1
|
Wu W, Zhao Q, Zhang B. Viable Escherichia coli enumeration on a polydimethylsiloxane (PDMS) chip with vertical channel-well configuration. Mikrochim Acta 2024; 191:241. [PMID: 38573377 DOI: 10.1007/s00604-024-06338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The culture-based methods for viable Escherichia coli (E. coli) detection suffer from long detection time and laborious procedures, whereas the molecule tests and immune recognition technologies lack live/dead E. coli differentiation. Rapid, easy-to-use, and accessible viable E. coli detection is of benefit to bacterial infection diagnosis and risk warning of E. coli contamination of water and food, safeguarding human health. Herein, we propose a microwell chip-based solution to realize simple and rapid determination of viable E. coli. The vertical channel-well configuration is applied to develop the microwell array chip for increasing the microwell density (6200 wells/cm2), yielding a broad dynamic range from 103 to 107 CFU/mL. We incorporate an inducible enzyme assay with the developed chip and achieve the differentiation of live/dead E. coli within 4 h, significantly shortening the detection time from over 24 h in the standard method. By encapsulating single E. coli into microwells, the concentration of viable cells can be determined simultaneously through counting positive microwells. In addition, the air soluble PDMS that can store negative pressure for independent sample digitalization endows the developed chip with simple operation and less reliance on external equipment. With further developments for increasing the number of microwell and integrating more sample panels, the developed chip can become a useful tool for rapid viable E. coli enumeration with user-friendly operation, simple procedures, and accessibility in decentralized settings, thereby deploying this device for water and food safety monitoring, as well as clinical bacterial infection diagnosis.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin, 300131, China
| | - Boran Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
2
|
Chen J, Zhong J, Lei H, Ai Y. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry. LAB ON A CHIP 2023; 23:5029-5038. [PMID: 37909182 DOI: 10.1039/d3lc00799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Rapid and accurate identification of bacteria is of great importance to public health in various fields, including medical diagnostics, food safety, and environmental monitoring. However, most existing bacterial detection methods have very narrow detectable concentration ranges and limited detection information, which easily leads to wrong diagnosis and treatment. This work presents a novel high-throughput microfluidic electrical impedance-based multidimensional single-bacterium profiling system for ultrawide concentration range detection and accurate differentiation of viability and Gram types of bacteria. The electrical impedance-based microfluidic cytometry is capable of multi-frequency impedance quantification, which allows profiling of the bacteria size, concentration, and membrane impedance as an indicator of bacterial viability and Gram properties in a single flow-through interrogation. It has been demonstrated that this novel impedance cytometry has an ultrawide bacterial counting range (102-108 cells per mL), and exhibits a rapid and accurate discrimination of viability and Gram types of bacteria in a label-free manner. Escherichia coli (E. coli) has been used as an analog species for the accuracy assessment of the electrical impedance-based bacterial detection system in an authentic complex beverage matrix within 24 hours. The impedance-based quantifications of viable bacteria are consistent with those obtained by the classical bacterial colony counting method (R2 = 0.996). This work could pave the way for providing a novel microfluidic cytometry system for rapid and multidimensional bacterial detection in diverse areas.
Collapse
Affiliation(s)
- Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
3
|
Lerin-Morales KM, Olguín LF, Mateo-Martí E, Colín-García M. Prebiotic Chemistry Experiments Using Microfluidic Devices. Life (Basel) 2022; 12:1665. [PMID: 36295100 PMCID: PMC9605377 DOI: 10.3390/life12101665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Microfluidic devices are small tools mostly consisting of one or more channels, with dimensions between one and hundreds of microns, where small volumes of fluids are manipulated. They have extensive use in the biomedical and chemical fields; however, in prebiotic chemistry, they only have been employed recently. In prebiotic chemistry, just three types of microfluidic devices have been used: the first ones are Y-form devices with laminar co-flow, used to study the precipitation of minerals in hydrothermal vents systems; the second ones are microdroplet devices that can form small droplets capable of mimic cellular compartmentalization; and the last ones are devices with microchambers that recreate the microenvironment inside rock pores under hydrothermal conditions. In this review, we summarized the experiments in the field of prebiotic chemistry that employed microfluidic devices. The main idea is to incentivize their use and discuss their potential to perform novel experiments that could contribute to unraveling some prebiotic chemistry questions.
Collapse
Affiliation(s)
| | - Luis F. Olguín
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Eva Mateo-Martí
- Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
4
|
Fabrication of a new all-in-one microfluidic dielectrophoresis integrated chip and living cell separation. iScience 2022; 25:103776. [PMID: 35146391 PMCID: PMC8819401 DOI: 10.1016/j.isci.2022.103776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microfluidic dielectrophoresis (DEP) technology has been applied to many devices to perform label-free target cell separation. Cells separated by these devices are used in laboratories, mainly for medical research. The present study designed a microfluidic DEP device to fabricate a rapid and semiautomated cell separation system in conjunction with microscopy to enumerate the separated cells. With this device, we efficiently segregated bacterial cells from liquid products and enriched one cell type from two mixed eukaryotic cell types. The device eliminated sample pretreatment and established cell separation by all-in-one operation in a lab-on-chip, requiring only a small sample volume (0.5–1 mL) to enumerate the target cells and completing the entire separation process within 30 min. Such a rapid cell separation technique is in high demand by many researchers to promptly characterize the target cells. A new all-in-one microfluidic dielectrophoresis integrated chip is fabricated Simultaneous operation of buffer exchange and continuous cell separation on a chip Chip’s cell separation performance is evaluated with bacterial and eukaryotic cells
Collapse
|
5
|
Katare P, Gorthi SS. Recent technical advances in whole slide imaging instrumentation. J Microsc 2021; 284:103-117. [PMID: 34254690 DOI: 10.1111/jmi.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Microscopic observation of biological specimen smears is the mainstay of diagnostic pathology, as defined by the Digital Pathology Association. Though automated systems for this are commercially available, their bulky size and high cost renders them unusable for remote areas. The research community is investing much effort towards building equivalent but portable, low-cost systems. An overview of such research is presented here, including a comparative analysis of recent reports. This paper also reviews recently reported systems for automated staining and smear formation, including microfluidic devices; and optical and computational automated microscopy systems including smartphone-based devices. Image pre-processing and analysis methods for automated diagnosis are also briefly discussed. It concludes with a set of foreseeable research directions that could lead to affordable, integrated and accurate whole slide imaging systems.
Collapse
Affiliation(s)
- Prateek Katare
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Sai Siva Gorthi
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Needs SH, Osborn HMI, Edwards AD. Counting bacteria in microfluidic devices: Smartphone compatible 'dip-and-test' viable cell quantitation using resazurin amplified detection in microliter capillary arrays. J Microbiol Methods 2021; 187:106199. [PMID: 33771524 DOI: 10.1016/j.mimet.2021.106199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
Viable bacterial cell counting is fundamental to analytical microbiology and agar plate colony counting remains common yet laborious and slow. Here, we demonstrate two methods for counting bacteria using commercially available microfluidic devices. We show that accurate viable cell counting is possible using simple and easy 'dip and test' arrays of microcapillaries. Colorimetric and fluorescent growth detection both permit viable cell counting in microcapillaries either by limiting dilution into multiple microfluidic compartments using a single endpoint measurement, or alternatively by quantifying growth kinetics. The microcapillary devices are compatible with conventional 96 well plates and multichannel pipettes, expanding each microplate row into 120 individual 1 or 2 μL samples. At limiting dilution, counting the proportion of positive compartments permitted accurate calculation of gram-negative and gram-positive bacteria (E. coli and S. saprophyticus) at concentrations down to as low as 10 CFU/mL with almost 1:1 agreement with agar plate colony counts over four orders of magnitude. A smartphone camera was sufficient to record endpoint images of resazurin growth detection both colorimetrically and fluorescently. Viable cell counting of E. coli and S. saprophyticus was also possible through recording growth kinetics and determining the time taken to detect resazurin conversion. However, only the limiting dilution method remained consistent in the presence of urine matrix, as some interference in growth rate was observed when bacteria were spiked into higher concentrations of normal urine to simulate urinary tract infection patient samples. However, with the limiting dilution counting method endpoint growth was always detected even in the presence of 90% urine matrix, suggesting that this method might permit bacterial pathogen counting directly in clinical samples without agar plating.
Collapse
Affiliation(s)
- Sarah H Needs
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6DX, UK.
| | - Helen M I Osborn
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6DX, UK
| | - Alexander D Edwards
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6DX, UK; Capillary Film Technology Ltd, Daux Road, Billingshurst RH14 9SJ, UK.
| |
Collapse
|
7
|
Tokunaga Y, Yamaguchi N. Rapid quantification of
Escherichia coli
O157
:
H7
in lettuce and beef using an on‐chip staining microfluidic device. J Food Saf 2020. [DOI: 10.1111/jfs.12851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yusuke Tokunaga
- Division of Hygienic Chemistry Osaka Institute of Public Health Osaka Japan
| | - Nobuyasu Yamaguchi
- Division of Hygienic Chemistry Osaka Institute of Public Health Osaka Japan
| |
Collapse
|
8
|
Yamaguchi N, Fujii Y. Rapid On-Site Monitoring of Bacteria in Freshwater Environments Using a Portable Microfluidic Counting System. Biol Pharm Bull 2020; 43:87-92. [DOI: 10.1248/bpb.b19-00549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuyasu Yamaguchi
- Osaka Institute of Public Health
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yudai Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
9
|
Wang T, Yu C, Xie X. Microfluidics for Environmental Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:267-290. [PMID: 32440697 DOI: 10.1007/10_2020_128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microfluidic and lab-on-a-chip systems have become increasingly important tools across many research fields in recent years. As a result of their small size and precise flow control, as well as their ability to enable in situ process visualization, microfluidic systems are increasingly finding applications in environmental science and engineering. Broadly speaking, their main present applications within these fields include use as sensors for water contaminant analysis (e.g., heavy metals and organic pollutants), as tools for microorganism detection (e.g., virus and bacteria), and as platforms for the investigation of environment-related problems (e.g., bacteria electron transfer and biofilm formation). This chapter aims to review the applications of microfluidics in environmental science and engineering - with a particular focus on the foregoing topics. The advantages and limitations of microfluidics when compared to traditional methods are also surveyed, and several perspectives on the future of research and development into microfluidics for environmental applications are offered.
Collapse
Affiliation(s)
- Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cecilia Yu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
10
|
Rapid On-Site Detection and Quantification of Foodborne Pathogens Using Microfluidic Devices. Methods Mol Biol 2019. [PMID: 30580399 DOI: 10.1007/978-1-4939-9000-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The potential for foodborne infectious disease outbreaks has increased not only on a local scale but also on a regional and international scale. Simple, rapid, and accurate methods to enumerate pathogenic bacteria in food and drink are required to prevent the spread of these bacteria. Here, I describe applications of a microfluidic device for on-chip fluorescent staining and semiautomated counting of target bacteria in food samples.
Collapse
|
11
|
Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system. Sci Rep 2017; 7:3092. [PMID: 28596545 PMCID: PMC5465085 DOI: 10.1038/s41598-017-03293-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
Legionnaires' disease, predominantly caused by the bacterium Legionella pneumophila, has increased in prevalence worldwide. The most common mode of transmission of Legionella is inhalation of contaminated aerosols, such as those generated by cooling towers. Simple, rapid and accurate methods to enumerate L. pneumophila are required to prevent the spread of this organism. Here, we applied a microfluidic device for on-chip fluorescent staining and semi-automated counting of L. pneumophila in cooling tower water. We also constructed a portable system for rapid on-site monitoring and used it to enumerate target bacterial cells rapidly flowing in the microchannel. A fluorescently-labelled polyclonal antibody was used for the selective detection of L. pneumophila serogroup 1 in the samples. The counts of L. pneumophila in cooling tower water obtained using the system and fluorescence microscopy were similar. The detection limit of the system was 104 cells/ml, but lower numbers of L. pneumophila cells (101 to 103 cells/ml) could be detected following concentration of 0.5-3 L of the water sample by filtration. Our technique is rapid to perform (1.5 h), semi-automated (on-chip staining and counting), and portable for on-site measurement, and it may therefore be effective in the initial screening of Legionella contamination in freshwater.
Collapse
|
12
|
Kim G, Lim J, Mo C. Applications of Microfluidics in the Agro-Food Sector: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.5307/jbe.2016.41.2.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Choi J, Kang M, Jung JH. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms. Sci Rep 2015; 5:15983. [PMID: 26522006 PMCID: PMC4629162 DOI: 10.1038/srep15983] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/06/2015] [Indexed: 01/04/2023] Open
Abstract
We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.
Collapse
Affiliation(s)
| | | | - Jae Hee Jung
- Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| |
Collapse
|
14
|
Kohler E, Villiger J, Posch T, Derlon N, Shabarova T, Morgenroth E, Pernthaler J, Blom JF. Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration. PLoS One 2014; 9:e111794. [PMID: 25369266 PMCID: PMC4219780 DOI: 10.1371/journal.pone.0111794] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/05/2014] [Indexed: 01/19/2023] Open
Abstract
Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L(-1) MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified.
Collapse
Affiliation(s)
- Esther Kohler
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| | - Jörg Villiger
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| | - Thomas Posch
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| | - Nicolas Derlon
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Tanja Shabarova
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| | - Eberhard Morgenroth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| | - Judith F. Blom
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
15
|
Wang R, Ni Y, Xu Y, Jiang Y, Dong C, Chuan N. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Anal Chim Acta 2014; 853:710-717. [PMID: 25467522 DOI: 10.1016/j.aca.2014.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/27/2014] [Accepted: 10/24/2014] [Indexed: 11/19/2022]
Abstract
The new method presented in this article achieved the goal of capturing Salmonella typhimurium via immunoreaction and rapid in situ detection of the CdSe/ZnS quantum dots (QDs) labeled S. typhimurium by self-assembly light-emitting diode-induced fluorescence detection (LIF) microsystem on a specially designed multichannel microfluidic chip. CdSe/ZnS QDs were used as fluorescent markers improving detection sensitivity. The microfluidic chip developed in this study was composed of 12 sample channels, 3 mixing zones, and 6 immune reaction zones, which also acted as fluorescence detection zones. QDs-IgG-primary antibody complexes were generated by mixing CdSe/ZnS QDs conjugated secondary antibody (QDs-IgG) and S. typhimurium antibody (primary antibody) in mixing zones. Then, the complexes went into immune reaction zones to label previously captured S. typhimurium in the sandwich mode. The capture rate of S. typhimurium in each detection zone was up to 70%. The enriched QDs-labeled S. typhimurium was detected using a self-assembly LIF microsystem. A good linear relationship was obtained in the range from 3.7×10 to 3.7×10(5) cfu mL(-1) using the equation I=0.1739 log (C)-0.1889 with R(2)=0.9907, and the detection limit was down to 37 cfu mL(-1). The proposed method of online immunolabeling with QDs for in situ fluorescence detection on the designed multichannel microfluidic chip had been successfully used to detect S. typhimurium in pork sample, and it has shown potential advantages in practice.
Collapse
Affiliation(s)
- Renjie Wang
- College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing, China.
| | - Yanan Ni
- College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing, China.
| | - Yi Xu
- College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing, China; National Center for International Research of Micro/Nano-System and New Material Technology, No. 174, St. Shazhengjie, Shapingba District, Chongqing, China; Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology for National Defense, Chongqing, China.
| | - Yan Jiang
- College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing, China.
| | - Chunyan Dong
- College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing, China.
| | - Na Chuan
- College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing, China.
| |
Collapse
|
16
|
Yamaguchi N, Roberts M, Castro S, Oubre C, Makimura K, Leys N, Grohmann E, Sugita T, Ichijo T, Nasu M. Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes Environ 2014; 29:250-60. [PMID: 25130885 PMCID: PMC4159036 DOI: 10.1264/jsme2.me14031] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed.
Collapse
Affiliation(s)
- Nobuyasu Yamaguchi
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ott M, Pierson D, Shirakawa M, Tanigaki F, Hida M, Yamazaki T, Shimazu T, Ishioka N. Space habitation and microbiology: status and roadmap of space agencies. Microbes Environ 2014; 29:239-42. [PMID: 25130884 PMCID: PMC4159034 DOI: 10.1264/jsme2.me2903rh] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
18
|
Bridle H, Miller B, Desmulliez MPY. Application of microfluidics in waterborne pathogen monitoring: a review. WATER RESEARCH 2014; 55:256-71. [PMID: 24631875 DOI: 10.1016/j.watres.2014.01.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 05/03/2023]
Abstract
A review of the recent advances in microfluidics based systems for the monitoring of waterborne pathogens is provided in this article. Emphasis has been made on existing, commercial and state-of-the-art systems and research activities in laboratories worldwide. The review separates sample processing systems and monitoring systems, highlighting the slow progress made in automated sample processing for monitoring of pathogens in waterworks and in the field. Future potential directions of research are also highlighted in the conclusions.
Collapse
Affiliation(s)
- Helen Bridle
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), Riccarton, Edinburgh, United Kingdom.
| | - Brian Miller
- University of Edinburgh, King's Buildings, Edinburgh, United Kingdom.
| | - Marc P Y Desmulliez
- Heriot-Watt University, MicroSystems Engineering Centre (MISEC), Riccarton, Edinburgh, United Kingdom.
| |
Collapse
|
19
|
Madar D, Dekel E, Bren A, Zimmer A, Porat Z, Alon U. Promoter activity dynamics in the lag phase of Escherichia coli. BMC SYSTEMS BIOLOGY 2013; 7:136. [PMID: 24378036 PMCID: PMC3918108 DOI: 10.1186/1752-0509-7-136] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022]
Abstract
Background Lag phase is a period of time with no growth that occurs when stationary phase bacteria are transferred to a fresh medium. Bacteria in lag phase seem inert: their biomass does not increase. The low number of cells and low metabolic activity make it difficult to study this phase. As a consequence, it has not been studied as thoroughly as other bacterial growth phases. However, lag phase has important implications for bacterial infections and food safety. We asked which, if any, genes are expressed in the lag phase of Escherichia coli, and what is their dynamic expression pattern. Results We developed an assay based on imaging flow cytometry of fluorescent reporter cells that overcomes the challenges inherent in studying lag phase. We distinguish between lag1 phase- in which there is no biomass growth, and lag2 phase- in which there is biomass growth but no cell division. We find that in lag1 phase, most promoters are not active, except for the enzymes that utilize the specific carbon source in the medium. These genes show promoter activities that increase exponentially with time, despite the fact that the cells do not measurably increase in size. An oxidative stress promoter, katG, is also active. When cells enter lag2 and begin to grow in size, they switch to a full growth program of promoter activity including ribosomal and metabolic genes. Conclusions The observed exponential increase in enzymes for the specific carbon source followed by an abrupt switch to production of general growth genes is a solution of an optimal control model, known as bang-bang control. The present approach contributes to the understanding of lag phase, the least studied of bacterial growth phases.
Collapse
Affiliation(s)
| | | | | | | | | | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
20
|
Hamon M, Hong JW. New tools and new biology: recent miniaturized systems for molecular and cellular biology. Mol Cells 2013; 36:485-506. [PMID: 24305843 PMCID: PMC3887968 DOI: 10.1007/s10059-013-0333-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023] Open
Abstract
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology.
Collapse
Affiliation(s)
- Morgan Hamon
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849,
USA
| | - Jong Wook Hong
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849,
USA
- College of Pharmacy, Seoul National University, Seoul 151-741,
Korea
- Department of Bionano Engineering, Hanyang University, Ansan 426-791,
Korea
| |
Collapse
|
21
|
Kirleis MA, Mathews SA, Verbarg J, Erickson JS, Piqué A. Reconfigurable acquisition system with integrated optics for a portable flow cytometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:115109. [PMID: 24289439 DOI: 10.1063/1.4831835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Portable and inexpensive scientific instruments that are capable of performing point of care diagnostics are needed for applications such as disease detection and diagnosis in resource-poor settings, for water quality and food supply monitoring, and for biosurveillance activities in autonomous vehicles. In this paper, we describe the development of a compact flow cytometer built from three separate, customizable, and interchangeable modules. The instrument as configured in this work is being developed specifically for the detection of selected Centers for Disease Control (CDC) category B biothreat agents through a bead-based assay: E. coli O157:H7, Salmonella, Listeria, and Shigella. It has two-color excitation, three-color fluorescence and light scattering detection, embedded electronics, and capillary based flow. However, these attributes can be easily modified for other applications such as cluster of differentiation 4 (CD4) counting. Proof of concept is demonstrated through a 6-plex bead assay with the results compared to a commercially available benchtop-sized instrument.
Collapse
Affiliation(s)
- Matthew A Kirleis
- Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Chen J, Chen D, Yuan T, Xie Y, Chen X. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood. BIOMICROFLUIDICS 2013; 7:34106. [PMID: 24404026 PMCID: PMC3689821 DOI: 10.1063/1.4808179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/17/2013] [Indexed: 05/06/2023]
Abstract
Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 10(3) from 3.3 × 10(3) WBCs.
Collapse
Affiliation(s)
- Jingdong Chen
- Science and Technology on Micro/Nano Fabrication Laboratory, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Di Chen
- Science and Technology on Micro/Nano Fabrication Laboratory, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- Science and Technology on Micro/Nano Fabrication Laboratory, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Xie
- Science and Technology on Micro/Nano Fabrication Laboratory, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Chen
- Key Laboratory of Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Mortato M, Blasi L, Barbarella G, Argentiere S, Gigli G. pH controlled staining of CD4(+) and CD19(+) cells within functionalized microfluidic channel. BIOMICROFLUIDICS 2012; 6:44107. [PMID: 24191176 PMCID: PMC3505194 DOI: 10.1063/1.4763560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/10/2012] [Indexed: 05/31/2023]
Abstract
Herein proposed is a simple system to realize hands-free labeling and simultaneous detection of two human cell lines within a microfluidic device. This system was realized by novel covalent immobilization of pH-responsive poly(methacrylic acid) microgels onto the inner glass surface of an assembled polydimethylsiloxane/glass microfluidic channel. Afterwards, selected thiophene labeled monoclonal antibodies, specific for recognition of CD4 antigens on T helper/inducer cells and CD19 antigens on B lymphocytes cell lines, were encapsulated in their active state by the immobilized microgels. When the lymphocytes suspension, containing the two target subpopulations, was flowed through the microchannel, the physiological pH of the cellular suspension induced the release of the labeled antibodies from the microgels and thus the selective cellular staining. The selective pH-triggered staining of the CD4- and CD19-positive cells was investigated in this preliminary experimental study by laser scanning confocal microscopy. This approach represents an interesting and versatile tool to realize cellular staining in a defined module of lab-on-a-chip devices for subsequent detection and counting.
Collapse
Affiliation(s)
- Mariangela Mortato
- Superior School ISUFI, University of Salento, via Arnesano, I-73100 Lecce, Italy ; NNL CNR-Institute of Nanoscience, via Arnesano, I-73100 Lecce, Italy
| | | | | | | | | |
Collapse
|