1
|
Hart JJ, Jamison MN, McNair JN, Woznicki SA, Jordan B, Rediske RR. Using watershed characteristics to enhance fecal source identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117642. [PMID: 36907065 DOI: 10.1016/j.jenvman.2023.117642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fecal pollution is one of the most prevalent forms of pollution affecting waterbodies worldwide, threatening public health and negatively impacting aquatic environments. Microbial source tracking (MST) applies polymerase chain reaction (PCR) technology to help identify the source of fecal pollution. In this study, we combine spatial data for two watersheds with general and host-associated MST markers to target human (HF183/BacR287), bovine (CowM2), and general ruminant (Rum2Bac) sources. Concentrations of MST markers in samples were determined with droplet digital PCR (ddPCR). The three MST markers were detected at all sites (n = 25), but bovine and general ruminant markers were significantly associated with watershed characteristics. MST results, combined with watershed characteristics, suggest that streams draining areas with low-infiltration soil groups and high agricultural land use are at an increased risk for fecal contamination. Microbial source tracking has been applied in numerous studies to aid in identifying the sources of fecal contamination, but these studies usually lack information on the involvement of watershed characteristics. Our study combined watershed characteristics with MST results to provide more comprehensive insight into the factors that influence fecal contamination in order to implement the most effective best management practices.
Collapse
Affiliation(s)
- John J Hart
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr., Rochester, MI, 48309, USA.
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| | - Sean A Woznicki
- Oakland University, Department of Chemistry, 146 Library Dr., Rochester, MI, 48309, USA.
| | - Ben Jordan
- Ottawa Conservation District, 16731 Ferris St, Grand Haven, MI, 49417, USA.
| | - Richard R Rediske
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| |
Collapse
|
2
|
Steward AL, Datry T, Langhans SD. The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams. Biol Rev Camb Philos Soc 2022; 97:1408-1425. [PMID: 35229438 PMCID: PMC9542210 DOI: 10.1111/brv.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Intermittent rivers and ephemeral streams (IRES), which cease flow and/or dry at some point, are the most abundant waterways on earth, and are found on every continent. They can support a diverse, and often abundant, terrestrial and semi‐aquatic invertebrate (TSAI) fauna, which has been poorly explored due to its position at the fringe between aquatic and terrestrial disciplines. TSAIs can inhabit a variety of habitat types, including the shoreline, the surface of exposed gravel bars, unsaturated gravels, dry riverbeds, riparian zones, and floodplains. Much less is known about the species composition and ecological roles of TSAIs of IRES than their aquatic counterparts, with TSAIs being largely overlooked in conceptual models, legislation, policy, and ecological monitoring. Herein we review the TSAI literature that has increased substantially over the last decade and present conceptual models describing how TSAIs respond to hydrological changes in IRES. Then, we test these models with data collected during wet and dry phases in IRES from Australia and France. These generic models can be utilised by water managers and policy makers, ensuring that both wet and dry phases are considered in the management and protection of IRES. IRES should be viewed as a habitat continuum through time, with taxa from a pool of aquatic, semi‐aquatic and terrestrial invertebrates inhabiting at any hydrological stage. We call for collaboration among terrestrial and aquatic ecologists to explore these invertebrates and ecosystems further.
Collapse
Affiliation(s)
- Alisha L Steward
- Department of Environment and Science, Queensland Government, GPO Box 2454, Brisbane, QLD, 4001.,Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD, 4111
| | - Thibault Datry
- INRAE, UR RIVERLY, centre de Lyon-Villeurbanne, 5 rue de la Doua CS70077, Villeurbanne cedex, 69626, France
| | - Simone D Langhans
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| |
Collapse
|
3
|
Ballesté E, Demeter K, Masterson B, Timoneda N, Sala-Comorera L, Meijer WG. Implementation and integration of microbial source tracking in a river watershed monitoring plan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139573. [PMID: 32474276 DOI: 10.1016/j.scitotenv.2020.139573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 05/20/2023]
Abstract
Fecal pollution of water bodies poses a serious threat for public health and ecosystems. Microbial source tracking (MST) is used to track the source of this pollution facilitating better management of pollution at the source. In this study we tested 12 MST markers to track human, ruminant, sheep, horse, pig and gull pollution to assess their usefulness as an effective management tool of water quality. First, the potential of the selected markers to track the source was evaluated using fresh fecal samples. Subsequently, we evaluated their performance in a catchment with different impacts, considering land use and environmental conditions. All MST markers showed high sensitivity and specificity, although none achieved 100% for both. Although some of the MST markers were detected in hosts other than the intended ones, their abundance in the target group was always several orders of magnitude higher than in the non-target hosts, demonstrating their suitability to distinguish between sources of pollution. The MST analysis matched the land use in the watershed allowing an accurate assessment of the main sources of pollution, in this case mainly human and ruminant pollution. Correlating environmental parameters including temperature and rainfall with MST markers provided insight into the dynamics of the pollution in the catchment. The levels of the human marker showed a significant negative correlation with rainfall in human polluted areas suggesting a dilution of the pollution, whereas at agricultural areas the ruminant marker increased with rainfall. There were no seasonal differences in the levels of human marker, indicating human pollution as a constant pressure throughout the year, whereas the levels of the ruminant marker was influenced by the seasons, being more abundant in summer and autumn. MST analysis integrated with land use and environmental data can improve the management of fecal polluted areas and set up best practice.
Collapse
Affiliation(s)
- Elisenda Ballesté
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Katalin Demeter
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Bartholomew Masterson
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Natàlia Timoneda
- Computational Genomics Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Weller D, Belias A, Green H, Roof S, Wiedmann M. Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 3:124. [PMID: 32440656 PMCID: PMC7241490 DOI: 10.3389/fsufs.2019.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need for science-based tools to (i) help manage microbial produce safety hazards associated with preharvest surface water use, and (ii) facilitate comanagement of agroecosystems for competing stakeholder aims. To develop these tools an improved understanding of foodborne pathogen ecology in freshwater systems is needed. The purpose of this study was to identify (i) sources of potential food safety hazards, and (ii) combinations of factors associated with an increased likelihood of pathogen contamination of agricultural water Sixty-eight streams were sampled between April and October 2018 (196 samples). At each sampling event separate 10-L grab samples (GS) were collected and tested for Listeria, Salmonella, and the stx and eaeA genes. A 1-L GS was also collected and used for Escherichia coli enumeration and detection of four host-associated fecal source-tracking markers (FST). Regression analysis was used to identify individual factors that were significantly associated with pathogen detection. We found that eaeA-stx codetection [Odds Ratio (OR) = 4.2; 95% Confidence Interval (CI) = 1.3, 13.4] and Salmonella isolation (OR = 1.8; CI = 0.9, 3.5) were strongly associated with detection of ruminant and human FST markers, respectively, while Listeria spp. (excluding Listeria monocytogenes) was negatively associated with log10 E. coli levels (OR = 0.50; CI = 0.26, 0.96). L. monocytogenes isolation was not associated with the detection of any fecal indicators. This observation supports the current understanding that, unlike enteric pathogens, Listeria is not fecally-associated and instead originates from other environmental sources. Separately, conditional inference trees were used to identify scenarios associated with an elevated or reduced risk of pathogen contamination. Interestingly, while the likelihood of isolating L. monocytogenes appears to be driven by complex interactions between environmental factors, the likelihood of Salmonella isolation and eaeA-stx codetection were driven by physicochemical water quality (e.g., dissolved oxygen) and temperature, respectively. Overall, these models identify environmental conditions associated with an enhanced risk of pathogen presence in agricultural water (e.g., rain events were associated with L. monocytogenes isolation from samples collected downstream of dairy farms; P = 0.002). The information presented here will enable growers to comanage their operations to mitigate the produce safety risks associated with preharvest surface water use.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Hyatt Green
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Sherry Roof
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Badgley BD, Steele MK, Cappellin C, Burger J, Jian J, Neher TP, Orentas M, Wagner R. Fecal indicator dynamics at the watershed scale: Variable relationships with land use, season, and water chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134113. [PMID: 32380608 DOI: 10.1016/j.scitotenv.2019.134113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
Tracking fecal contamination in surface waters is critical to remediating water quality; however, general and source-specific fecal indicators often provide conflicting results. To understand the spatial and temporal dynamics of multiple fecal indicators and the sources they represent, we measured weekly concentrations of two general fecal indicator bacteria (FIB), a genetic indicator of human-associated Bacteroides (HF183), and surface water chemistry in nine mixed land-use watersheds in southwest Virginia, USA. At the watershed scale, general and source-specific indicators were decoupled, with distinct spatial, temporal, and chemical patterns. Random Forest analysis of individual sample variability identified temperature, watershed, nutrients, and cations as top predictors of indicator concentrations. However, these patterns - and the specific nutrients and cations identified - varied by indicator type. Among watersheds, FIB increased with developed land cover and during the summer months, while HF183 increased during the winter and only in urban watersheds. Nutrients generally related poorly to FIB and HF183, except E. coli, which correlated with total nitrogen. In contrast, all fecal indicators showed strong correlations with cations. FIB were more strongly related to calcium, magnesium, and potassium concentrations, while HF183 was related to sodium. These results suggest that, even at the watershed scale, 1) HF183 detects mainly human fecal contamination, while FIB detect broader ecosystem fecal inputs, and 2) poor correlation between specific and generalist fecal indicators is caused by unique spatial, temporal, and transport dynamics of different fecal sources in watersheds.
Collapse
Affiliation(s)
- Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Tech, United States of America.
| | - Meredith K Steele
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Catherine Cappellin
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Julie Burger
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Jinshi Jian
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Timothy P Neher
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Megan Orentas
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Regan Wagner
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| |
Collapse
|
6
|
Wilkes G, Sunohara MD, Topp E, Gottschall N, Craiovan E, Frey SK, Lapen DR. Do reductions in agricultural field drainage during the growing season impact bacterial densities and loads in small tile-fed watersheds? WATER RESEARCH 2019; 151:423-438. [PMID: 30639728 DOI: 10.1016/j.watres.2018.11.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Predicting bacterial levels in watersheds in response to agricultural beneficial management practices (BMPs) requires understanding the germane processes at both the watershed and field scale. Controlling subsurface tile drainage (CTD) is a highly effective BMP at reducing nutrient losses from fields, and watersheds when employed en masse, but little work has been conducted on CTD effects on bacterial loads and densities in a watershed context. This study compared fecal indicator bacteria (FIB) [E. coli, Enterococcus, Fecal coliform, Total coliform, Clostridium perfringens] densities and unit area loads (UAL) from a pair of flat tile-drained watersheds (∼250-467 ha catchment areas) during the growing season over a 10-year monitoring period, using a before-after-control-impact (BACI) design (i.e., test CTD watershed vs. reference uncontrolled tile drainage (UCTD) watershed during a pre CTD intervention period and a CTD-intervention period where the test CTD watershed had CTD deployed on over 80% of the fields). With no tile drainage management, upstream tile drainage to ditches comprised ∼90% of total ditch discharge. We also examined FIB loads from a subset of tile drained fields to determine field load contributions to the watershed drainage ditches. Statistical evidence of a CTD effect on FIB UAL in the surface water systems was not strong; however, there was statistical evidence of increased FIB densities [pronounced when E. coli >200 most probable number (MPN) 100 mL-1] in the test CTD watershed during the CTD-intervention period. This was likely a result of reduced dilution/flushing in the test CTD watershed ditch due to CTD significantly decreasing the amount of tile drainage water entering the surface water system. Tile E. coli load contributions to the ditches were low; for example, during the 6-yr CTD-intervention period they amounted to on average only ∼3 and ∼9% of the ditch loads for the test CTD and reference UCTD watersheds, respectively. This suggests in-stream, or off-field FIB reservoirs and bacteria mobilization drivers, dominated ditch E. coli loads in the watersheds during the growing season. Overall, this study suggested that decision making regarding deployment of CTD en masse in tile-fed watersheds should consider drainage practice effects on bacterial densities and loads, as well as CTD's documented capacity to boost crop yields and reduce seasonal nutrient pollution.
Collapse
Affiliation(s)
- G Wilkes
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - M D Sunohara
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - E Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ONT, N5V 4T3, Canada
| | - N Gottschall
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - E Craiovan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - S K Frey
- Aquanty Inc, Waterloo, ONT, N2L 5C6, Canada; Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - D R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada.
| |
Collapse
|
7
|
Devane ML, Moriarty EM, Robson B, Lin S, Wood D, Webster-Brown J, Gilpin BJ. Relationships between chemical and microbial faecal source tracking markers in urban river water and sediments during and post-discharge of human sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1588-1604. [PMID: 30360285 DOI: 10.1016/j.scitotenv.2018.09.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
This study explores the relationships between faecal source tracking (FST) markers (quantitative Polymerase Chain Reaction (qPCR) markers and steroids), microbial indicators, the faecal ageing ratio of atypical colonies/total coliforms (AC/TC) and potential human pathogens (Giardia, Cryptosporidium and Campylobacter). Faecal source PCR markers tested were GenBac3, HumM3, HumBac (HF183-Bac708R); Bifidobacterium adolescentis, wildfowl and canine-associated markers. Sediment and water samples from the Avon River were collected during and post-discharge of untreated human sewage inputs, following a series of earthquakes, which severely damaged the Christchurch sewerage system. Significant, positive Spearman Ranks (rs) correlations were observed between human-associated qPCR markers and steroid FST markers and Escherichia coli and F-specific RNA bacteriophage (rs 0.57 to 0.84, p < 0.001) in water samples. These human source indicative FST markers demonstrated that they were also effective predictors of potentially pathogenic protozoa in water (rs 0.43-0.74, p ≤ 0.002), but correlated less well with Campylobacter. Human-associated qPCR and steroid markers showed significant, substantial agreement between the two FST methods (Cohen's kappa, 0.78, p = 0.023), suggesting that water managers could be confident in the results using either method under these contamination conditions. Low levels of fluorescent whitening agents (FWA) (mean 0.06 μg/L, range 0.01-0.40 μg/L) were observed in water throughout the study, but steroids and FWA appeared to be retained in river sediments, months after continuous sewage discharges had ceased. No relationship was observed between chemical FST markers in sediments and the overlying water, and few correlations in sediment between chemical FST markers and target microorganisms. The low values observed for the faecal ageing ratio, AC/TC in water, were significantly, negatively correlated with increasing pathogen detection. This study provides support for the use of the AC/TC ratio, and qPCR and steroid FST markers as indicators of health risks associated with the discharge of raw human sewage into a freshwater system.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand.
| | - Elaine M Moriarty
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Susan Lin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Jenny Webster-Brown
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| |
Collapse
|
8
|
Chen W, Wilkes G, Khan IUH, Pintar KDM, Thomas JL, Lévesque CA, Chapados JT, Topp E, Lapen DR. Aquatic Bacterial Communities Associated With Land Use and Environmental Factors in Agricultural Landscapes Using a Metabarcoding Approach. Front Microbiol 2018; 9:2301. [PMID: 30425684 PMCID: PMC6218688 DOI: 10.3389/fmicb.2018.02301] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
This study applied a 16S rRNA gene metabarcoding approach to characterize bacterial community compositional and functional attributes for surface water samples collected within, primarily, agriculturally dominated watersheds in Ontario and Québec, Canada. Compositional heterogeneity was best explained by stream order, season, and watercourse discharge. Generally, community diversity was higher at agriculturally dominated lower order streams, compared to larger stream order systems such as small to large rivers. However, during times of lower relative water flow and cumulative 2-day rainfall, modestly higher relative diversity was found in the larger watercourses. Bacterial community assemblages were more sensitive to environmental/land use changes in the smaller watercourses, relative to small-to-large river systems, where the proximity of the sampled water column to bacteria reservoirs in the sediments and adjacent terrestrial environment was greater. Stream discharge was the environmental variable most significantly correlated (all positive) with bacterial functional groups, such as C/N cycling and plant pathogens. Comparison of the community structural similarity via network analyses helped to discriminate sources of bacteria in freshwater derived from, for example, wastewater treatment plant effluent and intensity and type of agricultural land uses (e.g., intensive swine production vs. dairy dominated cash/livestock cropping systems). When using metabarcoding approaches, bacterial community composition and coexisting pattern rather than individual taxonomic lineages, were better indicators of environmental/land use conditions (e.g., upstream land use) and bacterial sources in watershed settings. Overall, monitoring changes and differences in aquatic microbial communities at regional and local watershed scales has promise for enhancing environmental footprinting and for better understanding nutrient cycling and ecological function of aquatic systems impacted by a multitude of stressors and land uses.
Collapse
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Graham Wilkes
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | | | - Janis L Thomas
- Ontario Ministry of the Environment and Climate Change, Environmental Monitoring and Reporting Branch, Toronto, ON, Canada
| | - C André Lévesque
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Julie T Chapados
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, London, ON, Canada
| | - David R Lapen
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
9
|
Scott EE, Leh MDK, Haggard BE. Spatiotemporal variation of bacterial water quality and the relationship with pasture land cover. JOURNAL OF WATER AND HEALTH 2017; 15:839-848. [PMID: 29215349 DOI: 10.2166/wh.2017.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pathogens are a major cause of water quality impairment and public health concern world-wide. In the United States, each state is tasked with developing water quality standards (WQS) to protect the designated use(s) of waterbodies. Several streams in the Illinois River Watershed in northwest Arkansas are currently listed as impaired due to elevated levels of pathogens. Our objective was to evaluate Escherichia coli (E. coli) numbers at 29 stream sites, compare these numbers to the applicable WQS, and investigate the relationship between E. coli numbers and land cover variables. E. coli numbers in samples collected at most sites were within allowable limits, although there were several instances of violations of the WQS. Violations were variable from year to year at some sites, and elevated levels of E. coli were spatially localized during baseflow. Violations also were positively related to pasture land cover in the drainage area, and particularly within the riparian buffer area. This relationship was non-linear, or threshold based, where there was a significant increase in the mean E. coli exceedances when riparian pasture land cover was greater than approximately 50%. These results can be used to identify specific stream reaches where E. coli numbers might be elevated and the implementation of best management practices can be geographically targeted.
Collapse
Affiliation(s)
- Erin E Scott
- Arkansas Water Resources Center, University of Arkansas, 790 W. Dickson Street, Engineering Hall 203, Fayetteville, AR 72701, USA E-mail:
| | - Mansoor D K Leh
- International Water Management Institute - Southeast Asia Regional Office, P.O. Box 4199, Vientiane, Lao PDR
| | - Brian E Haggard
- Arkansas Water Resources Center, University of Arkansas, 790 W. Dickson Street, Engineering Hall 203, Fayetteville, AR 72701, USA E-mail:
| |
Collapse
|
10
|
Tian P, Yang D, Shan L, Wang D, Li Q, Gorski L, Lee BG, Quiñones B, Cooley MB. Concurrent Detection of Human Norovirus and Bacterial Pathogens in Water Samples from an Agricultural Region in Central California Coast. Front Microbiol 2017; 8:1560. [PMID: 28871242 PMCID: PMC5566579 DOI: 10.3389/fmicb.2017.01560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens and human norovirus (HuNoV) are major cause for acute gastroenteritis caused by contaminated food and water. Public waterways can become contaminated from a variety of sources and flood after heavy rain events, leading to pathogen contamination of produce fields. We initiated a survey of several public watersheds in a major leafy green produce production region of the Central California Coast to determine the prevalence of HuNoV as well as bacterial pathogens. Moore swabs were used to collect environmental samples bi-monthly at over 30 sampling sites in the region. High prevalence of HuNoV and bacterial pathogens were detected in environmental water samples in the region. The overall detection rates of HuNoV, O157 Shiga toxin-producing Escherichia coli (STEC), non-O157 STEC, Salmonella, and Listeria were 25.58, 7.91, 9.42, 59.65, and 44.30%, respectively. The detection rates of Salmonella and L. monocytogenes were significantly higher in the spring. Fall and spring had elevated detection rates of O157 STEC. The overall detection rates of non-O157 STEC in the fall were lower than the other seasons but not significant. The overall detection rates of HuNoV were highest in fall, followed by spring and winter, with summer being lowest and significantly lower than other seasons. This study presented the first study of evaluating the correlation between the detection rate of HuNoV and the detection rates of four bacterial pathogens from environmental water. Overall, there was no significant difference in HuNoV detection rates between samples testing positive or negative for the four bacterial pathogens tested. Pathogens in animal-impacted and human-impacted areas were investigated. There were significant higher detection rates in animal-impacted areas than that of human-impacted areas for bacterial pathogens. However, there was no difference in HuNoV detection rates between these two areas. The overall detection levels of generic E. coli and detection rate of HuNoV showed no correlation.
Collapse
Affiliation(s)
- Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - David Yang
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Lei Shan
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Dapeng Wang
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States.,MOST-USDA Joint Research Center for Food Safety and Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Qianqian Li
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States.,Department of Bioengineering, Shanghai Institute of TechnologyShanghai, China
| | - Lisa Gorski
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Bertram G Lee
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| |
Collapse
|
11
|
Nshimyimana JP, Cruz MC, Thompson RJ, Wuertz S. Bacteroidales markers for microbial source tracking in Southeast Asia. WATER RESEARCH 2017; 118:239-248. [PMID: 28433694 DOI: 10.1016/j.watres.2017.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
The island city country of Singapore served as a model to validate the use of host-associated Bacteroidales 16S rRNA gene marker assays for identifying sources of fecal pollution in the urban tropical environment of Southeast Asia. A total of 295 samples were collected from sewage, humans, domesticated animals (cats, dogs, rabbits and chicken), and wild animals (birds, monkeys and wild boars). Samples were analyzed by real time PCR using five human-associated assays (HF183-SYBR Green, HF183, BacHum, BacH and B. thetaiotaomicron α-1-6, mannanase (B. theta), one canine-associated assay (BacCan), and a total Bacteroidales assay (BacUni). The best performing human-associated assay was B. theta with a diagnostic sensitivity of 69% and 100% in human stool and sewage, respectively, and a specificity of 98%. BacHum achieved the second highest sensitivity and specificity for human stool at 65% and 91%, respectively. The canine-associated Bacteroidales assay (BacCan) had a sensitivity and specificity above 80% and was validated for tracking fecal pollution from dogs. BacUni demonstrated a sensitivity and specificity of 100% for mammals, thus BacUni was confirmed for total Bacteroidales detection in the region. We showed for the first time that rabbit fecal samples cross-react with human-associated assays (HF183-SYBR Green, HF183, BacHum and BacH) and with BacCan. Our findings regarding the best performing human-associated assays differ from those reported in Bangladesh and India, which are geographically close to Southeast Asia, and where HF183 and BacHum were the preferred assays, respectively.
Collapse
Affiliation(s)
- Jean Pierre Nshimyimana
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Centre for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602, Singapore
| | - Mercedes C Cruz
- Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore
| | - R Janelle Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Centre for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602, Singapore
| | - Stefan Wuertz
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore.
| |
Collapse
|
12
|
Marti R, Ribun S, Aubin JB, Colinon C, Petit S, Marjolet L, Gourmelon M, Schmitt L, Breil P, Cottet M, Cournoyer B. Human-Driven Microbiological Contamination of Benthic and Hyporheic Sediments of an Intermittent Peri-Urban River Assessed from MST and 16S rRNA Genetic Structure Analyses. Front Microbiol 2017; 8:19. [PMID: 28174557 PMCID: PMC5258724 DOI: 10.3389/fmicb.2017.00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Rivers are often challenged by fecal contaminations. The barrier effect of sediments against fecal bacteria was investigated through the use of a microbial source tracking (MST) toolbox, and by Next Generation Sequencing (NGS) of V5-V6 16S rRNA gene (rrs) sequences. Non-metric multi-dimensional scaling analysis of V5-V6 16S rRNA gene sequences differentiated bacteriomes according to their compartment of origin i.e., surface water against benthic and hyporheic sediments. Classification of these reads showed the most prevalent operating taxonomic units (OTU) to be allocated to Flavobacterium and Aquabacterium. Relative numbers of Gaiella, Haliangium, and Thermoleophilum OTU matched the observed differentiation of bacteriomes according to river compartments. OTU patterns were found impacted by combined sewer overflows (CSO) through an observed increase in diversity from the sewer to the hyporheic sediments. These changes appeared driven by direct transfers of bacterial contaminants from wastewaters but also by organic inputs favoring previously undetectable bacterial groups among sediments. These NGS datasets appeared more sensitive at tracking community changes than MST markers. The human-specific MST marker HF183 was strictly detected among CSO-impacted surface waters and not river bed sediments. The ruminant-specific DNA marker was more broadly distributed but intense bovine pollution was required to detect transfers from surface water to benthic and hyporheic sediments. Some OTU showed distribution patterns in line with these MST datasets such as those allocated to the Aeromonas, Acinetobacter, and Pseudomonas. Fecal indicators (Escherichia coli and total thermotolerant coliforms) were detected all over the river course but their concentrations were not correlated with MST ones. Overall, MST and NGS datasets suggested a poor colonization of river sediments by bovine and sewer bacterial contaminants. No environmental outbreak of these bacterial contaminants was detected.
Collapse
Affiliation(s)
- Romain Marti
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Sébastien Ribun
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | | | - Céline Colinon
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Stéphanie Petit
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Laurence Marjolet
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Michèle Gourmelon
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), SG2M-Laboratoire Santé Environnement et Microbiologie, RBE Département Plouzané, France
| | - Laurent Schmitt
- LIVE 7362 Centre National de la Recherche Scientifique-ENGEES, LTER - "Zone Atelier Environnementale Urbaine" Strasbourg, France
| | - Pascal Breil
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture (IRSTEA), UR HHLY Villeurbanne, France
| | - Marylise Cottet
- UMR5600 "Environnement Ville Société," École Normale Supérieure de Lyon (ENS) Lyon - Descartes Lyon, France
| | - Benoit Cournoyer
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| |
Collapse
|
13
|
Waterborne Viruses and F-Specific Coliphages in Mixed-Use Watersheds: Microbial Associations, Host Specificities, and Affinities with Environmental/Land Use Factors. Appl Environ Microbiol 2017; 83:AEM.02763-16. [PMID: 27836843 DOI: 10.1128/aem.02763-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml-1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml-1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets.
Collapse
|
14
|
Cao Q, Wang H, Chen X, Wang R, Liu J. Composition and distribution of microbial communities in natural river wetlands and corresponding constructed wetlands. ECOLOGICAL ENGINEERING 2017; 98:40-48. [DOI: 10.1016/j.ecoleng.2016.10.063] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
15
|
Lapen DR, Schmidt PJ, Thomas JL, Edge TA, Flemming C, Keithlin J, Neumann N, Pollari F, Ruecker N, Simhon A, Topp E, Wilkes G, Pintar KDM. Towards a more accurate quantitative assessment of seasonal Cryptosporidium infection risks in surface waters using species and genotype information. WATER RESEARCH 2016; 105:625-637. [PMID: 27721171 DOI: 10.1016/j.watres.2016.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/22/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Many Cryptosporidium species/genotypes are not considered infectious to humans, and more realistic estimations of seasonal infection risks could be made using human infectious species/genotype information to inform quantitative microbial risk assessments (QMRA). Cryptosporidium oocyst concentration and species/genotype data were collected from three surface water surveillance programs in two river basins [South Nation River, SN (2004-09) and Grand River, GR (2005-13)] in Ontario, Canada to evaluate seasonal infection risks. Main river stems, tributaries, agricultural drainage streams, water treatment plant intakes, and waste water treatment plant effluent impacted sites were sampled. The QMRA employed two sets of exposure data to compute risk: one assuming all observed oocysts were infectious to humans, and the other based on the fraction of oocysts that were C. hominis and/or C. parvum (dominant human infectious forms of the parasite). Viability was not considered and relative infection risk was evaluated using a single hypothetical recreational exposure. Many sample site groupings for both river systems, had significant seasonality in Cryptosporidium occurrence and concentrations (p ≤ 0.05); occurrence and concentrations were generally highest in autumn for SN, and autumn and summer for GR. Mean risk values (probability of infection per exposure) for all sites combined, for each river system, were roughly an order of magnitude lower (avg. of SN and GR 5.3 × 10-5) when considering just C. parvum and C. hominis oocysts, in relation to mean infection risk (per exposure) assuming all oocysts were infectious to humans (5.5 × 10-4). Seasonality in mean risk (targeted human infectious oocysts only) was most strongly evident in SN (e.g., 7.9 × 10-6 in spring and 8.1 × 10-5 in summer). Such differences are important if QMRA is used to quantify effects of water safety/quality management practices where inputs from a vast array of fecal pollution sources can readily occur. Cryptosporidium seasonality in water appears to match the seasonality of human infections from Cryptosporidium in the study regions. This study highlights the importance of Cryptosporidium species/genotype data to help determine surface water pollution sources and seasonality, as well as to help more accurately quantify human infection risks by the parasite.
Collapse
Affiliation(s)
- D R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
| | - P J Schmidt
- Philip J. Schmidt Technical Consulting Inc., Guelph, Ontario, Canada
| | - J L Thomas
- Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada
| | - T A Edge
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - C Flemming
- Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada
| | - J Keithlin
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario Canada
| | - N Neumann
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - F Pollari
- FoodNet Canada, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - N Ruecker
- Water Quality Services, City of Calgary, Calgary, Alberta, Canada
| | - A Simhon
- Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada
| | - E Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - G Wilkes
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - K D M Pintar
- Centre for Food-Borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Mayer RE, Bofill-Mas S, Egle L, Reischer GH, Schade M, Fernandez-Cassi X, Fuchs W, Mach RL, Lindner G, Kirschner A, Gaisbauer M, Piringer H, Blaschke AP, Girones R, Zessner M, Sommer R, Farnleitner AH. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution. WATER RESEARCH 2016; 90:265-276. [PMID: 26745175 PMCID: PMC4884448 DOI: 10.1016/j.watres.2015.12.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/13/2015] [Accepted: 12/17/2015] [Indexed: 05/19/2023]
Abstract
This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml(-1)) and biologically treated wastewater samples (median log10 6.2-6.5 ME 100 ml(-1)), irrespective of plant size, type and time of the season (n = 53-65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3-3.0) and treated wastewater (s* = 3.7-4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if highly specific markers are needed.
Collapse
Affiliation(s)
- R E Mayer
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| | - S Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - L Egle
- Institute for Water Quality Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040, Vienna, Austria; Center of Water Resource Systems, Vienna University of Technology, Karlsplatz 13/222, 1040, Vienna, Austria
| | - G H Reischer
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| | - M Schade
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179, Augsburg, Germany
| | - X Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - W Fuchs
- Department of Environmental Biotechnology at IFA, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - R L Mach
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| | - G Lindner
- InterUniversity Cooperation Centre for Water and Health, Austria; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - A Kirschner
- InterUniversity Cooperation Centre for Water and Health, Austria; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - M Gaisbauer
- Schreiber-AWATEC Umwelttechnik GmbH, Bergmillergasse 3/1, 1140, Vienna, Austria
| | - H Piringer
- VRVis Research Center, Donau-City-Strasse 1, 1220, Vienna, Austria
| | - A P Blaschke
- InterUniversity Cooperation Centre for Water and Health, Austria; Center of Water Resource Systems, Vienna University of Technology, Karlsplatz 13/222, 1040, Vienna, Austria
| | - R Girones
- Laboratory of Virus Contaminants of Water and Food, Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - M Zessner
- Institute for Water Quality Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040, Vienna, Austria; Center of Water Resource Systems, Vienna University of Technology, Karlsplatz 13/222, 1040, Vienna, Austria
| | - R Sommer
- InterUniversity Cooperation Centre for Water and Health, Austria; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| | - A H Farnleitner
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| |
Collapse
|
17
|
Oyafuso ZS, Baxter AE, Hall JE, Naman SM, Greene CM, Rhodes LD. Widespread detection of human- and ruminant-origin Bacteroidales markers in subtidal waters of the Salish Sea in Washington State. JOURNAL OF WATER AND HEALTH 2015; 13:827-837. [PMID: 26322768 DOI: 10.2166/wh.2015.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rising populations around coastal systems are increasing the threats to marine water quality. To assess anthropogenic fecal influence, subtidal waters were examined monthly for human- and ruminant-sourced Bacteroidales markers at 80 sites across six oceanographic basins of the Salish Sea (Washington State) from April through October, 2011. In the basins containing cities with individual populations>190,000, >50% of sites were positive for the human marker, while in the basins with high densities of dairy and cattle operations, ∼30% of sites were positive for the ruminant marker. Marker prevalence was elevated in spring (April and May) and fall (October) and reduced during summer (June through September), corresponding with seasonal precipitation. By logistic regression, the odds of human marker detection increased with percentage of adjacent catchment impervious surface, dissolved nitrate concentration, and abundance of low nucleic acid bacteria, but decreased with salinity and chlorophyll fluorescence. The odds of ruminant marker detection increased with dissolved ammonium concentration, mean flow rate for the nearest river, and adjacent shoreline length. These relationships are consistent with terrestrial to marine water flow as a transport mechanism. Thus, Bacteroidales markers traditionally used for identifying nearby sources can be used for assessing anthropogenic fecal inputs to regional marine ecosystems.
Collapse
Affiliation(s)
- Zack S Oyafuso
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, PO Box 355672, Seattle, WA 98195, USA Current address: Hawaii Institute of Marine Biology, University of Hawaii at Manoa, PO Box 1346, Kaneohe, HI 96744, USA
| | - Anne E Baxter
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| | - Jason E Hall
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| | - Sean M Naman
- Frank Orth and Associates, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA Current address: Department of Zoology, University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Correigh M Greene
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| | - Linda D Rhodes
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| |
Collapse
|
18
|
Microbial Source Tracking in Adjacent Karst Springs. Appl Environ Microbiol 2015; 81:5037-47. [PMID: 26002893 DOI: 10.1128/aem.00855-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/26/2015] [Indexed: 02/07/2023] Open
Abstract
Modern man-made environments, including urban, agricultural, and industrial environments, have complex ecological interactions among themselves and with the natural surroundings. Microbial source tracking (MST) offers advanced tools to resolve the host source of fecal contamination beyond indicator monitoring. This study was intended to assess karst spring susceptibilities to different fecal sources using MST quantitative PCR (qPCR) assays targeting human, bovine, and swine markers. It involved a dual-time monitoring frame: (i) monthly throughout the calendar year and (ii) daily during a rainfall event. Data integration was taken from both monthly and daily MST profile monitoring and improved identification of spring susceptibility to host fecal contamination; three springs located in close geographic proximity revealed different MST profiles. The Giach spring showed moderate fluctuations of MST marker quantities amid wet and dry samplings, while the Zuf spring had the highest rise of the GenBac3 marker during the wet event, which was mirrored in other markers as well. The revelation of human fecal contamination during the dry season not connected to incidents of raining leachates suggests a continuous and direct exposure to septic systems. Pigpens were identified in the watersheds of Zuf, Shefa, and Giach springs and on the border of the Gaaton spring watershed. Their impact was correlated with partial detection of the Pig-2-Bac marker in Gaaton spring, which was lower than detection levels in all three of the other springs. Ruminant and swine markers were detected intermittently, and their contamination potential during the wet samplings was exposed. These results emphasized the importance of sampling design to utilize the MST approach to delineate subtleties of fecal contamination in the environment.
Collapse
|
19
|
Heaney CD, Myers K, Wing S, Hall D, Baron D, Stewart JR. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:676-83. [PMID: 25600418 PMCID: PMC4514616 DOI: 10.1016/j.scitotenv.2014.12.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 05/21/2023]
Abstract
Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events.
Collapse
Affiliation(s)
- Christopher D Heaney
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Kevin Myers
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Steve Wing
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Devon Hall
- Rural Empowerment Association for Community Help (REACH), Warsaw, NC, USA
| | - Dothula Baron
- Rural Empowerment Association for Community Help (REACH), Warsaw, NC, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Frey SK, Gottschall N, Wilkes G, Grégoire DS, Topp E, Pintar KDM, Sunohara M, Marti R, Lapen DR. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:236-247. [PMID: 25602339 DOI: 10.2134/jeq2014.03.0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution.
Collapse
|
21
|
Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP. Contamination of water resources by pathogenic bacteria. AMB Express 2014; 4:51. [PMID: 25006540 PMCID: PMC4077002 DOI: 10.1186/s13568-014-0051-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/27/2014] [Indexed: 01/22/2023] Open
Abstract
Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed.
Collapse
|
22
|
Comparison of ZetaPlus 60S and nitrocellulose membrane filters for the simultaneous concentration of F-RNA coliphages, porcine teschovirus and porcine adenovirus from river water. J Virol Methods 2014; 206:5-11. [PMID: 24880068 DOI: 10.1016/j.jviromet.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 01/13/2023]
Abstract
Increasing attention is being paid to the impact of agricultural activities on water quality to understand the impact on public health. F-RNA coliphages have been proposed as viral indicators of fecal contamination while porcine teschovirus (PTV) and porcine adenovirus (PAdV) are proposed indicators of fecal contamination of swine origin. Viruses and coliphages are present in water in very low concentrations and must be concentrated to permit their detection. There is little information comparing the effectiveness of the methods for concentrating F-RNA coliphages with concentration methods for other viruses and vice versa. The objective of this study was to compare 5 current published methods for recovering F-RNA coliphages, PTV and PAdV from river water samples concentrated by electronegative nitrocellulose membrane filters (methods A and B) or electropositive Zeta Plus 60S filters (methods C-E). Method A is used routinely for the detection of coliphages (Méndez et al., 2004) and method C (Brassard et al., 2005) is the official method in Health Canada's compendium for the detection of viruses in bottled mineral or spring water. When river water was inoculated with stocks of F-RNA MS2, PAdV, and PTV to final concentrations of 1×10(6) PFU/100 mL, 1×10(5) gc/100 mL and 3×10(5) gc/100 mL, respectively, a significantly higher recovery for each virus was consistently obtained for method A with recoveries of 52% for MS2, 95% for PAdV, and 1.5% for PTV. When method A was compared with method C for the detection of F-coliphages, PAdV and PTV in river water samples, viruses were detected with higher frequencies and at higher mean numbers with method A than with method C. With method A, F-coliphages were detected in 11/12 samples (5-154 PFU/100 mL), PTV in 12/12 samples (397-10,951 gc/100 mL), PAdV in 1/12 samples (15 gc/100 mL), and F-RNA GIII in 1/12 samples (750 gc/100 mL) while F-RNA genotypes I, II, and IV were not detected by qRT-PCR.
Collapse
|
23
|
Long-term monitoring of waterborne pathogens and microbial source tracking markers in paired agricultural watersheds under controlled and conventional tile drainage management. Appl Environ Microbiol 2014; 80:3708-20. [PMID: 24727274 DOI: 10.1128/aem.00254-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization.
Collapse
|