV, Gaillard D, Martin P, Boury M, Sécher T, Dubois D, Nougayrède JP, Oswald E. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathog 2019; 15:e1008029. [PMID: 31545853 PMCID: PMC6776366 DOI: 10.1371/journal.ppat.1008029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/03/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.
Collapse
Affiliation(s)
- Clémence Massip
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | - Déborah Gaillard
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Michèle Boury
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Thomas Sécher
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Damien Dubois
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
13
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
van der Hooft JJJ, Goldstone RJ, Harris S, Burgess KEV, Smith DGE. Substantial Extracellular Metabolic Differences Found Between Phylogenetically Closely Related Probiotic and Pathogenic Strains of Escherichia coli. Front Microbiol 2019; 10:252. [PMID: 30837975 PMCID: PMC6390828 DOI: 10.3389/fmicb.2019.00252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Since its first isolation a century ago, the gut inhabitant Escherichia coli strain Nissle 1917 has been shown to have probiotic activities; however, it is yet not fully elucidated which differential factors play key roles in its beneficial interactions with the host. To date, no metabolomics studies have been reported investigating the potential role of small molecules in functional strain differentiation of Nissle from its genetically close neighbors. Here, we present results of liquid chromatography coupled to high-resolution mass spectrometry characterization of extracellular metabolomes of E. coli strains as a proxy of their bioactivity potential. We found that phylogroup B2 strains exported a more diverse arsenal of metabolites than strains of other phylogroups. Zooming into the phylogroup B2 metabolome identified consistent substantial differences between metabolic output of E. coli Nissle and other strains, particularly in metabolites associated to the Argimine biosynthesis pathway. Nissle was found to release higher levels of Ornithine and Citrulline whilst depleting greater amounts of Arginine from the medium. Moreover, a novel Nissle-specific metabolite not reported before in bacteria, 5-(Carbamoylamino)-2-hydroxypentanoic acid (Citrulline/Arginic Acid related) was observed. Finally, Nissle, CFT073 and NCTC12241/ATCC25922 shared the excretion of N5-Acetylornithine, whereas other strains released N2-Acetylornithine or no N-Acetylornithine at all. Thus, we found substantial metabolic differences in phylogenetically very similar E. coli strains, an observation which suggests that it is justified to further investigate roles of small molecules as potential modulators of the gut environment by probiotic, commensal, and pathogenic strains, including E. coli Nissle 1917.
Collapse
Affiliation(s)
| | | | - Susan Harris
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Karl E. V. Burgess
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David G. E. Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Mawad A, Helmy YA, Shalkami AG, Kathayat D, Rajashekara G. E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro. Appl Microbiol Biotechnol 2018; 102:10675-10690. [DOI: 10.1007/s00253-018-9417-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
|
16
|
Wan MLY, Chen Z, Shah NP, El-Nezami H. Effects of Lactobacillus rhamnosus GG and Escherichia coli Nissle 1917 Cell-Free Supernatants on Modulation of Mucin and Cytokine Secretion on Human Intestinal Epithelial HT29-MTX Cells. J Food Sci 2018; 83:1999-2007. [PMID: 29863797 DOI: 10.1111/1750-3841.14168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
This study examined modulation effects of cell-free supernatants of two commonly studied probiotic bacteria Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle 1917 (EcN) on mucin and cytokine profiles of human intestinal epithelial HT29-MTX cells. It was found that LGG and EcN supernatants differentially modulated MUC5AC and MUC5B mRNA and protein, and total mucin-like glycoprotein secretion. Regarding modulation of cytokine profiles, LGG supernatants moderately influenced the secretion of anti-inflammatory cytokines such as interleukin (IL)-4, IL-5, and IL-10, while those of EcN exerted a broad proinflammatory effect to intestinal epithelial cells by inducing the secretion of proinflammatory cytokines such as IL-8, monocyte chemotactic protein-1, transforming growth factor α, tumor necrosis factor α, granulocyte macrophage colony-stimulating factor, and interferon γ. These results suggested that LGG and EcN might produce different bioactive products that display differential modulation of mucin and cytokines, which may contribute to intestinal health and/or defense against bacteria/pathogens. PRACTICAL APPLICATION The results suggested that LGG and EcN might produce different bioactive products that display differential modulation of mucin and cytokines, which may contribute to intestinal health and/or defense against bacteria/pathogens.
Collapse
Affiliation(s)
- Murphy Lam-Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Zhijian Chen
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Nagendra P Shah
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong.,Inst. of Public Health and Clinical Nutrition, Univ. of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Costanzo M, Cesi V, Palone F, Pierdomenico M, Colantoni E, Leter B, Vitali R, Negroni A, Cucchiara S, Stronati L. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Benef Microbes 2018; 9:389-399. [PMID: 29633636 DOI: 10.3920/bm2017.0078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current research into original therapies to treat intestinal inflammation is focusing on no-drug therapies. KLD is a mixture of krill oil (KO), probiotic Lactobacillus reuteri (LR), and vitamin D (VitD3). The aim of this study was to assess in vitro and in vivo the potential cooperative effects of KLD in reducing gut inflammation. Colorectal adenocarcinoma cell lines, CACO2 and HT29, and C57BL/6 mice were used for in vitro and in vivo analyses, respectively. Cells were exposed to cytomix (interferon gamma + tumour necrosis factor alpha (TNF-α)) to induce inflammation or co-exposed to cytomix and KO, LR and VitD3 alone or to cytomix and KLD. Animals were treated for 7 days with dextran sodium sulphate (DSS) to induce colitis or with DSS and KLD. In vitro assays: F-actin expression was analysed by immunofluorescence; scratch test and trans-epithelial electric resistance test were performed to measure wound healing; adhesion/invasion assays of adhesive and invasive Escherichia coli (AIEC) bacteria were made; mRNA expression of TNF-α, interleukin (IL)-8 and vitamin D receptor (VDR) was detected by quantitative PCR. In vivo assays: body weight, clinical score, histological score and large intestine weight and length were estimated; mRNA expression of TNF-α, IL-1β, IL-6, IL-10 by quantitative PCR; VDR expression was detected by quantitative PCR and immunohistochemistry. In vitro: KLD restores epithelial cell-cell adhesion and mucosal healing during inflammation, while decreases the adhesiveness and invasiveness of AIEC bacteria and TNF-α and IL-8 mRNA expression and increases VDR expression. In vivo: KLD significantly improves body weight, clinical score, histological score and large intestine length of mice with DSS-induced colitis and reduces TNF-α, IL-1β and IL-6 mRNA levels, while increases IL-10 mRNA and VDR levels. KLD has significant effects on the intestinal mucosa, strongly decreasing inflammation, increasing epithelial restitution and reducing pathogenicity of harmful commensal bacteria.
Collapse
Affiliation(s)
- M Costanzo
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - V Cesi
- 2 Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Via Angullarese 301, 00123 Rome, Italy
| | - F Palone
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - M Pierdomenico
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - E Colantoni
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - B Leter
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - R Vitali
- 2 Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Via Angullarese 301, 00123 Rome, Italy
| | - A Negroni
- 2 Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Via Angullarese 301, 00123 Rome, Italy
| | - S Cucchiara
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - L Stronati
- 3 Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
18
|
Kumar M, Hemalatha R, Nagpal R, Singh B, Parasannanavar D, Verma V, Kumar A, Marotta F, Catanzaro R, Cuffari B, Jain S, Bissi L, Yadav H. PROBIOTIC APPROACHES FOR TARGETING INFLAMMATORY BOWEL DISEASE: AN UPDATE ON ADVANCES AND OPPORTUNITIES IN MANAGING THE DISEASE. INTERNATIONAL JOURNAL OF PROBIOTICS & PREBIOTICS 2016; 11:99-116. [PMID: 31452650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Various commensal enteric and pathogenic bacteria may be involved in the pathogenesis of inflammatory bowel diseases (IBDs), a chronic condition with a pathogenic background that involves both immunogenetic and environmental factors. IBDs comprising of Crohn's disease, and ulcerative colitis, and pauchitis are chronic inflammatory conditions, and known for causing disturbed homeostatic balance among the intestinal immune compartment, gut epithelium and microbiome. An increasing trend of IBDs in incidence, prevalence, and severity has been reported during recent years. Probiotic strains have been reported to manage the IBDs and related pathologies, and hence are current hot topics of research for their potential to manage metabolic diseases as well as various immunopathologies. However, the probiotics industry will need to undergo a transformation, with increased focus on stringent manufacturing guidelines and high-quality clinical trials. This article reviews the present state of art of role of probiotic bacteria in reducing inflammation and strengthening the host immune system with reference to the management of IBDs. We infer that t healthcare will move beyond its prevailing focus on human physiology, and embrace the superorganism as a paradigm to understand and ameliorate IBDs.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad
| | - Rajkumar Hemalatha
- Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad
| | - Ravinder Nagpal
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Tokyo
| | - Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Devraj Parasannanavar
- Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad
| | - Vinod Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - Ashok Kumar
- Department of Zoology, M.L.K. Post-Graduate College, Balrampur (U.P.), India
| | - Francesco Marotta
- ReGenera Research Group for Aging Intervention & MMC-Milano Medical, Milano, Italy
| | - Roberto Catanzaro
- Department of Internal Medicine, University of Catania, Catania, Italy
| | - Biagio Cuffari
- Department of Internal Medicine, University of Catania, Catania, Italy
| | - Shalini Jain
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura Bissi
- ReGenera Research Group for Aging Intervention & MMC-Milano Medical, Milano, Italy
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Jensen SR, Mirsepasi-Lauridsen HC, Thysen AH, Brynskov J, Krogfelt KA, Petersen AM, Pedersen AE, Brix S. Distinct inflammatory and cytopathic characteristics of Escherichia coli isolates from inflammatory bowel disease patients. Int J Med Microbiol 2015; 305:925-36. [PMID: 26522075 DOI: 10.1016/j.ijmm.2015.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/07/2015] [Accepted: 10/11/2015] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli (E. coli) may be implicated in the pathogenesis of inflammatory bowel disease (IBD), as implied from a higher prevalence of mucosa-associated E. coli in the gut of IBD-affected individuals. However, it is unclear whether different non-diarrheagenic E. coli spp. segregate from each other in their ability to promote intestinal inflammation. Herein we compared the inflammation-inducing properties of non-diarrheagenic LF82, 691-04A, E. coli Nissle 1917 (ECN) and eleven new intestinal isolates from different locations in five IBD patients and one healthy control. Viable E. coli were cultured with human monocyte-derived dendritic cells (moDCs) and monolayers of intestinal epithelial cells (IECs), followed by analysis of secreted cytokines, intracellular levels of reactive oxygen species and cellular death. The IBD-associated E. coli LF82 induced the same dose-dependent inflammatory cytokine profile as ECN and ten of the new E. coli isolates displayed as high level IL-12p70, IL-1β, IL-23 and TNF-α from moDCs irrespective of their site of isolation (ileum/colon/faeces), disease origin (diseased/non-diseased) or known virulence factors. Contrarily, 691-04A and one new IBD E. coli isolate induced a different cellular phenotype with enhanced killing of moDCs and IECs, coupled to elevated IL-18. The cytopathic nature of 691-04A and one other IBD E. coli isolate suggests that colonization with specific non-diarrheagenic E. coli could promote intestinal barrier leakage and profound intestinal inflammation, while LF82, ECN and the remaining non-diarrheagenic E. coli isolates hold notorious pro-inflammatory characteristics that can progress inflammation in case of intestinal barrier leakage.
Collapse
Affiliation(s)
- Stina Rikke Jensen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Denmark
| | | | - Anna Hammerich Thysen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Denmark
| | - Jørn Brynskov
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Denmark
| | - Andreas Munk Petersen
- Department of Gastroenterology, Medical Section, Hvidovre Hospital, University of Copenhagen, Denmark; Department of Clinical Microbiology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Anders Elm Pedersen
- Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Susanne Brix
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Denmark.
| |
Collapse
|
20
|
Gao Z, Guo B, Gao R, Zhu Q, Wu W, Qin H. Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer. Mol Med Rep 2015; 12:6119-27. [PMID: 26238090 DOI: 10.3892/mmr.2015.4124] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
Studies using animal models have demonstrated that probiotics may have a beneficial role in the prevention of colorectal cancer (CRC); however, the underlying mechanism of the beneficial effects of interventional probiotic treatment on gut microbiota has remained elusive. In the present study, pyrosequencing of the V3 region of the 16S rRNA genes was conducted in order to determine the extent to which probiotics alter the microbiota. The observations of the present study indicated that the microbial structure of cancerous tissue differed significantly from that of healthy individuals and that the CRC microbiota exhibited lower diversity. It was indicated that interventional treatment with probiotics increased the density and diversity of mucosal microbes, and altered the mucosa‑associated microbiota. Pyrosequencing demonstrated that probiotics significantly reduced (5‑fold) the abundance of a bacterial taxon assigned to the genus Fusobacterium, which had been previously suggested to be a contributing factor to increase tumorigenesis. Accordingly, interventional probiotic therapy is suggested to be able to improve the composition of the mucosal microbial flora and significantly reduce the abundance of mucosa-associated pathogens in patients with CRC.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Bomin Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Renyuan Gao
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qingchao Zhu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wen Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
21
|
Panwar H, Calderwood D, Grant IR, Grover S, Green BD. Lactobacilli possess inhibitory activity against dipeptidyl peptidase-4 (DPP-4). ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1129-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Wan LYM, Chen ZJ, Shah NP, El-Nezami H. Modulation of Intestinal Epithelial Defense Responses by Probiotic Bacteria. Crit Rev Food Sci Nutr 2015; 56:2628-41. [DOI: 10.1080/10408398.2014.905450] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Lactoferrin differently modulates the inflammatory response in epithelial models mimicking human inflammatory and infectious diseases. Biometals 2014; 27:843-56. [DOI: 10.1007/s10534-014-9740-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/13/2014] [Indexed: 02/08/2023]
|
24
|
Tang F, Saier MH. Transport proteins promoting Escherichia coli pathogenesis. Microb Pathog 2014; 71-72:41-55. [PMID: 24747185 DOI: 10.1016/j.micpath.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.
Collapse
Affiliation(s)
- Fengyi Tang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
25
|
Jiang Y, Kong Q, Roland KL, Wolf A, Curtiss R. Multiple effects of Escherichia coli Nissle 1917 on growth, biofilm formation, and inflammation cytokines profile of Clostridium perfringens type A strain CP4. Pathog Dis 2014; 70:390-400. [PMID: 24532573 DOI: 10.1111/2049-632x.12153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/31/2013] [Accepted: 02/03/2014] [Indexed: 02/06/2023] Open
Abstract
Clostridium perfringens is an important Gram-positive pathogen responsible for food poisoning, necrotic enteritis, gas gangrene, and even death. Escherichia coli Nissle 1917 (EcN) is a well-characterized probiotic strain with demonstrated benefits. In this study, we evaluated the effects of EcN on growth, toxin production, biofilm formation, and inflammatory cytokine responses of C. perfringens. In vitro co-culture experiments demonstrated that EcN inhibited growth, gas production, and toxin production (α-toxin and NetB) of C. perfringens in a dose-dependent manner. The growth inhibition effect was not observed when C. perfringens was incubated with EcN cell-free supernatants (CFSE), suggesting that growth inhibition was caused by nutrition competition during co-incubation. In vitro studies demonstrated that pre-incubation with EcN did not inhibit C. perfringens attachment to Caco-2 cells, but did reduce C. perfringens total number, toxin production, and cytotoxicity after 24 h. The similar growth inhibition results were also observed during the formation of C. perfringens biofilm. Finally, pre-incubation of EcN with RAW264.7 cells significantly decreased the production of inflammatory cytokines caused by the introduction of C. perfringens. Our results indicate that EcN can inhibit many of the pathological effects of C. perfringens in vitro conditions.
Collapse
Affiliation(s)
- Yanlong Jiang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | | | | | | |
Collapse
|
26
|
Wang H, Bastian SEP, Cheah KY, Lawrence A, Howarth GS. Escherichia coli Nissle 1917-derived factors reduce cell death and late apoptosis and increase transepithelial electrical resistance in a model of 5-fluorouracil-induced intestinal epithelial cell damage. Cancer Biol Ther 2014; 15:560-9. [PMID: 24556751 DOI: 10.4161/cbt.28159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We evaluated the capacity for supernatants (SNs) derived from Escherichia coli Nissle 1917 (EcN), cultured under different growth conditions, to prevent 5-fluorouracil (5-FU)-induced intestinal epithelial cell damage. EcN was cultured in: Luria Bertani (LB) broth, tryptone soya broth (TSB), de Man Rogosa Sharpe (MRS) broth, and M17 broth supplemented with 10% (v/v) lactose solution (M17). Intestinal epithelial cells (IEC-6) were treated with the following EcN SNs: LB(+), TSB(+), MRS(+), and M17(+) in the presence and absence of 5-FU (1.5 or 5 μM). Cell viability, apoptotic activity and cell monolayer permeability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and transepithelial electrical resistance (TER) assays, respectively. 5-FU significantly reduced cell viability (P<0.05) at both 24 and 48 h. However, only EcN SN produced from LB and M17 growth media significantly decreased cell death induced by 5-FU (by approximately 10% after 24 and 48 h; and 10% after 24 h, respectively [P<0.05]). When measured by flow cytometry all EcN SNs in the presence of 5-FU increased the proportion of viable cells (by 3-5% for 24 h, 3-7% for 48 h, P<0.05) and reduced late-apoptotic cells after 24 and 48 h, compared with 5-FU control. Moreover, all EcN SNs significantly reduced the disruption of IEC-6 cell barrier function induced by 5-FU by 7-10% (P<0.05), compared with DMEM control. We conclude that EcN derived factors could potentially reduce the severity of intestinal mucositis.
Collapse
Affiliation(s)
- Hanru Wang
- School of Animal and Veterinary Sciences; University of Adelaide; Roseworthy, SA Australia
| | - Susan E P Bastian
- School of Agriculture, Food and Wine; University of Adelaide; Waite Campus; Urrbrae, SA Australia
| | - Ker Y Cheah
- Gastroenterology Department; Women's and Children's Hospital; Adelaide, SA Australia
| | - Andrew Lawrence
- Microbiology Department; SA Pathology at Women's and Children's Hospital; Adelaide, SA Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences; University of Adelaide; Roseworthy, SA Australia; Gastroenterology Department; Women's and Children's Hospital; Adelaide, SA Australia
| |
Collapse
|
27
|
Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method. PLoS One 2013; 8:e59242. [PMID: 23658605 PMCID: PMC3637259 DOI: 10.1371/journal.pone.0059242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 02/13/2013] [Indexed: 01/28/2023] Open
Abstract
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.
Collapse
|
28
|
Leimbach A, Hacker J, Dobrindt U. E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. Curr Top Microbiol Immunol 2013; 358:3-32. [PMID: 23340801 DOI: 10.1007/82_2012_303] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Gleinser M, Grimm V, Zhurina D, Yuan J, Riedel CU. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb Cell Fact 2012; 11:80. [PMID: 22694891 PMCID: PMC3408352 DOI: 10.1186/1475-2859-11-80] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 01/15/2023] Open
Abstract
Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC) lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant bifidobacteria with improved adhesive properties.
Collapse
Affiliation(s)
- Marita Gleinser
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany
| | | | | | | | | |
Collapse
|
30
|
Cambray G, Mutalik VK, Arkin AP. Toward rational design of bacterial genomes. Curr Opin Microbiol 2011; 14:624-30. [DOI: 10.1016/j.mib.2011.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/02/2011] [Accepted: 08/07/2011] [Indexed: 02/02/2023]
|
31
|
Jensen SR, Fink LN, Nielsen OH, Brynskov J, Brix S. Ex vivo intestinal adhesion of Escherichia coli LF82 in Crohn's disease. Microb Pathog 2011; 51:426-31. [PMID: 21911052 DOI: 10.1016/j.micpath.2011.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 01/12/2023]
Abstract
Adherent-invasive Escherichia coli (AIEC) are reported to inhabit the gut mucosa in Crohn's disease (CD), however, little is known about the importance of host factors for the interplay between AIEC and the human gut. To examine if differences in bacterial adhesion patterns are disease associated, the AIEC-prototype strain LF82 was evaluated for its ability to adhere to ileal and colonic biopsies from CD and healthy controls (HC). Moreover, the efficacy of the non-pathogenic E. coli Nissle 1917 (ECN) in averting LF82 adhesion to ileal mucosa was assessed. Similar numbers of LF82 adhered to biopsies from CD and HC. A significantly greater LF82 attachment to ileal versus colonic mucosa was found in HC (P < 0.01), however, not in CD. ECN did not reduce the adhesion of LF82 to ileal specimens in CD or HC. These results show that enhanced bacterial adhesion ability is unlikely to play any significant role in CD, thus implying that other host protective factors may be impaired in CD. Further, exclusion of LF82 attachment by ECN co-incubation does not appear to represent a relevant treatment regimen.
Collapse
Affiliation(s)
- Stina Rikke Jensen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | |
Collapse
|