1
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
3
|
Albulaihed Y, Adnan M, Jamal A, Snoussi M, Patel K, Patel M. Optimization of laccase from Stenotrophomonas maltophilia E1 by submerge fermentation using coconut husk with its detoxification and biodecolorization ability of synthetic dyes. BIORESOUR BIOPROCESS 2023; 10:80. [PMID: 38647840 PMCID: PMC10991366 DOI: 10.1186/s40643-023-00703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Enzymatic degradation of synthetic dyes holds an immense promise for addressing the environmental concerns associated with the textile and dye industries. This study aimed to isolate bacteria capable of producing laccase enzymes from an anthropogenic environment. Subsequently, viability of utilizing cost-effective agricultural residues as substrates for laccase production was assessed. Response Surface Methodology (RSM) and the One Variable at a Time (OVAT) approach was pursued for the optimization of laccase production, followed by pH and temperature stability, dye degradation and decolorization experiments, toxicological studies on the degraded dye metabolites. In results, laccase-producing bacterial strain was identified as Stenotrophomonas maltophilia strain E1 (S. maltophilia). Among variety of substrates, coconut husk exhibited optimal efficacy. In a statistical optimization study, it was found that S. maltophilia was capable of producing laccase 51.38 IU/mL, i.e., three times higher than the amount of laccase produced by unoptimized medium (16.7 IU/mL), and the enzyme activity was found to be steady at an acidic pH, and a mesophilic temperature range. The laccase obtained from S. maltophilia E1 demonstrated proficient dye decolorization capabilities, achieving a notable 92.1% reduction in Malachite green dye coloration at a concentration of 500 ppm. Gas chromatography-mass spectrometry (GC-MS) analysis of the decolorized derivatives of Malachite green revealed a conversion into a distinct compounds. Moreover, after undergoing laccase treatment, Malachite green exhibited decreased phytotoxic effects on Oryza sativa, pointing to enzymatic detoxification. Collectively, insights gained from the present study will contribute to the development of efficient enzymatic approaches for addressing the environmental pollution caused by synthetic dyes.
Collapse
Affiliation(s)
- Yazeed Albulaihed
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Kartik Patel
- Biotech Research and Development Lab, Witmans Industries Private Limited, Daman, Bhimpore, 396210, India
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
| |
Collapse
|
4
|
Välimets S, Pedetti P, Virginia LJ, Hoang MN, Sauer M, Peterbauer C. Secretory expression of recombinant small laccase genes in Gram-positive bacteria. Microb Cell Fact 2023; 22:72. [PMID: 37062846 PMCID: PMC10108450 DOI: 10.1186/s12934-023-02075-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities. RESULTS In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway. CONCLUSIONS Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.
Collapse
Affiliation(s)
- Silja Välimets
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Patricia Pedetti
- Food Microbiology, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands
| | - Ludovika Jessica Virginia
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Mai Ngoc Hoang
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Human Medicine, Institute of Immunology, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria.
| |
Collapse
|
5
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
6
|
Sutaoney P, Pandya S, Gajarlwar D, Joshi V, Ghosh P. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86499-86527. [PMID: 35771325 DOI: 10.1007/s11356-022-21565-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.
Collapse
Affiliation(s)
- Priya Sutaoney
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Srishti Pandya
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Devashri Gajarlwar
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Veenu Joshi
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
7
|
Stevens JC, Shi J. Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid. Front Bioeng Biotechnol 2022; 10:880795. [PMID: 35757805 PMCID: PMC9213733 DOI: 10.3389/fbioe.2022.880795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The multicopper oxidase enzyme laccase holds great potential to be used for biological lignin valorization alongside a biocompatible ionic liquid (IL). However, the IL concentrations required for biomass pretreatment severely inhibit laccase activity. Due to their ability to function in extreme conditions, many thermophilic enzymes have found use in industrial applications. The thermophilic fungal laccase from Myceliophthora thermophila was found to retain high levels of activity in the IL [C2C1Im][EtSO4], making it a desirable biocatalyst to be used for lignin valorization. In contrast to [C2C1Im][EtSO4], the biocompatibility of [C2C1Im][OAC] with the laccase was markedly lower. Severe inhibition of laccase activity was observed in 15% [C2C1Im][OAc]. In this study, the enzyme surface charges were modified via acetylation, succinylation, cationization, or neutralization. However, these modifications did not show significant improvement in laccase activity or stability in [C2C1Im][OAc]. Docking simulations show that the IL docks close to the T1 catalytic copper, likely interfering with substrate binding. Although additional docking locations for [OAc]- are observed after making enzyme modifications, it does not appear that these locations play a role in the inhibition of enzyme activity. The results of this study could guide future enzyme engineering efforts by showing that the inhibition mechanism of [C2C1Im][OAc] toward M. thermophila laccase is likely not dependent upon the IL interacting with the enzyme surface.
Collapse
Affiliation(s)
- Joseph C Stevens
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| | - Jian Shi
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
8
|
Valizadeh S, Rezaei S, Mohamadnia S, Rahimi E, Tavakoli O, Faramarzi MA. Elimination and detoxification of phenanthrene assisted by a laccase from halophile Alkalibacillus almallahensis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:227-239. [PMID: 35669835 PMCID: PMC9163237 DOI: 10.1007/s40201-021-00771-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/18/2021] [Indexed: 05/06/2023]
Abstract
Phenanthrene (Phe), a tricyclic Polycyclic Aromatic Hydrocarbon (PAH), is found in high concentrations as a pollutant in various environments. In this study, the removal or (oxidizing) ability of Phe by a laccase from Alkalibacillus almallahensis was investigated. The laccase (12 U mL-1) was able to remove 63% of Phe (50 mg L-1) under optimal conditions of 40 °C, pH 8, 1.5 M NaCl and in the presence of 1 mM HBT as a laccase mediator after a 72 h incubation period. The results for the effect of different solvents, ionic and non-ionic surfactants on the activity of the halophilic laccase towards Phe showed that the addition of these compounds increase removal efficiency and complete enzymatic removal of Phe will achieve in a solution of 5% (v/v) acetone and 1.5% tween 80. The kinetic parameters K m and V max of laccase-catalyzed removal of the substrate were determined as 0.544 mM and 0.882 µmol h-1 mg-1, respectively. A microtoxicity study with respect to the inhibition of algal growth showed a decrease in toxicity of the laccase-treated Phe solution.
Collapse
Affiliation(s)
- Shiler Valizadeh
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Shahla Rezaei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155–6451, 1417614411 Tehran, Iran
| | - Sonia Mohamadnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Elaheh Rahimi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Omid Tavakoli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155–6451, 1417614411 Tehran, Iran
| |
Collapse
|
9
|
Ferrer A, Heath KD, Mosquera SL, Suaréz Y, Dalling JW. Assembly of wood-inhabiting archaeal, bacterial and fungal communities along a salinity gradient: common taxa are broadly distributed but locally abundant in preferred habitats. FEMS Microbiol Ecol 2022; 98:6566339. [PMID: 35404430 DOI: 10.1093/femsec/fiac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Wood decomposition in water is a key ecosystem process driven by diverse microbial taxa that likely differ in their affinities for freshwater, estuarine, and marine habitats. How these decomposer communities assemble in situ or potentially colonize from other habitats remains poorly understood. At three watersheds on Coiba Island, Panama, we placed replicate sections of branch wood of a single tree species on land, and in freshwater, estuarine and marine habitats that constitute a downstream salinity gradient. We sequenced archaea, bacteria and fungi from wood samples collected after 3, 9, and 15 months to examine microbial community composition, and to examine habitat specificity and abundance patterns. We found these microbial communities were broadly structured by similar factors, with a strong effect of salinity, but little effect of watershed identity on compositional variation. Moreover, common aquatic taxa were also present in wood incubated on land. Our results suggest that taxa either dispersed to both terrestrial and aquatic habitats, or that microbes with broad habitat ranges were initially present in the wood as endophytes. Nonetheless, these habitat generalists varied greatly in abundance across habitats suggesting an important role for habitat filtering in maintaining distinct aquatic communities in freshwater, estuarine and marine habitats.
Collapse
Affiliation(s)
- Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sergio L Mosquera
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Yaraví Suaréz
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
10
|
Eminent Industrial and Biotechnological Applications of Laccases from Bacterial Source: a Current Overview. Appl Biochem Biotechnol 2022; 194:2336-2356. [DOI: 10.1007/s12010-021-03781-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
|
11
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
12
|
Kesebir AÖ, Kılıç D, Şişecioğlu M, Adıgüzel A, Küfrevioğlu Öİ. Recombinant laccase production from Bacillus licheniformis O12: Characterization and its application for dye decolorization. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00847-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
14
|
Kasirajan L, Adams Z, Couto-Rodriguez RL, Gal D, Jia H, Mondragon P, Wassel PC, Yu D, Uthandi S, Maupin-Furlow JA. High-level synthesis and secretion of laccase, a metalloenzyme biocatalyst, by the halophilic archaeon Haloferax volcanii. Methods Enzymol 2021; 659:297-313. [PMID: 34752290 DOI: 10.1016/bs.mie.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haloarchaea and their enzymes have extremophilic properties desirable for use as platform organisms and biocatalysts in the bioindustry. These GRAS (generally regarded as safe) designated microbes thrive in hypersaline environments and use a salt-in strategy to maintain osmotic homeostasis. This unusual strategy has resulted in the evolution of most of the intracellular and extracellular enzymes of haloarchaea to be active and stable not only in high salt (2-5M) but also in low salt (0.2M). This salt tolerance is correlated with a resilience to low water activity, thus, rendering the haloarchaeal enzymes active and stable in organic solvent and temperatures of 50-60°C used in the enzymatic biodelignification and saccharification of lignocellulosic materials. High-level secretion of haloarchaeal enzymes to the extracellular milieu is useful for many applications, including enzymes that deconstruct biomass to allow for lignin depolymerization and simultaneous fermentation of sugars released from hemicellulose and cellulose fractions of lignocellulosics. Here we detail strategies and methods useful for high-level secretion of a laccase, HvLccA, that mediates oxidation of various phenolics by engineering a recombinant strain of the haloarchaeon Haloferax volcanii.
Collapse
Affiliation(s)
- Lakshmi Kasirajan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Coimbatore, India; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Zachary Adams
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Ricardo L Couto-Rodriguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel Gal
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paula Mondragon
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paul C Wassel
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - David Yu
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
15
|
Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5228. [PMID: 34069056 PMCID: PMC8157027 DOI: 10.3390/ijerph18105228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.
Collapse
Affiliation(s)
- Giovanni Gallo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rosanna Puopolo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Miriam Carbonaro
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Emanuela Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
16
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
17
|
Kasirajan L, Maupin-Furlow JA. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol Bioeng 2020; 118:1066-1090. [PMID: 33241850 DOI: 10.1002/bit.27639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.
Collapse
Affiliation(s)
- Lakshmi Kasirajan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Coimbatore, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Choolaei Z, Flick R, Khusnutdinova AN, Edwards EA, Yakunin AF. Lignin-oxidizing activity of bacterial laccases characterized using soluble substrates and polymeric lignin. J Biotechnol 2020; 325:128-137. [PMID: 33186661 DOI: 10.1016/j.jbiotec.2020.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Efficient biotransformation of lignin requires the activity of different oxidative enzymes. In this work, 19 bacterial multi-copper oxidases were screened for oxidase activity against 19 soluble substrates and revealed the highest activity in the laccase CotABsu (BSU0630) from Bacillus subtilis. Structure-based site-directed mutagenesis of CotABsu identified four conserved residues (His419, Cys492, His497, and Met502) as critical for activity against 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS). Greatly reduced oxidase activity was found in the CotABsu mutant proteins E213A, N214A, C229A, N264A, E298A, T415A, R416A, Q468A, and T480A. We also designed a lignin-agarose plate screen for detecting oxidase activity of purified proteins against polymeric lignin, which confirmed the results obtained with ABTS and identified three mutant variants with increased activity toward kraft lignin (E213A, T415A, and T260A). X-ray photoelectron spectroscopy analysis of low sulfonate kraft lignin after incubation with CotABsu revealed a reduction in the content of CC/CC bonds and increase in CO/CO bonds. Product analyses using mass spectrometry, liquid chromatography, and bright-field microscopy revealed an increased polymerization state of reaction products suggesting that formation of radical intermediates was followed by radical coupling. Our results provide further insights into the mechanisms of lignin oxidation by laccases.
Collapse
Affiliation(s)
- Zahra Choolaei
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK.
| |
Collapse
|
19
|
Sharma V, Upadhyay LSB, Vasanth D. Extracellular Thermostable Laccase-Like Enzymes from Bacillus licheniformis Strains: Production, Purification and Characterization. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Jeon SJ, Park JH. Refolding, characterization, and dye decolorization ability of a highly thermostable laccase from Geobacillus sp. JS12. Protein Expr Purif 2020; 173:105646. [PMID: 32315700 DOI: 10.1016/j.pep.2020.105646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/27/2022]
Abstract
A putative laccase gene (lacG) from Geobacillus sp. JS12 was cloned and expressed as a fusion protein with six histidine residues in Escherichia coli BL21 (DE3) cells, and the protein was primarily found in inclusion bodies. The resulting insoluble proteins were solubilized with 6 M guanidine HCl and refolded using an on-column refolding procedure. Ni-chelation affinity chromatography found the laccase to be a 30 kDa monomeric protein. Spectrophotometry and electron paramagnetic resonance (EPR) analysis indicated LacG as a multi-copper oxidase, with the usual laccase copper sites, Type 1, 2, and 3 Cu(II). The optimum pH for enzymatic activity was 3.0, 6.0, and 6.5 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The recombinant protein displayed high thermostability, with a heat inactivation half-life of approximately 2 h at 95 °C, and an optimum temperature of 80 °C with 2,6-DMP. Catalytic efficiency (kcat/Km) showed that guaiacol and 2,6-DMP were highly oxidized by the enzyme. The enzymatic reaction was significantly enhanced by Co2+ and Mn2+, while activity was strongly inhibited in the presence of Fe2+, Zn2+, and thiol compounds. LacG decolorized 43% of Congo red and 14% of Malachite green, and the addition of ABTS as a redox mediator dramatically increased the dye decolorization efficiency.
Collapse
Affiliation(s)
- Sung-Jong Jeon
- Biomedical Engineering & Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea; Department of Smart-Biohealth, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Jong-Hun Park
- Biomedical Engineering & Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea
| |
Collapse
|
21
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
22
|
Giovanella P, Vieira GAL, Ramos Otero IV, Pais Pellizzer E, de Jesus Fontes B, Sette LD. Metal and organic pollutants bioremediation by extremophile microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121024. [PMID: 31541933 DOI: 10.1016/j.jhazmat.2019.121024] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/17/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Extremophiles comprise microorganisms that are able to grow and thrive in extreme environments, including in an acidic or alkaline pH, high or low temperatures, high concentrations of pollutants, and salts, among others. These organisms are promising for environmental biotechnology due to their unique physiological and enzymatic characteristics, which allow them to survive in harsh environments. Due to the stability and persistence of these microorganisms under adverse environmental conditions, they can be used for the bioremediation of environments contaminated with extremely recalcitrant pollutants. Here, we provide an overview of extremophiles and the role of "omics" in the field of bioremediation of environmental pollutants, including hydrocarbons, textile dyes and metals.
Collapse
Affiliation(s)
- Patricia Giovanella
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil.
| | - Gabriela A L Vieira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Igor V Ramos Otero
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Bruno de Jesus Fontes
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil.
| |
Collapse
|
23
|
Haque RU, Paradisi F, Allers T. Haloferax volcanii for biotechnology applications: challenges, current state and perspectives. Appl Microbiol Biotechnol 2019; 104:1371-1382. [PMID: 31863144 PMCID: PMC6985049 DOI: 10.1007/s00253-019-10314-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
Abstract
Haloferax volcanii is an obligate halophilic archaeon with its origin in the Dead Sea. Simple laboratory culture conditions and a wide range of genetic tools have made it a model organism for studying haloarchaeal cell biology. Halophilic enzymes of potential interest to biotechnology have opened up the application of this organism in biocatalysis, bioremediation, nanobiotechnology, bioplastics and the biofuel industry. Functionally active halophilic proteins can be easily expressed in a halophilic environment, and an extensive genetic toolkit with options for regulated protein overexpression has allowed the purification of biotechnologically important enzymes from different halophiles in H. volcanii. However, corrosion mediated damage caused to stainless-steel bioreactors by high salt concentrations and a tendency to form biofilms when cultured in high volume are some of the challenges of applying H. volcanii in biotechnology. The ability to employ expressed active proteins in immobilized cells within a porous biocompatible matrix offers new avenues for exploiting H. volcanii in biotechnology. This review critically evaluates the various application potentials, challenges and toolkits available for using this extreme halophilic organism in biotechnology.
Collapse
Affiliation(s)
- R U Haque
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.,School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Warwick Integrative Synthetic Biology Centre, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - F Paradisi
- School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - T Allers
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
24
|
Chan JC, Paice M, Zhang X. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2019. [DOI: 10.1002/cctc.201901480] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jou C. Chan
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
| | - Michael Paice
- FPInnovations Pulp Paper & Bioproducts 2665 East Mall Vancouver BC V6T 1Z4 Canada
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
- Pacific Northwest National Laboratory 520 Battelle Boulevard P.O. Box 999, MSIN P8-60 Richland WA-99352 USA
| |
Collapse
|
25
|
Stevens JC, Shi J. Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnol Adv 2019; 37:107418. [DOI: 10.1016/j.biotechadv.2019.107418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
|
26
|
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18:200. [PMID: 31727078 PMCID: PMC6854816 DOI: 10.1186/s12934-019-1248-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Ximena Gómez-Gil
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Guadalupe Gutiérrez-Soto
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa, 66059 Colonia Ex hacienda El Canadá, General Escobedo, Nuevo León Mexico
| | - Carlos Eduardo Hernández-Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451 San Nicolás de los Garza, Nuevo León Mexico
| | - Mayra Herrera de los Santos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Laura Levin
- Laboratorio de Micología Experimental, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, C1428BGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Daniel Romero-Martínez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Mario C. N. Saparrat
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Diag. 113 y 61, 327CC, 1900, La Plata, Argentina
- Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 53 # 477, 1900, La Plata, Argentina
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| |
Collapse
|
27
|
Kinetic characterization of laccase from Bacillus atrophaeus, and its potential in juice clarification in free and immobilized forms. J Microbiol 2019; 57:900-909. [DOI: 10.1007/s12275-019-9170-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
28
|
Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A. Halophiles and Their Vast Potential in Biofuel Production. Front Microbiol 2019; 10:1895. [PMID: 31507545 PMCID: PMC6714587 DOI: 10.3389/fmicb.2019.01895] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Global warming and the limitations of using fossil fuels are a main concern of all societies, and thus, the development of alternative fuel sources is crucial to improving the current global energy situation. Biofuels are known as the best alternatives of unrenewable fuels and justify increasing extensive research to develop new and less expensive methods for their production. The most frequent biofuels are bioethanol, biobutanol, biodiesel, and biogas. The production of these biofuels is the result of microbial activity on organic substrates like sugars, starch, oil crops, non-food biomasses, and agricultural and animal wastes. Several industrial production processes are carried out in the presence of high concentrations of NaCl and therefore, researchers have focused on halophiles for biofuel production. In this review, we focus on the role of halophilic microorganisms and their current utilization in the production of all types of biofuels. Also, the outstanding potential of them and their hydrolytic enzymes in the hydrolysis of different kind of biomasses and the production of biofuels are discussed.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Safarpour
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Kambiz Akbari Noghabi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tala Bakhtiary
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
29
|
Wu MH, Lin MC, Lee CC, Yu SM, Wang AHJ, Ho THD. Enhancement of laccase activity by pre-incubation with organic solvents. Sci Rep 2019; 9:9754. [PMID: 31278318 PMCID: PMC6611822 DOI: 10.1038/s41598-019-45118-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Laccases that are tolerant to organic solvents are powerful bio-catalysts with broad applications in biotechnology. Most of these uses must be accomplished at high concentration of organic solvents, during which proteins undergo unfolding, thereby losing enzyme activity. Here we show that organic-solvent pre-incubation provides effective and reversible 1.5- to 4.0-fold enhancement of enzyme activity of fungal laccases. Several organic solvents, including acetone, methanol, ethanol, DMSO, and DMF had an enhancement effect among all laccases studied. The enhancement was not substrate-specific and could be observed by using both phenolic and non-phenolic substrates. Laccase preincubated with organic solvents was sensitive to high temperature but remained stable at 25 °C, for an advantage for long-term storage. The acetone-pre-incubated 3-D structure of DLac, a high-efficiency fungal laccase, was determined and confirmed that the DLac protein structure remains intact and stable at a high concentration of organic solvent. Moreover, the turnover rates of fungal laccases were improved after organic-solvent pre-incubation, with DLac showing the highest enhancement among the fungal laccases examined. Our investigation sheds light on improving fungal laccase usage under extreme conditions and extends opportunities for bioremediation, decolorization, and organic synthesis.
Collapse
Affiliation(s)
- Meng-Hsuan Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC.,Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Meng-Chun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC.,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC. .,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| |
Collapse
|
30
|
Aptitude of Oxidative Enzymes for Treatment of Wastewater Pollutants: A Laccase Perspective. Molecules 2019; 24:molecules24112064. [PMID: 31151229 PMCID: PMC6600482 DOI: 10.3390/molecules24112064] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 01/28/2023] Open
Abstract
Natural water sources are very often contaminated by municipal wastewater discharges which contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both, which frustrates the universal millenium development goal of provision of the relatively scarce pristine freshwater to water-scarce and -stressed communities, in order to augment their socioeconomic well-being. Seeing that both regulatory measures, as regards the discharge limits of wastewater, and the query for efficient treatment methods remain unanswered, partially, the prospects of enzymatic treatment of wastewater is advisable. Therefore, a reconsideration was assigned to the possible capacity of oxidative enzymes and the respective challenges encountered during their applications in wastewater treatment, and ultimately, the prospects of laccase, a polyphenol oxidase that oxidizes aromatic and inorganic substrates with electron-donating groups in treatment aromatic contaminants of wastewater, in real wastewater situations, since it is assumed to be a vehicle for a greener community. Furthermore, the importance of laccase-driven catalysis toward maintaining mass-energy balance, hence minimizing environmental waste, was comprehensibly elucidated, as well the strategic positioning of laccase in a model wastewater treatment facility for effective treatment of wastewater contaminants.
Collapse
|
31
|
|
32
|
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 2019; 103:3979-4002. [PMID: 30963208 PMCID: PMC6486533 DOI: 10.1007/s00253-019-09692-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database ( www.elignindatabase.com ), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | - Krithika Ravi
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
33
|
Pereira-Patrón A, Solis-Pereira S, Lizama-Uc G, Ramírez-Prado JH, Pérez-Brito D, Tapia-Tussell R. Molecular characterization of laccase genes from the basidiomycete Trametes hirsuta Bm-2 and analysis of the 5' untranslated region (5'UTR). 3 Biotech 2019; 9:160. [PMID: 30944807 PMCID: PMC6441420 DOI: 10.1007/s13205-019-1691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/21/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to identify and characterize laccase genes produced by Trametes hirsuta Bm-2 in a liquid medium, both with and without induction. The amplification of 5'and 3'regions of laccase sequences was obtained by the RACE-PCR method, and these were assembled to obtain a cDNA of total length. Two new laccase genes were isolated from basal medium (lac-B) and lignocellulosic grapefruit substrate (lac-T), both encoding open reading frames of 2566 bp. Both laccase-predicted proteins consisted of 521 amino acids, four copper-binding regions, a signal peptide, and five potential glycosilation sites (Asn-Xaa-Ser/Tre). Moreover, the deduced amino acid sequences share about 76-85% identity with other laccases of WRF. Sequence comparison showed 47 synonymous point mutations between lac-B and lac-T. In addition, 5' untranslated regions (UTR) of laccase genes lac-B and lac-T showed differences in length and number of regulatory elements that may affect transcriptional or translational expression of these genes.
Collapse
Affiliation(s)
- Alejandrina Pereira-Patrón
- Depto. de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico Km 4.5 S/N, 97118 Mérida, Yucatán Mexico
| | - Sara Solis-Pereira
- Depto. de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico Km 4.5 S/N, 97118 Mérida, Yucatán Mexico
| | - Gabriel Lizama-Uc
- Depto. de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico Km 4.5 S/N, 97118 Mérida, Yucatán Mexico
| | - Jorge H. Ramírez-Prado
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| | - Daisy Pérez-Brito
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| | - Raul Tapia-Tussell
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Carretera Sierra Papacal-Chuburná Puerto Km 5, 97302 Mérida, Yucatán Mexico
| |
Collapse
|
34
|
Sharma V, Ayothiraman S, Dhakshinamoorthy V. Production of highly thermo-tolerant laccase from novel thermophilic bacterium Bacillus sp. PC-3 and its application in functionalization of chitosan film. J Biosci Bioeng 2018; 127:672-678. [PMID: 30573384 DOI: 10.1016/j.jbiosc.2018.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
In this study, a novel thermophilic bacterial strain was isolated from Tattapani hot spring located in the Chhattisgarh state of India. The laccase was produced via submerged fermentation and purified by ammonium sulfate precipitation and anion exchange chromatography up to 13.7 fold. The 16S rRNA gene sequence and biochemical analysis revealed that the bacterial isolate is Bacillus sp. strain PC-3. The activity of extracellular crude laccase was determined to be 11.2 U/mL using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a substrate. The SDS-PAGE revealed that the enzyme consists of single subunit with molecular size of 36 kDa. The laccase exhibited the maximum enzyme activity at temperature of 60°C and pH 7. Moreover, the laccase retained 99.1% of its original activity for 180 min and exhibited half-life of 3.75 h at 60°C. Similarly, the laccase retained 95% activity at pH 7 for 240 min and displayed significant activity at wider pH range. In addition, the laccase was used for functionalization of chitosan film and characterized for antioxidant and antimicrobial activity. Interestingly, the functionalized chitosan film showed the improved antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Vasanth Dhakshinamoorthy
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
35
|
Das R, Li G, Mai B, An T. Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:798-806. [PMID: 29879666 DOI: 10.1016/j.scitotenv.2018.05.379] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 05/14/2023]
Abstract
Laccase has been applied extensively as a biocatalyst to remove different organic pollutants. This study characterized a spore-laccase from the bisphenol A (BPA)-degrading strain Bacillus sp. GZB. The spore-laccase was encoded with 513 amino acids, containing spore coat protein A (CotA). It showed optimal activity at 70 °C and pH = 7.2 in presence of 2, 6-dimethoxyphenol. At 60 °C, optimal activity was also seen at pH = 3.0 and pH = 6.8 with 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) and syringaldazine, respectively. The spore-laccase was stable at high temperature, at acidic to alkaline pH values, and in the presence of different organic solvents. Spore-laccase activity was increased by introducing Cu2+, Mg2+, and Na+, but was strongly inhibited by Fe2+, Ag+, l-cysteine, dithiothreitol, and NaN3. The cotA gene was cloned and expressed in E. coli BL21 (DE3); the purified protein was estimated as having a molecular weight of ~63 kDa. Different synthetic dyes and BPA were effectively decolorized or degraded both by the spore laccase and recombinant laccase. When BPA oxidation was catalyzed using laccase, there was an initial formation of phenoxy radicals and further oxidation or CC bond cleavage of the radicals produced different organic acids. Detailed reaction pathways were developed based on nine identified intermediates. The acute toxicity decreased gradually during BPA degradation by laccase. This study is the first report about a genus of Bacillus that can produce a highly active and stable laccase to degrade BPA.
Collapse
Affiliation(s)
- Ranjit Das
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Gómez-Villegas P, Vigara J, León R. Characterization of the Microbial Population Inhabiting a Solar Saltern Pond of the Odiel Marshlands (SW Spain). Mar Drugs 2018; 16:md16090332. [PMID: 30213145 PMCID: PMC6164061 DOI: 10.3390/md16090332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
The solar salterns located in the Odiel marshlands, in southwest Spain, are an excellent example of a hypersaline environment inhabited by microbial populations specialized in thriving under conditions of high salinity, which remains poorly explored. Traditional culture-dependent taxonomic studies have usually under-estimated the biodiversity in saline environments due to the difficulties that many of these species have to grow at laboratory conditions. Here we compare two molecular methods to profile the microbial population present in the Odiel saltern hypersaline water ponds (33% salinity). On the one hand, the construction and characterization of two clone PCR amplified-16S rRNA libraries, and on the other, a high throughput 16S rRNA sequencing approach based on the Illumina MiSeq platform. The results reveal that both methods are comparable for the estimation of major genera, although massive sequencing provides more information about the less abundant ones. The obtained data indicate that Salinibacter ruber is the most abundant genus, followed by the archaea genera, Halorubrum and Haloquadratum. However, more than 100 additional species can be detected by Next Generation Sequencing (NGS). In addition, a preliminary study to test the biotechnological applications of this microbial population, based on its ability to produce and excrete haloenzymes, is shown.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Javier Vigara
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Rosa León
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| |
Collapse
|
37
|
Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi J Biol Sci 2018; 26:913-920. [PMID: 31303819 PMCID: PMC6600735 DOI: 10.1016/j.sjbs.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
Currently, there is increasing interest in assessing the potential of bacterial laccases for industrial and environmental applications especially in harsh conditions. The environmental impact of the textile industry requires novel and effective technologies to mitigate the presence of dyes in wastewaters before discharging into the environment. Dyes usually remain stable in the presence of a variety of chemicals, light and are recalcitrant to microbial degradation. Among available technologies the biological treatments offer environmentally friendly strategies for decolorizing and detoxifying these compounds. The recent discovery of versatile laccases in streptomycetes opens up new opportunities for their commercial application. The aim of this study is to assess the potential of a novel bacterial laccase SilA produced by Streptomyces ipomoeae CECT 3341 active over wide temperature and pH ranges for use as an eco-friendly, biological treatment for the degradation of textile dyes. Insights into the enhancement of the oxidative action of this enzyme through the use of natural redox mediators are presented together with an assessment of the potential toxicity of the degradation products. Our results confirm that the combination of the laccase and natural mediators such as acetosyringone and methyl syringate enhanced the decolorization and detoxification of a variety of textile dyes up to sixfold and 20-fold, respectively. Mediator concentration was found to have a significant effect (p < 0.05) on dye decolorization at 60 °C; thus, the decolorization of Acid Orange 63 increased from 6 to 70-fold when the mediator concentration was increased from 0.1 to 0.5 mM. Further, the toxicity of tartrazine decreased 36-fold when the SilA-MeS system was used to decolorize the dye. The thermal properties of the SilA coupled with the stability of SilA at high pH suggest a potential commercial application for use in the decolorization of textile wastewaters which generally are performed at high temperature (>55 °C) and salinity and neutral pH, conditions which are unfavourable for conventional fungal laccases.
Collapse
|
38
|
Li J, Xie Y, Wang R, Fang Z, Fang W, Zhang X, Xiao Y. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:225-236. [PMID: 28875401 DOI: 10.1007/s00249-017-1251-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Laccase (benzenediol: oxygen oxidoreductases, EC1.10.3.2) is a multi-copper oxidase capable of oxidizing a variety of phenolic and other aromatic organic compounds. The catalytic power of laccase makes it an attractive candidate for potential applications in many areas of industry including biodegradation of organic pollutants and synthesis of novel drugs. Most laccases are vulnerable to high salt and have limited applications. However, some laccases are not only tolerant to but also activated by certain concentrations of salt and thus have great application potential. The mechanisms of salt-induced activity enhancement of laccases are unclear as yet. In this study, we used dynamic light scattering, size exclusion chromatography, analytical ultracentrifugation, intrinsic fluorescence emission, circular dichroism, ultraviolet-visible light absorption, and an enzymatic assay to investigate the potential correlation between the structure and activity of the marine-derived laccase, Lac15, whose activity is promoted by low concentrations of NaCl. The results showed that low concentrations of NaCl exert little influence on the protein structure, which was partially folded in the absence of the salt; moreover, the partially folded rather than the fully folded state seemed to be favorable for enzyme activity, and this partially folded state was distinctive from the so-called 'molten globule' occasionally observed in active enzymes. More data indicated that salt might promote laccase activity through mechanisms involving perturbation of specific local sites rather than a change in global structure. Potential binding sites for chloride ions and their roles in enzyme activity promotion are proposed.
Collapse
Affiliation(s)
- Jie Li
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yanan Xie
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Rui Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Wei Fang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, 230601, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China. .,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, 230601, Anhui, China. .,Anhui Key Laboratory of Modern Biomanufacturing, 111 Jiulong Road, Hefei, 230601, Anhui, China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China. .,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, 230601, Anhui, China. .,Anhui Key Laboratory of Modern Biomanufacturing, 111 Jiulong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
39
|
Delignification and detoxification of peanut shell bio-waste using an extremely halophilic laccase from an Aquisalibacillus elongatus isolate. Extremophiles 2017; 21:993-1004. [PMID: 28871494 DOI: 10.1007/s00792-017-0958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
Lignocellulose bioconversion is a harsh process requiring the use of surfactants and organic solvents. Consequently, the incorporation of laccases in this bioconversion requires the bioprospecting of enzymes that can remain stable under extreme conditions. An extracellular, highly stable laccase was produced by the halophilic isolate Aquisalibacillus elongatus in submerged liquid culture fermentation. Statistical and non-statistical strategies gave the highest enzymatic activity (8.02 U mL-1) following addition of glucose (1.7 g L-1), copper sulfate (0.8 g L-1), urea (15 g L-1), and CaCl2 (0.8 g L-1). The enzyme, after purification using a synthetic affinity support, delignified a peanut shell substrate by 45%. A pH of 8.0 and a temperature of 35 °C were optimal for delignification of this bio-waste material. Addition of [Bmim][PF6], 1,4-dioxane, acetone, and HBT promoted this bio-waste delignification. Bio-treatment in the presence of 50% [Bmim][PF6] gave a maximal lignin removal of 87%. The surfactants tested had no significant effects on the delignification yield. The laccase also detoxified the toxic phenols found in peanut shell waste. The high catalytic efficiency of this enzyme against a lignocellulosic sample under extreme conditions suggests the suitability of this laccase for industrial applications.
Collapse
|
40
|
Guo H, Zheng B, Jiang D, Qin W. Overexpression of a Laccase with Dye Decolorization Activity from Bacillus sp. Induced in Escherichia coli. J Mol Microbiol Biotechnol 2017; 27:217-227. [DOI: 10.1159/000478859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/14/2017] [Indexed: 12/19/2022] Open
Abstract
Laccases from bacteria have been widely studied in the past 2 decades due to the higher growth rate of bacteria and their excellent thermal and alkaline pH stability. In this study, a novel laccase gene was cloned from<i> Bacillus</i> sp., analyzed, and functionally expressed in<i> Escherichia coli</i>. The laccase was highly induced in the <i>E. coli</i> expression system with a maximum intracellular activity of 16 U mg<sup>-1</sup> protein. The optimal temperature and pH of the purified laccase were 40°C and 4.6, respectively, when ABTS (2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonate]) was used as the substrate. The purified laccase showed high stability in the pH range of 3.0-9.0, and retained more than 70% of its activity after 24 h of incubation at 40°C with a pH value of 9.0. Furthermore, the enzyme exhibited extremely high temperature and ion metal tolerance. The half-life of the purified laccase at 70°C was 15.9 h. The purified laccase could efficiently decolorize 3 chemical dyes, especially in the presence of ABTS as a mediator. The high production of this laccase in<i> E. coli</i> and exceptional characteristics of the recombinant enzyme protein make it a promising candidate for industrial applications.
Collapse
|
41
|
Kannaiyan R, Mahinpey N, Kostenko V, Martinuzzi RJ. Enhanced Delignification of Wheat Straw by the Combined Effect of Hydrothermal and Fungal Treatments. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2017.1322961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ranjani Kannaiyan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| | - Nader Mahinpey
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| | - Victoria Kostenko
- Calgary Center for Innovative Technology, University of Calgary, Calgary, Canada
| | - Robert J. Martinuzzi
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
42
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
43
|
Rezaei S, Shahverdi AR, Faramarzi MA. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. BIORESOURCE TECHNOLOGY 2017; 230:67-75. [PMID: 28161622 DOI: 10.1016/j.biortech.2017.01.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
The aim of the present work was to study the ability of a halophilic bacterial laccase to efficient delignification in extreme conditions. Here, a highly stable extracellular laccase showing ligninolytic activity from halophilic Aquisalibacillus elongatus is described. The laccase production was strongly influenced by NaCl and CuSO4 and under optimal conditions reached 4.8UmL-1. The monomeric enzyme of 75kDa was purified by a synthetic affinity column with 68.2% yield and 99.8-fold purification. The enzyme showed some valuable features viz. stability against a wide range of organic solvents, salts, metals, inhibitors, and surfactants and specificity to a wide spectrum of substrates diverse in structure and redox potential. It retained more than 50% of the original activity at 25-75°C and pH 5.0-10.0. Furthermore, the enzyme was found to be effective in the delignification of sugar beet pulp in an ionic liquid that makes it useful for industrial applications.
Collapse
Affiliation(s)
- Shahla Rezaei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran.
| |
Collapse
|
44
|
Nikam M, Patil S, Patil U, Khandare R, Govindwar S, Chaudhari A. Biodegradation and detoxification of azo solvent dye by ethylene glycol tolerant ligninolytic ascomycete strain of Pseudocochliobolus verruculosus NFCCI 3818. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Enzymes and Nanoparticles Produced by Microorganisms and Their Applications in Biotechnology. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
47
|
Pawlik A, Wójcik M, Rułka K, Motyl-Gorzel K, Osińska-Jaroszuk M, Wielbo J, Marek-Kozaczuk M, Skorupska A, Rogalski J, Janusz G. Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene. Int J Biol Macromol 2016; 92:138-147. [PMID: 27392777 DOI: 10.1016/j.ijbiomac.2016.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 11/26/2022]
Abstract
The soil native bacterial strains were screened for laccase activity. Bacterial strain L3.8 with high laccase activity was identified as Sinorhizobium meliloti. The crude intracellular L3.8 enzyme extract was able to oxidize typical diagnostic substrates of plant and fungal laccases. Laccase L3.8 was purified 81-fold with a yield of 19.5%. The molecular mass of the purified bacterial laccase was found to be 70.0kDa and its pI was 4.77. UV-vis spectrum showed that L3.8 protein is a multicopper oxidase. The carbohydrate content of the purified enzyme was estimated at 3.2%. Moreover, the laccase active fraction was characterized in terms of kinetics, temperature, and pH optima as well as the effect of various chemical compounds on the laccase activity, and antioxidant properties, which indicated that the L3.8 laccase had unique properties that might be important in biotechnological applications. The lacc gene encoding S. meliloti laccase was cloned and characterized. The full-length sequence of 1950bp encoded a protein of 649 aa preceded by a signal peptide consisting of 26aa. Laccase L3.8 shared significant structural features characteristic of other laccases, including the conserved regions of four histidine-rich copper-binding sites. Potential biotechnological importance of a newly identified laccase is discussed.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Magdalena Wójcik
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Karol Rułka
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Karolina Motyl-Gorzel
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jerzy Rogalski
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
48
|
Kandasamy S, Muniraj IK, Purushothaman N, Sekar A, Sharmila DJS, Kumarasamy R, Uthandi S. High Level Secretion of Laccase (LccH) from a Newly Isolated White-Rot Basidiomycete, Hexagonia hirta MSF2. Front Microbiol 2016; 7:707. [PMID: 27242729 PMCID: PMC4870842 DOI: 10.3389/fmicb.2016.00707] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/28/2016] [Indexed: 12/04/2022] Open
Abstract
Newer and novel laccases attract considerable attention due to its promising and valuable multiple applications in biotech industry. This present investigation documents, for the first time, on high level extracellular secretion of laccase (LccH) in newly isolated wood-degrading basidiomycete Hexagonia hirta MSF2. LccH was optimally active at 40°C in citrate phosphate buffer with a pH of 3.4. Optimized Cu(2+) in glucose yeast extract (GY) medium enhanced the LccH production by H. hirta to 1944.44 U.ml(-1). A further increment in LccH activity of 5671.30 U.ml(-1) was achieved by the addition of a phenolic inducer, 2,5 Xylidine. Zymogram and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of LccH revealed that LccH is a monomer with a molecular mass of 66 kDa. MALDI-TOF-MS based peptide mass fingerprinting and comparative modeling of the amino acid sequence of LccH showed that it was closer to Trametes sp. AH28-2 (PDB: 3KW7) with 48% identity, 95% coverage, 0.011 alignment score and RMSD of 0.497Å. Crude LccH delignified lignocellulosic biomass such as wood and corncob, to a level of 28.6 and 16.5%, respectively. Such high level secretion, thermal and solvent stability of LccH make H. hirta a potential candidate not only for LccH production and biodelignification but also generation of lignin derived aromatic feed stock chemicals for industrial and environmental applications.
Collapse
Affiliation(s)
- Sujatha Kandasamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - Iniya K. Muniraj
- Department of Agricultural Microbiology, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - Namitha Purushothaman
- Department of Agricultural Microbiology, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - Ashika Sekar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - D. J. S. Sharmila
- Department of Nanoscience and Technology, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - Ramasamy Kumarasamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - Sivakumar Uthandi
- Department of Agricultural Microbiology, Tamil Nadu Agricultural UniversityCoimbatore, India
| |
Collapse
|
49
|
Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation. Appl Microbiol Biotechnol 2015; 100:3113-24. [DOI: 10.1007/s00253-015-7158-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
50
|
Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents. Appl Environ Microbiol 2015; 82:538-48. [PMID: 26546423 DOI: 10.1128/aem.03055-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg(-1) for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg(2+). Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a "salt-loving" noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies.
Collapse
|