1
|
Jehanne Q, Bénéjat L, Ducournau A, Aptel J, Pivard M, Gillet L, Jauvain M, Lehours P. Increasing rates of erm(B) and erm(N) in human Campylobacter coli and Campylobacter jejuni erythromycin-resistant isolates between 2018 and 2023 in France. Antimicrob Agents Chemother 2025; 69:e0166824. [PMID: 39745413 PMCID: PMC11823653 DOI: 10.1128/aac.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/15/2024] [Indexed: 02/14/2025] Open
Abstract
Macrolides are the first-line compounds used for the treatment of campylobacteriosis. Macrolide resistance remains low in France, with mutations in 23S rDNA being the main associated resistance mechanism. However, two erythromycin methyltransferases have also been identified: erm(B), which is mainly described in animal reservoirs, and erm(N), which is strictly described in humans. In France, between 2018 and 2023, erythromycin-resistant Campylobacter species strains were systematically sequenced and analyzed via an in-house bioinformatics pipeline, leading to the identification of the resistomes, MLST and cgMLST, as well as the characterization of the source of contamination. In this study, the genomes of 280 erythromycin-resistant strains were sequenced over a 6-year period. The identification of erythromycin-associated resistance markers revealed a predominance of 23S rDNA mutations, in 90% of cases, but also erm-type methyltransferases in 10% of cases: 75% for erm(N) and 25% for erm(B). Over this period, an important increase in the rate of erm-positive isolates was observed: 2% in 2018 compared with 13% in 2023, with 10% for erm(N) and 3% for erm(B). erm(N) has been found exclusively within a CRISPR-Cas9 operon, whereas erm(B) has been found within diverse types of resistance genomic islands. Each erm(N)- or erm(B)-positive isolate had at least two other resistance markers (mostly ciprofloxacin, tetracycline, or ampicillin) and often carried aminoglycoside-associated resistance genes. The majority of the erm-positive isolates were obtained from chicken. The increasing rates of erm-positive and multiresistant isolates make the monitoring of erythromycin-resistant Campylobacter strains, specifically within the chicken meat production, a topic of serious importance.
Collapse
Affiliation(s)
- Quentin Jehanne
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Astrid Ducournau
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Johanna Aptel
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Marie Pivard
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Léo Gillet
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Marine Jauvain
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, Nouvelle-Aquitaine, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, Nouvelle-Aquitaine, France
| |
Collapse
|
2
|
Jehanne Q, Bénéjat L, Azzi Martin L, Korolik V, Ducournau A, Aptel J, Ménard A, Jauvain M, Aguilera C, Doreille A, Mesnard L, Eckert C, Lehours P. First isolation of Campylobacter vicugnae sp. nov. in humans suffering from gastroenteritis. Microbiol Spectr 2024; 12:e0152324. [PMID: 39365090 PMCID: PMC11537083 DOI: 10.1128/spectrum.01523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
The present study describes the first isolation of a recently described Campylobacter species, Campylobacter vicugnae, in humans. The isolates were recovered by two independent French laboratories in 2020 and 2022 from a man and a woman suffering from gastroenteritis. Biochemical and growth characteristics, and electron microscopy for these two strains indicated that they belong to Campylobacter genus. 16S rDNA and GyrA-based phylogeny, as well as average nucleotide identity and in silico DNA-DNA Hybridization analyses revealed that both strains belong to the Campylobacter vicugnae species. Both isolates possess a complete cytolethal distending toxin (CDT) locus with cdtA, cdtB, and cdtC, and features of CDT activity were demonstrated in vitro with Caco-2 intestinal epithelial cells. Our data suggest that these two isolates of C. vicugnae were associated with gastroenteritis in humans and induced major cytopathogenic effects in vitro. C. vicugnae is likely to be a novel human pathogen, with a source of foodborne infection that needs to be determined.IMPORTANCECampylobacter species that display toxicity features are a worldwide public health issue. In clinical contexts, it is crucial to identify which isolate could be an urgent threat to a patient. Actual and widely used laboratory methods such as mass spectrometry or PCR may be flawed in the field of species identification. In contrast, the present study shows that next-generation sequencing allows to precisely identify isolates to species level that may have been omitted otherwise. Moreover, it helps to identify emerging species before they become a threat to human health. Recovery of a new Campylobacter species in human sample, such as the new species "Campylobacter vicugnae," is an important step for the identification of emerging pathogens posing threat to global health.
Collapse
Affiliation(s)
- Quentin Jehanne
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Lamia Azzi Martin
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Astrid Ducournau
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Johanna Aptel
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Armelle Ménard
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | - Marine Jauvain
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | | | - Alice Doreille
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- AP-HP, Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Paris, France
| | - Laurent Mesnard
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- AP-HP, Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Paris, France
| | - Catherine Eckert
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- Département de Bactériologie, AP-HP, Sorbonne-Université, Hôpital Saint-Antoine, Paris, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| |
Collapse
|
3
|
Pascoe B, Futcher G, Pensar J, Bayliss SC, Mourkas E, Calland JK, Hitchings MD, Joseph LA, Lane CG, Greenlee T, Arning N, Wilson DJ, Jolley KA, Corander J, Maiden MCJ, Parker CT, Cooper KK, Rose EB, Hiett K, Bruce BB, Sheppard SK. Machine learning to attribute the source of Campylobacter infections in the United States: A retrospective analysis of national surveillance data. J Infect 2024; 89:106265. [PMID: 39245152 DOI: 10.1016/j.jinf.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES Integrating pathogen genomic surveillance with bioinformatics can enhance public health responses by identifying risk and guiding interventions. This study focusses on the two predominant Campylobacter species, which are commonly found in the gut of birds and mammals and often infect humans via contaminated food. Rising incidence and antimicrobial resistance (AMR) are a global concern, and there is an urgent need to quantify the main routes to human infection. METHODS During routine US national surveillance (2009-2019), 8856 Campylobacter genomes from human infections and 16,703 from possible sources were sequenced. Using machine learning and probabilistic models, we target genetic variation associated with host adaptation to attribute the source of human infections and estimate the importance of different disease reservoirs. RESULTS Poultry was identified as the primary source of human infections, responsible for an estimated 68% of cases, followed by cattle (28%), and only a small contribution from wild birds (3%) and pork sources (1%). There was also evidence of an increase in multidrug resistance, particularly among isolates attributed to chickens. CONCLUSIONS National surveillance and source attribution can guide policy, and our study suggests that interventions targeting poultry will yield the greatest reductions in campylobacteriosis and spread of AMR in the US. DATA AVAILABILITY All sequence reads were uploaded and shared on NCBI's Sequence Read Archive (SRA) associated with BioProjects; PRJNA239251 (CDC / PulseNet surveillance), PRJNA287430 (FSIS surveillance), PRJNA292668 & PRJNA292664 (NARMS) and PRJNA258022 (FDA surveillance). Publicly available genomes, including reference genomes and isolates sampled worldwide from wild birds are associated with BioProject accessions: PRJNA176480, PRJNA177352, PRJNA342755, PRJNA345429, PRJNA312235, PRJNA415188, PRJNA524300, PRJNA528879, PRJNA529798, PRJNA575343, PRJNA524315 and PRJNA689604. Contiguous assemblies of all genome sequences compared are available at Mendeley data (assembled C. coli genomes doi: 10.17632/gxswjvxyh3.1; assembled C. jejuni genomes doi: 10.17632/6ngsz3dtbd.1) and individual project and accession numbers can be found in Supplementary tables S1 and S2, which also includes pubMLST identifiers for assembled genomes. Figshare (10.6084/m9.figshare.20279928). Interactive phylogenies are hosted on microreact separately for C. jejuni (https://microreact.org/project/pascoe-us-cjejuni) and C. coli (https://microreact.org/project/pascoe-us-ccoli).
Collapse
Affiliation(s)
- Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Georgina Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Johan Pensar
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Sion C Bayliss
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessica K Calland
- Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology, Oslo, Norway
| | - Matthew D Hitchings
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Lavin A Joseph
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charlotte G Lane
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tiffany Greenlee
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Nicolas Arning
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
| | - Daniel J Wilson
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom; Department for Continuing Education, University of Oxford, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jukka Corander
- Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology, Oslo, Norway; Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Erica B Rose
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kelli Hiett
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, USA
| | - Beau B Bruce
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel K Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Mather AE, Gilmour MW, Reid SWJ, French NP. Foodborne bacterial pathogens: genome-based approaches for enduring and emerging threats in a complex and changing world. Nat Rev Microbiol 2024; 22:543-555. [PMID: 38789668 DOI: 10.1038/s41579-024-01051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
Foodborne illnesses pose a substantial health and economic burden, presenting challenges in prevention due to the diverse microbial hazards that can enter and spread within food systems. Various factors, including natural, political and commercial drivers, influence food production and distribution. The risks of foodborne illness will continue to evolve in step with these drivers and with changes to food systems. For example, climate impacts on water availability for agriculture, changes in food sustainability targets and evolving customer preferences can all have an impact on the ecology of foodborne pathogens and the agrifood niches that can carry microorganisms. Whole-genome and metagenome sequencing, combined with microbial surveillance schemes and insights from the food system, can provide authorities and businesses with transformative information to address risks and implement new food safety interventions across the food chain. In this Review, we describe how genome-based approaches have advanced our understanding of the evolution and spread of enduring bacterial foodborne hazards as well as their role in identifying emerging foodborne hazards. Furthermore, foodborne hazards exist in complex microbial communities across the entire food chain, and consideration of these co-existing organisms is essential to understanding the entire ecology supporting pathogen persistence and transmission in an evolving food system.
Collapse
Affiliation(s)
- Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.
- University of East Anglia, Norwich, UK.
| | - Matthew W Gilmour
- Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Nigel P French
- Tāuwharau Ora, School of Veterinary Science, Te Kunenga Ki Pūrehuroa, Massey University, Papaioea, Palmerston North, Aotearoa New Zealand
| |
Collapse
|
5
|
Cardim Falcao R, Edwards MR, Hurst M, Fraser E, Otterstatter M. A Review on Microbiological Source Attribution Methods of Human Salmonellosis: From Subtyping to Whole-Genome Sequencing. Foodborne Pathog Dis 2024; 21:137-146. [PMID: 38032610 PMCID: PMC10924193 DOI: 10.1089/fpd.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Salmonella is one of the main causes of human foodborne illness. It is endemic worldwide, with different animals and animal-based food products as reservoirs and vehicles of infection. Identifying animal reservoirs and potential transmission pathways of Salmonella is essential for prevention and control. There are many approaches for source attribution, each using different statistical models and data streams. Some aim to identify the animal reservoir, while others aim to determine the point at which exposure occurred. With the advance of whole-genome sequencing (WGS) technologies, new source attribution models will greatly benefit from the discriminating power gained with WGS. This review discusses some key source attribution methods and their mathematical and statistical tools. We also highlight recent studies utilizing WGS for source attribution and discuss open questions and challenges in developing new WGS methods. We aim to provide a better understanding of the current state of these methodologies with application to Salmonella and other foodborne pathogens that are common sources of illness in the poultry and human sectors.
Collapse
Affiliation(s)
- Rebeca Cardim Falcao
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - Megan R Edwards
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - Matt Hurst
- Public Health Agency of Canada, Guelph, Canada
| | - Erin Fraser
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - Michael Otterstatter
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22:e8583. [PMID: 38419967 PMCID: PMC10900121 DOI: 10.2903/j.efsa.2024.8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla OXA-48 or bla OXA-48-like genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, bla NDM-5 and bla VIM-1 genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.
Collapse
|
7
|
Deforet F, Jehanne Q, Bénéjat L, Aptel J, Prat R, Desbiolles C, Ducournau A, Jauvain M, Bonnet R, Vandenesch F, Lemoine J, Lehours P. Combined genomic-proteomic approach in the identification of Campylobacter coli amoxicillin-clavulanic acid resistance mechanism in clinical isolates. Front Microbiol 2023; 14:1285236. [PMID: 38029165 PMCID: PMC10666280 DOI: 10.3389/fmicb.2023.1285236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Aminopenicillins resistance among Campylobacter jejuni and Campylobacter coli strains is associated with a single mutation in the promoting region of a chromosomal beta-lactamase blaOXA61, allowing its expression. Clavulanic acid is used to restore aminopenicillins activity in case of blaOXA61 expression and has also an inherent antimicrobial activity over Campylobacter spp. Resistance to amoxicillin-clavulanic acid is therefore extremely rare among these species: only 0.1% of all Campylobacter spp. analyzed in the French National Reference Center these last years (2017-2022). Material and methods Whole genome sequencing with bioinformatic resistance identification combined with mass spectrometry (MS) was used to identify amoxicillin-acid clavulanic resistance mechanism in Campylobacters. Results A G57T mutation in blaOXA61 promoting region was identified in all C. jejuni and C. coli ampicillin resistant isolates and no mutation in ampicillin susceptible isolates. Interestingly, three C. coli resistant to both ampicillin and amoxicillin-clavulanic acid displayed a supplemental deletion in the promoting region of blaOXA61 beta-lactamase, at position A69. Using MS, a significant difference in the expression of BlaOXA61 was observed between these three isolates and amoxicillin-clavulanic acid susceptible C. coli. Conclusion A combined genomics/proteomics approach allowed here to identify a rare putative resistance mechanism associated with amoxicillin-clavulanic acid resistance for C. coli.
Collapse
Affiliation(s)
- Francis Deforet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, Lyon, France
| | - Quentin Jehanne
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Johanna Aptel
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Roxane Prat
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Chloé Desbiolles
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Astrid Ducournau
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Marine Jauvain
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, Bordeaux, France
| | - Richard Bonnet
- Laboratoire Associé CNR de la Résistance aux Antibiotiques, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Lehours
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Yao GF, Hu YL, Kong NQ, Liu JH, Luo YW, Li CY, Bi SL. Rapid Genotyping of Campylobacter coli Strains from Poultry Meat by PFGE, Sau-PCR, and fla-DGGE. Curr Microbiol 2023; 80:402. [PMID: 37930435 DOI: 10.1007/s00284-023-03517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
The genotyping of Campylobacter coli was done using three methods, pulsed-field gel electrophoresis (PFGE), Sau-polymerase chain reaction (Sau-PCR), and denaturing gradient gel electrophoresis assay of flagellin gene (fla-DGGE) and the characteristics of these assays were compared. The results showed that a total of 53 strains of C. coli were isolated from chicken and duck samples in three markets. All isolates were clustered into 31, 33, and 15 different patterns with Simpson's index of diversity (SID) values of 0.972, 0.974, and 0.919, respectively. Sau-PCR assay was simpler, more rapid, and had higher discriminatory power than PFGE assay. Fla-DGGE assay could detect and illustrate the number of contamination types of C. jejuni and C. coli without cultivation, which saved more time and cost than Sau-PCR and PFGE assays. Therefore, Sau-PCR and fla-DGGE assays are both rapid, economical, and easy to perform, which have the potential to be promising and accessible for primary laboratories in genotyping C. coli strains.
Collapse
Affiliation(s)
- Ge-Feng Yao
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi-Lin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Nian-Qing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin-Hong Liu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yong-Wen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chu-Yi Li
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Shui-Lian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China.
| |
Collapse
|
9
|
Hoon KS, Holt DC, Auburn S, Shaw P, Giffard PM. minSNPs: an R package for the derivation of resolution-optimised SNP sets from microbial genomic data. PeerJ 2023; 11:e15339. [PMID: 37250706 PMCID: PMC10224671 DOI: 10.7717/peerj.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Here, we present the R package, minSNPs. This is a re-development of a previously described Java application named Minimum SNPs. MinSNPs assembles resolution-optimised sets of single nucleotide polymorphisms (SNPs) from sequence alignments such as genome-wide orthologous SNP matrices. MinSNPs can derive sets of SNPs optimised for discriminating any user-defined combination of sequences from all others. Alternatively, SNP sets may be optimised to determine all sequences from all other sequences, i.e., to maximise diversity. MinSNPs encompasses functions that facilitate rapid and flexible SNP mining, and clear and comprehensive presentation of the results. The minSNPs' running time scales in a linear fashion with input data volume and the numbers of SNPs and SNPs sets specified in the output. MinSNPs was tested using a previously reported orthologous SNP matrix of Staphylococcus aureus and an orthologous SNP matrix of 3,279 genomes with 164,335 SNPs assembled from four S. aureus short read genomic data sets. MinSNPs was shown to be effective for deriving discriminatory SNP sets for potential surveillance targets and in identifying SNP sets optimised to discriminate isolates from different clonal complexes. MinSNPs was also tested with a large Plasmodium vivax orthologous SNP matrix. A set of five SNPs was derived that reliably indicated the country of origin within three south-east Asian countries. In summary, we report the capacity to assemble comprehensive SNP matrices that effectively capture microbial genomic diversity, and to rapidly and flexibly mine these entities for optimised marker sets.
Collapse
Affiliation(s)
- Kian Soon Hoon
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Deborah C. Holt
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- CDU Menzies School of Medicine, Faculty of Health, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Peter Shaw
- Oujian Laboratory, Wenzhou, Zhejiang, China
| | - Philip M. Giffard
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- CDU Menzies School of Medicine, Faculty of Health, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
10
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
11
|
Genomic Insights into the Increased Occurrence of Campylobacteriosis Caused by Antimicrobial-Resistant Campylobacter coli. mBio 2022; 13:e0283522. [PMID: 36472434 PMCID: PMC9765411 DOI: 10.1128/mbio.02835-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Campylobacter is the leading bacterial cause of diarrheal illnesses worldwide. Campylobacter jejuni and C. coli are the most common species accounting for campylobacteriosis. Although the proportion of campylobacteriosis caused by C. coli is increasing rapidly in China, the underlying mechanisms of this emergence remain unclear. In this study, we analyzed the whole-genome sequences and associated environments of 1,195 C. coli isolates with human, poultry, or porcine origins from 1980 to 2021. C. coli isolates of human origin were closely related to those from poultry, suggesting that poultry was the main source of C. coli infection in humans. Analysis of antimicrobial resistance determinants indicated that the prevalence of multidrug-resistant C. coli has increased dramatically since the 2010s, coinciding with the shift in abundance from C. jejuni to C. coli in Chinese poultry. Compared with C. jejuni, drug-resistant C. coli strains were better adapted and showed increased proliferation in the poultry production environment, where multiple antimicrobial agents were frequently used. This study provides an empirical basis for the molecular mechanisms that have enabled C. coli to become the dominant Campylobacter species in poultry; we also emphasize the importance of poultry products as sources of campylobacteriosis caused by C. coli in human patients. IMPORTANCE The proportion of campylobacteriosis caused by C. coli is increasing rapidly in China. Coincidentally, the dominant species of Campylobacter occurring in poultry products has shifted from C. jejuni to C. coli. Here, we analyzed the whole-genome sequences of 1,195 C. coli isolates from different origins. The phylogenetic relationship among C. coli isolates suggests that poultry was the main source of C. coli infection in humans. Further analysis indicated that antimicrobial resistance in C. coli strains has increased dramatically since the 2010s, which could facilitate their adaptation in the poultry production environment, where multiple antimicrobial agents are frequently used. Thus, our findings suggest that the judicious use of antimicrobial agents could mitigate the emergence of multidrug-resistant C. coli strains and enhance clinical outcomes by restoring drug sensitivity in Campylobacter.
Collapse
|
12
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019-2020. EFSA J 2022; 20:e07209. [PMID: 35382452 PMCID: PMC8961508 DOI: 10.2903/j.efsa.2022.7209] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2020 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on fattening pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2019-2020 included data regarding Salmonella, Campylobacter and indicator E. coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of methicillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2019-2020 harmonised AMR monitoring in the main food-producing animal populations monitored, in carcase/meat samples and in humans. Where available, monitoring data obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL-/AmpC-/carbapenemase phenotypes. The key outcome indicators for AMR in food-producing animals, such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been specifically analysed over the period 2014-2020.
Collapse
|
13
|
Hudson LK, Andershock WE, Yan R, Golwalkar M, M’ikanatha NM, Nachamkin I, Thomas LS, Moore C, Qian X, Steece R, Garman KN, Dunn JR, Kovac J, Denes TG. Phylogenetic Analysis Reveals Source Attribution Patterns for Campylobacter spp. in Tennessee and Pennsylvania. Microorganisms 2021; 9:microorganisms9112300. [PMID: 34835426 PMCID: PMC8625337 DOI: 10.3390/microorganisms9112300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Mugdha Golwalkar
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Linda S. Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Richard Steece
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Katie N. Garman
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - John R. Dunn
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
14
|
Arning N, Sheppard SK, Bayliss S, Clifton DA, Wilson DJ. Machine learning to predict the source of campylobacteriosis using whole genome data. PLoS Genet 2021; 17:e1009436. [PMID: 34662334 PMCID: PMC8553134 DOI: 10.1371/journal.pgen.1009436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/28/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis is among the world's most common foodborne illnesses, caused predominantly by the bacterium Campylobacter jejuni. Effective interventions require determination of the infection source which is challenging as transmission occurs via multiple sources such as contaminated meat, poultry, and drinking water. Strain variation has allowed source tracking based upon allelic variation in multi-locus sequence typing (MLST) genes allowing isolates from infected individuals to be attributed to specific animal or environmental reservoirs. However, the accuracy of probabilistic attribution models has been limited by the ability to differentiate isolates based upon just 7 MLST genes. Here, we broaden the input data spectrum to include core genome MLST (cgMLST) and whole genome sequences (WGS), and implement multiple machine learning algorithms, allowing more accurate source attribution. We increase attribution accuracy from 64% using the standard iSource population genetic approach to 71% for MLST, 85% for cgMLST and 78% for kmerized WGS data using the classifier we named aiSource. To gain insight beyond the source model prediction, we use Bayesian inference to analyse the relative affinity of C. jejuni strains to infect humans and identified potential differences, in source-human transmission ability among clonally related isolates in the most common disease causing lineage (ST-21 clonal complex). Providing generalizable computationally efficient methods, based upon machine learning and population genetics, we provide a scalable approach to global disease surveillance that can continuously incorporate novel samples for source attribution and identify fine-scale variation in transmission potential.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
- * E-mail:
| | - Samuel K. Sheppard
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sion Bayliss
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - David A. Clifton
- Department of Engineering Science, University of Oxford, Oxford, UK; Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Daniel J. Wilson
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
| |
Collapse
|
15
|
Emergence of erythromycin resistance methyltransferases in Campylobacter coli strains in France. Antimicrob Agents Chemother 2021; 65:e0112421. [PMID: 34370579 DOI: 10.1128/aac.01124-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance in Campylobacters is described worldwide. The emergence of multiresistant isolates, particularly among C. coli, is concerning. New resistance mechanisms appear frequently, and DNA-sequence-based methods such as whole genome sequencing (WGS) have become useful tools to monitor their emergence. The genomes of 51 multiresistant French Campylobacter sp. clinical strains from 2018 to 2019 were analyzed to identify associated resistance mechanisms. Analyses of erythromycin-resistant strains revealed 23S ribosomal RNA mutations among most of them and two different methyltransferases in 4 strains: Erm(B) and a novel methyltransferase, here named Erm(N). The erm(B) gene was found in multidrug-resistant genomic islands, whereas erm(N) was inserted within CRISPR arrays of the CRISPR-cas9 operon. Moreover, using PCR screening in erythromycin-resistant strains from our collection, we showed that erm(N) was already present in 3 French clinical strains 2 years before its first report in 2018 in Quebec. Bacterial transformations confirmed that insertion of erm(N) into a CRISPR-cas9 operon can confer macrolide resistance. Campylobacter species are easily able to adapt to their environment and acquire new resistance mechanisms, and the emergence of methyltransferases in Campylobacters in France is a matter of concern in the coming years.
Collapse
|
16
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J 2021; 19:e06490. [PMID: 33868492 PMCID: PMC8040295 DOI: 10.2903/j.efsa.2021.6490] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2018 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2018/2019 included data regarding Salmonella, Campylobacter and indicator Escherichia coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of meticillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2018/2019 harmonised AMR monitoring in the main food-producing animal populations monitored, in related carcase/meat samples and in humans. Where available, data monitoring obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL-/AmpC-/carbapenemase phenotypes. The outcome indicators for AMR in food-producing animals such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been also specifically analysed over the period 2015-2019.
Collapse
|