1
|
Xu Z, Sha Y, Li M, Chen S, Li J, Ding B, Zhang Y, Li P, Yan K, Jin M. Adaptive evolution and mechanism elucidation for ethanol tolerant Saccharomyces cerevisiae used in starch based biorefinery. Int J Biol Macromol 2025; 284:138155. [PMID: 39613065 DOI: 10.1016/j.ijbiomac.2024.138155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ethanol tolerant Saccharomyces cerevisiae is compulsory for ethanol production in starch based biorefinery, especially during high-gravity fermentation. In this study, adaptive evolution with increased initial ethanol concentrations as a driving force was harnessed for achieving ethanol tolerant S. cerevisiae. After evolution, an outstanding ethanol tolerant strain was screened, which contributed to significant improvements in glucose consumption and ethanol production in scenarios of 300 g/L initial glucose, high solid loadings (30 wt%, 33 wt%, 35 wt% and 40 wt%) of corn, and high solid loadings (30 wt% and 33 wt%) of cassava, compared with the original strain. Genome re-sequencing was applied for the evolved strain, and 504 sense mutations in 205 genes were detected, among which PAM1 gene was demonstrated related to the elevated ethanol tolerance. In sum, this study provided a practical approach for obtaining ethanol tolerant strain and the identified PAM1 gene enhanced our understanding on ethanol tolerant mechanism, as well as provided a target basis for rational metabolic engineering.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pingping Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kang Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Wu C, Zhang H, Yang N, Liu N, Yang H, Xu H, Lei H. Antioxidant Dipeptides Enhance Osmotic Stress Tolerance by Regulating the Yeast Cell Wall and Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4339-4347. [PMID: 38351620 DOI: 10.1021/acs.jafc.3c09320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study aimed to investigate the role of the yeast cell wall and membrane in enhancing osmotic tolerance by antioxidant dipeptides (ADs) including Ala-His (AH), Thr-Tyr (TY), and Phe-Cys (FC). Results revealed that ADs could improve the integrity of the cell wall by restructuring polysaccharide structures. Specifically, FC significantly (p < 0.05) reduced the leakage of nucleic acid and protein by 2.86% and 5.36%, respectively, compared to the control. In addition, membrane lipid composition played a crucial role in enhancing yeast tolerance by ADs, including the increase of cell membrane integrity and the decrease of permeability by regulating the ratio of unsaturated fatty acids. The up-regulation of gene expression associated with the cell wall integrity pathway (RLM1, SLT2, MNN9, FKS1, and CHS3) and fatty acid biosynthesis (ACC1, HFA1, OLE1, ERG1, and FAA1) further confirmed the positive impact of ADs on yeast tolerance against osmotic stress.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Na Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Yang H, Huang L, Zhao D, Zhao H, Chen Y, Li Y, Zeng Y. Protective effect of wheat gluten peptides against ethanol-stress damage in yeast cell and identification of anti-ethanol peptides. Lebensm Wiss Technol 2024; 192:115732. [DOI: 10.1016/j.lwt.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
4
|
Wei J, Nie Y, Du H, Xu Y. Serine Improves Lactic Acid Stress Tolerance and Ethanol Production in Zygosaccharomyces bailii in Baijiu Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20295-20303. [PMID: 37929595 DOI: 10.1021/acs.jafc.3c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Lactic acid is the primary inhibitor of the growth and ethanol production of yeasts in Baijiu fermentation. Certain amino acids have been found to be related to stress tolerance in yeasts. This study explored the effect of lactic acid stress on the ethanol-producing yeast Zygosaccharomyces bailii and evaluated the ability of serine to increase the lactic acid tolerance of Z. bailii in vitro. Serine significantly improved Z. bailii viability by 16.5% and ethanol production by 226.6% under lactic acid stress. Under lactic acid stress, serine supplementation led to an increase of 41.9% in cell wall integrity, 31.9% in cell membrane integrity, 296.6% in intracellular adenosine triphosphate (ATP), and 18.4% in the mitochondrial membrane potential. Finally, field emission scanning electron microscopy (FESEM) indicated that serine supplementation maintained the cell shape and reduced cell leakage. This study revealed a novel lactic acid tolerance mechanism of core functional yeasts during Jiang-flavor Baijiu fermentation.
Collapse
Affiliation(s)
- Junlin Wei
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Wang D, He M, Zhang M, Yang H, Huang J, Zhou R, Jin Y, Wu C. Food yeasts: occurrence, functions, and stress tolerance in the brewing of fermented foods. Crit Rev Food Sci Nutr 2023; 63:12136-12149. [PMID: 35875880 DOI: 10.1080/10408398.2022.2098688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the rapid development of systems biology technology, there is a deeper understanding of the molecular biological mechanisms and physiological characteristics of microorganisms. Yeasts are widely used in the food industry with their excellent fermentation performances. While due to the complex environments of food production, yeasts have to suffer from various stress factors. Thus, elucidating the stress mechanisms of food yeasts and proposing potential strategies to improve tolerance have been widely concerned. This review summarized the recent signs of progress in the variety, functions, and stress tolerance of food yeasts. Firstly, the main food yeasts occurred in fermented foods, and the taxonomy levels are demonstrated. Then, the main functions of yeasts including aroma enhancer, safety performance enhancer, and fermentation period reducer are discussed. Finally, the stress response mechanisms of yeasts and the strategies to improve the stress tolerance of cells are reviewed. Based on sorting out these related recent researches systematically, we hope that this review can provide help and approaches to further exert the functions of food yeasts and improve food production efficiency.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wang D, He Z, Xia H, Huang J, Jin Y, Zhou R, Hao L, Wu C. Engineering acetyl-CoA metabolism to enhance stress tolerance of yeast by regulating membrane functionality. Food Microbiol 2023; 115:104322. [PMID: 37567632 DOI: 10.1016/j.fm.2023.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 08/13/2023]
Abstract
Zygosaccharomyces rouxii has excellent fermentation performance and good tolerance to osmotic stress. Acetyl-CoA is a crucial intermediate precursor in the central carbon metabolic pathway of yeast. This study investigated the effect of engineering acetyl-CoA metabolism on the membrane functionality and stress tolerance of yeast. Firstly, exogenous supplementation of acetyl-CoA improved the biomass and the ability of unsaturated fatty acid synthesis of Z. rouxii under salt stress. Q-PCR results suggested that the gene ACSS (coding acetyl-CoA synthetase) was significantly up-expressed. Subsequently, the gene ACSS from Z. rouxii was transformed and heterologously expressed in S. cerevisiae. The recombinant cells exhibited better multiple stress (salt, acid, heat, and cold) tolerance, higher fatty acid contents, membrane integrity, and fluidity. Our findings may provide a suitable means to enhance the stress tolerance and fermentation efficiency of yeast under harsh fermentation environments.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Huan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Wu C, Liu L, Zhang M, Jike X, Zhang H, Yang N, Yang H, Xu H, Lei H. Mechanisms of Antioxidant Dipeptides Enhancing Ethanol-Oxidation Cross-Stress Tolerance in Lager Yeast: Roles of the Cell Wall and Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12538-12548. [PMID: 37578164 DOI: 10.1021/acs.jafc.3c03793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
High concentrations of ethanol could cause intracellular oxidative stress in yeast, which can lead to ethanol-oxidation cross-stress. Antioxidant dipeptides are effective in maintaining cell viability and stress tolerance under ethanol-oxidation cross-stress. In this study, we sought to elucidate how antioxidant dipeptides affect the yeast cell wall and membrane defense systems to enhance stress tolerance. Results showed that antioxidant dipeptide supplementation reduced cell leakage of nucleic acids and proteins by changing cell wall components under ethanol-oxidation cross-stress. Antioxidant dipeptides positively modulated the cell wall integrity pathway and up-regulated the expression of key genes. Antioxidant dipeptides also improved the cell membrane integrity by increasing the proportion of unsaturated fatty acids and regulating the expression of key fatty acid synthesis genes. Moreover, the addition of antioxidant dipeptides significantly (p < 0.05) increased the content of ergosterol. Ala-His (AH) supplementation caused the highest content of ergosterol, with an increase of 23.68 ± 0.01% compared to the control, followed by Phe-Cys (FC) and Thr-Tyr (TY). These results revealed that the improvement of the cell wall and membrane functions of antioxidant dipeptides was responsible for enhancing the ethanol-oxidation cross-stress tolerance of yeast.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Li Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengmeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Jin Z, Vighi A, Dong Y, Bureau JA, Ignea C. Engineering membrane architecture for biotechnological applications. Biotechnol Adv 2023; 64:108118. [PMID: 36773706 DOI: 10.1016/j.biotechadv.2023.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cellular membranes, predominantly described as a dynamic bilayer, are composed of different lipids, transmembrane proteins, and carbohydrates. Most research on biological membranes focuses on the identification, characterization, and mechanistic aspects of their different components. These studies provide a fundamental understanding of membrane structure, function, and dynamics, establishing a basis for the development of membrane engineering strategies. To date, approaches in this field concentrate on membrane adaptation to harsh conditions during industrial fermentation, which can be caused by temperature, osmotic, or organic solvent stress. With advances in the field of metabolic engineering and synthetic biology, recent breakthroughs include proof of concept microbial production of essential medicines, such as cannabinoids and vinblastine. However, long pathways, low yields, and host adaptation continue to pose challenges to the efficient scale up production of many important compounds. The lipid bilayer is profoundly linked to the activity of heterologous membrane-bound enzymes and transport of metabolites. Therefore, strategies for improving enzyme performance, facilitating pathway reconstruction, and enabling storage of products to increase the yields directly involve cellular membranes. At the forefront of membrane engineering research are re-emerging approaches in lipid research and synthetic biology that manipulate membrane size and composition and target lipid profiles across species. This review summarizes engineering strategies applied to cellular membranes and discusses the challenges and future perspectives, particularly with regards to their applications in host engineering and bioproduction.
Collapse
Affiliation(s)
- Zimo Jin
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Asia Vighi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| |
Collapse
|
9
|
Xia Y, Yang C, Liu X, Wang G, Xiong Z, Song X, Yang Y, Zhang H, Ai L. Enhancement of triterpene production via in situ extractive fermentation of Sanghuangporus vaninii YC-1. Biotechnol Appl Biochem 2022; 69:2561-2572. [PMID: 34967056 DOI: 10.1002/bab.2305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
There have been many studies on the activities and polysaccharide production of Sanghuangporus vaninii. However, few studies have looked at triterpene production from S. vaninii using liquid-state fermentation. A method for enhancing the production of triterpenes by in situ extractive fermentation (ISEF) was studied. Eight solvents were investigated as extractants for triterpene production in the ISEF system. The results showed that using vegetable oil as an extractant significantly increased the yield of total triterpenes and biomass of S. vaninii YC-1, reaching 18.98 ± 0.71 and 44.67 ± 2.21 g/L, respectively. In 5 L fermenter experiments, the added vegetable oil improved the dissolved oxygen condition of the fermentation broth and promoted the growth of S. vaninii YC-1. Furthermore, adding vegetable oil increased the expression of fatty acid synthesis-related genes such as FAD2 and SCD, thereby increasing the synthesis of unsaturated fatty acids in the cell membrane of S. vaninii YC-1. Therefore, the cell membrane permeability of S. vaninii YC-1 increased by 19%. Our results indicated that vegetable oil increased the permeability of S. vaninii YC-1 cell membranes to promote the production of total triterpenes. The use of vegetable oil as an extractant was thus effective in increasing the yield of triterpenes in the ISEF system.
Collapse
Affiliation(s)
- Yongjun Xia
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Caiyun Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaofeng Liu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijin Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Zheng ZY, Feng CH, Xie G, Liu WL, Zhu XL. Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on Saccharomyces cerevisiae: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis. Foods 2022; 11:3883. [PMID: 36496692 PMCID: PMC9735630 DOI: 10.3390/foods11233883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/17/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from S. cerevisiae was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when S. cerevisiae was stimulated by ultrasound + 0.1 mg/mL nano-Se@PC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered.
Collapse
Affiliation(s)
- Zi-Yi Zheng
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
| | | | | | | | | |
Collapse
|
11
|
Wang D, Mi T, Huang J, Zhou R, Jin Y, Wu C. Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6263-6272. [PMID: 35510311 DOI: 10.1002/jsfa.11975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high-salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d-threitol decreased (fold change -9.43, -5.83 and -3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness. CONCLUSION These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ting Mi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Jin X, Yang H, Chen M, Coldea TE, Zhao H. Improved osmotic stress tolerance in brewer's yeast induced by wheat gluten peptides. Appl Microbiol Biotechnol 2022; 106:4995-5006. [PMID: 35819513 DOI: 10.1007/s00253-022-12073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
The influences of three wheat gluten peptides (WGP-LL, WGP-LML, and WGP-LLL) on the osmotic stress tolerance and membrane lipid component in brewer's yeast were investigated. The results demonstrated that the growth and survival of yeast under osmotic stress were enhanced by WGP supplementation. The addition of WGP upregulated the expressions of OLE1 (encoded the delta-9 fatty acid desaturase) and ERG1 (encoded squalene epoxidase) genes under osmotic stress. At the same time, WGP addition enhanced palmitoleic acid (C16:1) content, unsaturated fatty acids/saturated fatty acids ratio, and the amount of ergosterol in yeast cells under osmotic stress. Furthermore, yeast cells in WGP-LL and WGP-LLL groups were more resistant to osmotic stress. WGP-LL and WGP-LLL addition caused 25.08% and 27.02% increase in membrane fluidity, 22.36% and 29.54% reduction in membrane permeability, 18.38% and 14.26% rise in membrane integrity in yeast cells, respectively. In addition, scanning electron microscopy analysis revealed that the addition of WGP was capable of maintaining yeast cell morphology and reducing cell membrane damage under osmotic stress. Thus, alteration of membrane lipid component by WGP was an effective approach for increasing the growth and survival of yeast cells under osmotic stress. KEY POINTS: •WGP addition enhanced cell growth and survival of yeast under osmotic stress. •WGP addition increased unsaturated fatty acids and ergosterol contents in yeast. •WGP supplementation improved membrane homeostasis in yeast at osmotic stress.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
13
|
Jin X, Yang H, Coldea TE, Andersen ML, Zhao H. Wheat Gluten Peptides Enhance Ethanol Stress Tolerance by Regulating the Membrane Lipid Composition in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5057-5065. [PMID: 35426662 DOI: 10.1021/acs.jafc.2c00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat gluten peptides (WGPs), identified as Leu-Leu (LL), Leu-Leu-Leu (LLL), and Leu-Met-Leu (LML), were tested for their impacts on cell growth, membrane lipid composition, and membrane homeostasis of yeast under ethanol stress. The results showed that WGP supplementation could strengthen cell growth and viability and enhance the ethanol stress tolerance of yeast. WGP supplementation increased the expressions of OLE1 and ERG1 and enhanced the levels of oleic acid (C18:1) and ergosterol in yeast cell membranes. Moreover, LLL and LML exhibited a better protective effect for yeast under ethanol stress compared to LL. LLL and LML supplementation led to 20.3 ± 1.5% and 18.9 ± 1.7% enhancement in cell membrane fluidity, 21.8 ± 1.6% and 30.5 ± 1.1% increase in membrane integrity, and 26.3 ± 4.8% and 27.6 ± 4.6% decrease in membrane permeability in yeast under ethanol stress, respectively. The results from scanning electron microscopy (SEM) elucidated that WGP supplementation is favorable for the maintenance of yeast cell morphology under ethanol stress. All of these results revealed that WGP is an efficient enhancer for improving the ethanol stress tolerance of yeast by regulating the membrane lipid composition.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Mogens Larsen Andersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| |
Collapse
|
14
|
Liang G, Zhou P, Lu J, Liu H, Qi Y, Gao C, Guo L, Hu G, Chen X, Liu L. Dynamic regulation of membrane integrity to enhance l-malate stress tolerance in Candida glabrata. Biotechnol Bioeng 2021; 118:4347-4359. [PMID: 34302701 DOI: 10.1002/bit.27903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Microbial cell factories provide a sustainable and economical way to produce chemicals from renewable feedstocks. However, the accumulation of targeted chemicals can reduce the robustness of the industrial strains and affect the production performance. Here, the physiological functions of Mediator tail subunit CgMed16 at l-malate stress were investigated. Deletion of CgMed16 decreased the survival, biomass, and half-maximal inhibitory concentration (IC50 ) by 40.4%, 34.0%, and 30.6%, respectively, at 25 g/L l-malate stress. Transcriptome analysis showed that this growth defect was attributable to changes in the expression of genes involved in lipid metabolism. In addition, tolerance transcription factors CgUSV1 and CgYAP3 were found to interact with CgMed16 to regulate sterol biosynthesis and glycerophospholipid metabolism, respectively, ultimately endowing strains with excellent membrane integrity to resist l-malate stress. Furthermore, a dynamic tolerance system (DTS) was constructed based on CgUSV1, CgYAP3, and an l-malate-driven promoter Pcgr-10 to improve the robustness and productive capacity of Candida glabrata. As a result, the biomass, survival, and membrane integrity of C. glabrata 012 (with DTS) increased by 22.6%, 31.3%, and 53.8%, respectively, compared with those of strain 011 (without DTS). Therefore, at shake-flask scale, strain 012 accumulated 35.5 g/L l-malate, and the titer and productivity of l-malate increased by 32.5% and 32.1%, respectively, compared with those of strain 011. This study provides a novel strategy for the rational design and construction of DTS for dynamically enhancing the robustness of industrial strains.
Collapse
Affiliation(s)
- Guangjie Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jiaxin Lu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Lin NX, He RZ, Xu Y, Yu XW. Augmented peroxisomal ROS buffering capacity renders oxidative and thermal stress cross-tolerance in yeast. Microb Cell Fact 2021; 20:131. [PMID: 34247591 PMCID: PMC8273976 DOI: 10.1186/s12934-021-01623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
Background Thermotolerant yeast has outstanding potential in industrial applications. Komagataella phaffii (Pichia pastoris) is a common cell factory for industrial production of heterologous proteins. Results Herein, we obtained a thermotolerant K. phaffii mutant G14 by mutagenesis and adaptive evolution. G14 exhibited oxidative and thermal stress cross-tolerance and high heterologous protein production efficiency. The reactive oxygen species (ROS) level and lipid peroxidation in G14 were reduced compared to the parent. Oxidative stress response (OSR) and heat shock response (HSR) are two major responses to thermal stress, but the activation of them was different in G14 and its parent. Compared with the parent, G14 acquired the better performance owing to its stronger OSR. Peroxisomes, as the main cellular site for cellular ROS generation and detoxification, had larger volume in G14 than the parent. And, the peroxisomal catalase activity and expression level in G14 was also higher than that of the parent. Excitingly, the gene knockdown of CAT encoding peroxisomal catalase by dCas9 severely reduced the oxidative and thermal stress cross-tolerance of G14. These results suggested that the augmented OSR was responsible for the oxidative and thermal stress cross-tolerance of G14. Nevertheless, OSR was not strong enough to protect the parent from thermal stress, even when HSR was initiated. Therefore, the parent cannot recover, thereby inducing the autophagy pathway and resulting in severe cell death. Conclusions Our findings indicate the importance of peroxisome and the significance of redox balance in thermotolerance of yeasts. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01623-1.
Collapse
Affiliation(s)
- Nai-Xin Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Rui-Zhen He
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China.
| |
Collapse
|
16
|
Su B, Li A, Deng MR, Zhu H. Identification of a novel metabolic engineering target for carotenoid production in Saccharomyces cerevisiae via ethanol-induced adaptive laboratory evolution. BIORESOUR BIOPROCESS 2021; 8:47. [PMID: 38650275 PMCID: PMC10992865 DOI: 10.1186/s40643-021-00402-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Carotenoids are a large family of health-beneficial compounds that have been widely used in the food and nutraceutical industries. There have been extensive studies to engineer Saccharomyces cerevisiae for the production of carotenoids, which already gained high level. However, it was difficult to discover new targets that were relevant to the accumulation of carotenoids. Herein, a new, ethanol-induced adaptive laboratory evolution was applied to boost carotenoid accumulation in a carotenoid producer BL03-D-4, subsequently, an evolved strain M3 was obtained with a 5.1-fold increase in carotenoid yield. Through whole-genome resequencing and reverse engineering, loss-of-function mutation of phosphofructokinase 1 (PFK1) was revealed as the major cause of increased carotenoid yield. Transcriptome analysis was conducted to reveal the potential mechanisms for improved yield, and strengthening of gluconeogenesis and downregulation of cell wall-related genes were observed in M3. This study provided a classic case where the appropriate selective pressure could be employed to improve carotenoid yield using adaptive evolution and elucidated the causal mutation of evolved strain.
Collapse
Affiliation(s)
- Buli Su
- Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Anzhang Li
- Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Ming-Rong Deng
- Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| | - Honghui Zhu
- Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| |
Collapse
|
17
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Co-culture with Tetragenococcus halophilus improved the ethanol tolerance of Zygosaccharomyces rouxii by maintaining cell surface properties. Food Microbiol 2021; 97:103750. [PMID: 33653523 DOI: 10.1016/j.fm.2021.103750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of ethanol has a negative effect on the viability and fermentation performance of microorganisms during the production of fermented foods because of its toxicity. In this study, we investigated the effect of co-culture with Tetragenococcus halophilus on ethanol stress resistance of Zygosaccharomyces rouxii. The result showed that co-culture with T. halophilus promoted cell survival of Z. rouxii under ethanol stress, and the tolerance improved with increasing co-culture time when ethanol content was 8%. Physiological analysis showed that the co-cultured Z. rouxii cells maintained higher intracellular content of trehalose and amino acids including tyrosine, tryptophan, arginine and proline after 8% ethanol stress for 90 min. The membrane integrity analysis and biophysical analysis of the cell surface indicated that the presence of ethanol resulted in cell membrane damage and changes of Young's modulus value and roughness of cell surface. While the co-cultured Z. rouxii cells exhibited better membrane integrity, stiffer and smoother cell surface than single-cultured cells under ethanol stress. As for transcriptomic analyses, the genes involved in unsaturated fatty acid biosynthesis, trehalose biosynthesis, various types of N-glycan biosynthesis, inositol phosphate metabolism, MAPK signaling pathway and tight junction had higher expression in co-cultured Z. rouxii cells with down-regulation of majority of gene expression after stress. And these genes may function in the improvement of ethanol tolerance of Z. rouxii in co-culture.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Curr Opin Biotechnol 2020; 66:18-26. [PMID: 32569960 DOI: 10.1016/j.copbio.2020.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
Microbial cell factory performance is significantly affected by the cell morphology and membrane homeostasis. It is important to ensure that cell factories are able to regulate cell morphology and maintain membrane homeostasis. Cell morphology can be controlled by regulating the formation of elongasomes and divisomes, which change the shapes of cells from rods to fibers, large spheres, or mini-cells. Membrane homeostasis can also be controlled by regulating the homeostasis of membrane lipids and proteins, thereby improving the robustness of microbes in toxic environments. In the present review, we discuss promising developments in cell morphology and membrane homeostasis engineering that have improved microbial cell factory performance.
Collapse
|
19
|
Bu X, Lin JY, Cheng J, Yang D, Duan CQ, Koffas M, Yan GL. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:168. [PMID: 33062054 PMCID: PMC7548044 DOI: 10.1186/s13068-020-01809-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/05/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Product toxicity is one of the bottlenecks for microbial production of biofuels, and transporter-mediated biofuel secretion offers a promising strategy to solve this problem. As a robust microbial host for industrial-scale production of biofuels, Saccharomyces cerevisiae contains a powerful transport system to export a wide range of toxic compounds to sustain survival. The aim of this study is to improve the secretion and production of the hydrophobic product (β-carotene) by harnessing endogenous ABC transporters combined with physiological engineering in S. cerevisiae. RESULTS Substrate inducibility is a prominent characteristic of most endogenous transporters. Through comparative proteomic analysis and transcriptional confirmation, we identified five potential ABC transporters (Pdr5p, Pdr10p, Snq2p, Yor1p, and Yol075cp) for β-carotene efflux. The accumulation of β-carotene also affects cell physiology in various aspects, including energy metabolism, mitochondrial translation, lipid metabolism, ergosterol biosynthetic process, and cell wall synthesis. Here, we adopted an inducible GAL promoter to overexpress candidate transporters and enhanced the secretion and intracellular production of β-carotene, in which Snq2p showed the best performance (a 4.04-fold and a 1.33-fold increase compared with its parental strain YBX-01, respectively). To further promote efflux capacity, two strategies of increasing ATP supply and improving membrane fluidity were following adopted. A 5.80-fold increase of β-carotene secretion and a 1.71-fold increase of the intracellular β-carotene production were consequently achieved in the engineered strain YBX-20 compared with the parental strain YBX-01. CONCLUSIONS Overall, our results showcase that engineering endogenous plasma membrane ABC transporters is a promising approach for hydrophobic product efflux in S. cerevisiae. We also highlight the importance of improving cell physiology to enhance the efficiency of ABC transporters, especially energy status and cell membrane properties.
Collapse
Affiliation(s)
- Xiao Bu
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Jing-Yuan Lin
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Jing Cheng
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Mattheos Koffas
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Guo-Liang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| |
Collapse
|